This file is indexed.

/usr/share/pyshared/fmcs.py is in python-fmcs 1.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
#!/usr/bin/env python

# This work was funded by Roche and generously donated to the free
# and open source cheminformatics community.

## Copyright (c) 2012 Andrew Dalke Scientific AB
## Andrew Dalke <dalke@dalkescientific.com>
##
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are
## met:
##
##   * Redistributions of source code must retain the above copyright
##     notice, this list of conditions and the following disclaimer.
##
##   * Redistributions in binary form must reproduce the above copyright
##     notice, this list of conditions and the following disclaimer in
##     the documentation and/or other materials provided with the
##     distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
## "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
## LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
## A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
## HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
## DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
## THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
## (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


"""FMCS - Find Maximum Common Substructure

This software finds the maximum common substructure of a set of
structures and reports it as a SMARTS strings.

This implements what I think is a new algorithm for the MCS problem.
The core description is:

  best_substructure = None
  pick one structure as the query, and other as the targets
  for each substructure in the query graph:
    convert it to a SMARTS string based on the desired match properties
    if the SMARTS pattern exists in all of the targets:
       then this is a common substructure
       keep track of the maximum such common structure,

The SMARTS string depends on the desired match properties. For
example, if ring atoms are only allowed to match ring atoms then an
aliphatic ring carbon in the query is converted to the SMARTS "[C;R]",
and the double-bond ring bond converted to "=;@" while the respectice
chain-only version are "[C;!R]" and "=;!@".

The algorithm I outlined earlier will usually take a long time. There
are several ways to speed it up.

== Bond elimination ==

As the first step, remove bonds which obviously cannot be part of the
MCS.

This requires atom and bond type information, which I store as SMARTS
patterns. A bond can only be in the MCS if its canonical bond type is
present in all of the structures. A bond type is string made of the
SMARTS for one atom, the SMARTS for the bond, and the SMARTS for the
other atom. The canonical bond type is the lexographically smaller of
the two possible bond types for a bond.

The atom and bond SMARTS depend on the type comparison used.

The "ring-matches-ring-only" option adds an "@" or "!@" to the bond
SMARTS, so that the canonical bondtype for "C-C" becomes [#6]-@[#6] or
[#6]-!@[#6] if the bond is in a ring or not in a ring, and if atoms
are compared by element and bonds are compared by bondtype. (This
option does not add "R" or "!R" to the atom SMARTS because there
should be a single bond in the MCS of c1ccccc1O and CO.)

The result of all of this atom and bond typing is a "TypedMolecule"
for each input structure.

I then find which canonical bondtypes are present in all of the
structures. I convert each TypedMolecule into a
FragmentedTypedMolecule which has the same atom information but only
those bonds whose bondtypes are in all of the structures. This can
break a structure into multiple, disconnected fragments, hence the
name.

(BTW, I would like to use the fragmented molecules as the targets
because I think the SMARTS match would go faster, but the RDKit SMARTS
matcher doesn't like them. I think it's because the new molecule
hasn't been sanitized and the underlying data structure the ring
information doesn't exist. Instead, I use the input structures for the
SMARTS match.)

== Use the structure with the smallest largest fragment as the query ==
== and sort the targets by the smallest largest fragment             ==

I pick one of the FragmentedTypedMolecule instances as the source of
substructure enumeration. Which one?

My heuristic is to use the one with the smallest largest fragment.
Hopefully it produces the least number of subgraphs, but that's also
related to the number of rings, so a large linear graph will product
fewer subgraphs than a small fused ring system. I don't know how to
quantify that.

For each of the fragmented structures, I find the number of atoms in
the fragment with the most atoms, and I find the number of bonds in
the fragment with the most bonds. These might not be the same
fragment.

I sort the input structures by the number of bonds in the largest
fragment, with ties broken first on the number of atoms, and then on
the input order. The smallest such structure is the query structure,
and the remaining are the targets.

== Use a breadth-first search and a priority queue to    ==
== enumerate the fragment subgraphs                      ==

I extract each of the fragments from the FragmentedTypedMolecule into
a TypedFragment, which I use to make an EnumerationMolecule. An
enumeration molecule contains a pair of directed edges for each atom,
which simplifies the enumeration algorithm.

The enumeration algorithm is based around growing a seed. A seed
contains the current subgraph atoms and bonds as well as an exclusion
set of bonds which cannot be used for future grown. The initial seed
is the first bond in the fragment, which may potentially grow to use
the entire fragment. The second seed is the second bond in the
fragment, which is excluded from using the first bond in future
growth. The third seed starts from the third bond, which may not use
the first or second bonds during growth, and so on.


A seed can grow along bonds connected to an atom in the seed but which
aren't already in the seed and aren't in the set of excluded bonds for
the seed. If there are no such bonds then subgraph enumeration ends
for this fragment. Given N bonds there are 2**N-1 possible ways to
grow, which is just the powerset of the available bonds, excluding the
no-growth case.

This breadth-first growth takes into account all possibilties of using
the available N bonds so all of those bonds are added to the exclusion
set of the newly expanded subgraphs.

For performance reasons, the bonds used for growth are separated into
'internal' bonds, which connect two atoms already in the subgraph, and
'external' bonds, which lead outwards to an atom not already in the
subgraph.

Each seed growth can add from 0 to N new atoms and bonds. The goal is
to maximize the subgraph size so the seeds are stored in a priority
queue, ranked so the seed with the most bonds is processed first. This
turns the enumeration into something more like a depth-first search.


== Prune seeds which aren't found in all of the structures ==

At each stage of seed growth I check that the new seed exists in all
of the original structures. (Well, all except the one which I
enumerate over in the first place; by definition that one will match.)
If it doesn't match then there's no reason to include this seed or any
larger seeds made from it.

The check is easy; I turn the subgraph into its corresponding SMARTS
string and use RDKit's normal SMARTS matcher to test for a match.

There are three ways to generate a SMARTS string: 1) arbitrary, 2)
canonical, 3) hybrid.

I have not tested #1. During most of the development I assumed that
SMARTS matches across a few hundred structures would be slow, so that
the best solution is to generate a *canonical* SMARTS and cache the
match information.

Well, it turns out that my canonical SMARTS match code takes up most
of the FMCS run-time. If I drop the canonicalization step then the
code averages about 5-10% faster. This isn't the same as #1 - I still
do the initial atom assignment based on its neighborhood, which is
like a circular fingerprint of size 2 and *usually* gives a consistent
SMARTS pattern, which I can then cache.

However, there are times when the non-canonical SMARTS code is slower.
Obviously one is if there are a lot of structures, and another if is
there is a lot of symmetry. I'm still working on characterizing this.


== Maximize atoms? or bonds? ==

The above algorithm enumerates all subgraphs of the query and
identifies those subgraphs which are common to all input structures.

It's trivial then to keep track of the current "best" subgraph, which
can defined as having the subgraph with the most atoms, or the most
bonds. Both of those options are implemented.

It would not be hard to keep track of all other subgraphs which are
the same size.

== --complete-ring-only implementation ==

The "complete ring only" option is implemented by first enabling the
"ring-matches-ring-only" option, as otherwise it doesn't make sense.

Second, in order to be a "best" subgraph, all bonds in the subgraph
which are ring bonds in the original molecule must also be in a ring
in the subgraph. This is handled as a post-processing step.

(Note: some possible optimizations, like removing ring bonds from
structure fragments which are not in a ring, are not yet implemented.)


== Prune seeds which have no potential for growing large enough  ==

Given a seed, its set of edges available for growth, and the set of
excluded bonds, figure out the maximum possible growth for the seed.
If this maximum possible is less than the current best subgraph then
prune.

This requires a graph search, currently done in Python, which is a bit
expensive. To speed things up, I precompute some edge information.
That is, if I know that a given bond is a chain bond (not in a ring)
then I can calculate the maximum number of atoms and bonds for seed
growth along that bond, in either direction. However, precomputation
doesn't take into account the excluded bonds, so after a while the
predicted value is too high.

Again, I'm still working on characterizing this, and an implementation
in C++ would have different tradeoffs.
"""

__version__ = "1.0"
__version_info = (1, 0, 0)

import sys

try:
    from rdkit import Chem
except ImportError:
    sys.stderr.write("Please install RDKit from http://www.rdkit.org/\n")
    raise


import argparse
import copy
import itertools
import re
import weakref
from heapq import heappush, heappop, heapify
from itertools import chain, combinations, product
import collections
from collections import defaultdict
import time


### A place to set global options
# (Is this really useful?)

class Default(object):
    timeout = None
    timeout_string = "none"
    maximize = "bonds"
    atom_compare = "elements"
    bond_compare = "bondtypes"
    match_valences = False
    ring_matches_ring_only = False
    complete_rings_only = False


####### Atom type and bond type information #####

# Lookup up the atomic symbol given its atomic number
_get_symbol = Chem.GetPeriodicTable().GetElementSymbol

# Lookup table to get the SMARTS for an atom given its element
# This uses the '#<n>' notation for atoms which may be aromatic.
# Eg, '#6' for carbon, instead of 'C,c'.
# Use the standard element symbol for atoms which can't be aromatic.
class AtomSmartsNoAromaticity(dict):
    def __missing__(self, eleno):
        value = _get_symbol(eleno)
        self[eleno] = value
        return value
_atom_smarts_no_aromaticity = AtomSmartsNoAromaticity()
# Initialize to the ones which need special treatment
# RDKit supports b, c, n, o, p, s, se, and te.
# Daylight and OpenSMILES don't 'te' but do support 'as'
# For better portability, I use the '#' notation for all of them.
for eleno in (5, 6, 7, 8, 15, 16, 33, 34, 52):
    _atom_smarts_no_aromaticity[eleno] = "#" + str(eleno)
assert _atom_smarts_no_aromaticity[6] == "#6"
assert _atom_smarts_no_aromaticity[2] == "He"

# Match any atom
def atom_typer_any(atoms):
    return ["*"] * len(atoms)

# Match atom by atomic element; usually by symbol
def atom_typer_elements(atoms):
    return [_atom_smarts_no_aromaticity[atom.GetAtomicNum()] for atom in atoms]

# Match atom by isotope number. This depends on the RDKit version
if hasattr(Chem.Atom, "GetIsotope"):
    def atom_typer_isotopes(atoms):
        return ["%d*" % atom.GetIsotope() for atom in atoms]
else:
    # Before mid-2012, RDKit only supported atomic mass, not isotope.
    # [12*] matches atoms whose mass is 12.000 +/-  0.5/1000
    # This generally works, excepting elements which have no
    #    Tc, Pm, Po, At, Rn, Fr, Ra, Ac, Np, Pu, Am, Cm,
    #    Bk, Cf, Es, Fm, Md, No, Lr
    # natural abundance; [98Tc] is the same as [Tc], etc.
    # This leads to problems because I don't have a way to
    # define the SMARTS for "no defined isotope." In SMILES/SMARTS
    # that's supposed to be through isotope 0.
    # The best I can do is force the non-integer masses to 0 and
    # use isotope 0 to match them. That's clumsy, but it gives
    # the expected result.
    def atom_typer_isotopes(atoms):
        atom_smarts_types = []
        for atom in atoms:
            mass = atom.GetMass()
            int_mass = int(round(mass * 1000))
            if int_mass % 1000 == 0:
                # This is close enough that RDKit's match will work
                atom_smarts = "%d*" % (int_mass//1000)
            else:
                # Probably in natural abundance. In any case,
                # there's no SMARTS for this pattern, so force
                # everything to 0.
                atom.SetMass(0.0)  # XX warning; in-place modification of the input!
                atom_smarts = "0*"
            atom_smarts_types.append(atom_smarts)
        return atom_smarts_types
    

# Match any bond
def bond_typer_any(bonds):
    return ["~"] * len(bonds)


# Match bonds based on bond type, including aromaticity

def bond_typer_bondtypes(bonds):
    # Aromaticity matches are important
    bond_smarts_types = []
    for bond in bonds:
        bond_term = bond.GetSmarts()
        if not bond_term:
            # The SMILES "", means "single or aromatic" as SMARTS.
            # Figure out which one.
            if bond.GetIsAromatic():
                bond_term = ':'
            else:
                bond_term = '-'
        bond_smarts_types.append(bond_term)

    return bond_smarts_types


atom_typers = {
    "any": atom_typer_any,
    "elements": atom_typer_elements,
    "isotopes": atom_typer_isotopes,
    }

bond_typers = {
    "any": bond_typer_any,
    "bondtypes": bond_typer_bondtypes,
    }
default_atom_typer = atom_typers[Default.atom_compare]
default_bond_typer = bond_typers[Default.bond_compare]


####### Support code for handling user-defined atom classes

# User-defined atom classes are handled in a round-about fashion.  The
# fmcs code doesn't know atom classes, but it can handle isotopes.
# It's easy to label the atom isotopes and do an "isotopes" atom
# comparison. The hard part is if you want to get the match
# information back using the original structure data, without the
# tweaked isotopes.

# My solution uses "save_isotopes" and "save_atom_classes" to store
# the old isotope information and the atom class assignments (both
# ordered by atom position), associated with the molecule.

# Use "restore_isotopes()" to restore the molecule's isotope values
# from the saved values. Ise "get_selected_atom_classes" to get the
# atom classes used by specified atom indices.


if hasattr(Chem.Atom, "GetIsotope"):
    def get_isotopes(mol):
        return [atom.GetIsotope() for atom in mol.GetAtoms()]
    def set_isotopes(mol, isotopes):
        if mol.GetNumAtoms() != len(isotopes):
            raise ValueError("Mismatch between the number of atoms and the number of isotopes")
        for atom, isotope in zip(mol.GetAtoms(), isotopes):
            atom.SetIsotope(isotope)

else:
    # Backards compatibility. Before mid-2012, RDKit only supported atomic mass, not isotope.
    def get_isotopes(mol):
        return [atom.GetMass() for atom in mol.GetAtoms()]
    def set_isotopes(mol, isotopes):
        if mol.GetNumAtoms() != len(isotopes):
            raise ValueError("Mismatch between the number of atoms and the number of isotopes")
        for atom, isotope in zip(mol.GetAtoms(), isotopes):
            atom.SetMass(isotope)
    
_isotope_dict = weakref.WeakKeyDictionary()
_atom_class_dict = weakref.WeakKeyDictionary()

def save_isotopes(mol, isotopes):
    _isotope_dict[mol] = isotopes

def save_atom_classes(mol, atom_classes):
    _atom_class_dict[mol] = atom_classes

def get_selected_atom_classes(mol, atom_indices):
    atom_classes = _atom_class_dict.get(mol, None)
    if atom_classes is None:
        return None
    return [atom_classes[index] for index in atom_indices]

def restore_isotopes(mol):
    try:
        isotopes = _isotope_dict[mol]
    except KeyError:
        raise ValueError("no isotopes to restore")
    set_isotopes(mol, isotopes)


def assign_isotopes_from_class_tag(mol, atom_class_tag):
    try:
        atom_classes = mol.GetProp(atom_class_tag)
    except KeyError:
        raise ValueError("Missing atom class tag %r" % (atom_class_tag,))
    fields = atom_classes.split()
    if len(fields) != mol.GetNumAtoms():
        raise ValueError("Mismatch between the number of atoms (#%d) and the number of atom classes (%d)" % (
            mol.GetNumAtoms(), len(fields)))
    new_isotopes = []
    for field in fields:
        if not field.isdigit():
            raise ValueError("Atom class %r from tag %r must be a number" % (field, atom_class_tag))
        isotope = int(field)
        if not (1 <= isotope <= 10000):
            raise ValueError("Atom class %r from tag %r must be in the range 1 to 10000" % (field, atom_class_tag))
        new_isotopes.append(isotope)

    save_isotopes(mol, get_isotopes(mol))
    save_atom_classes(mol, new_isotopes)
    set_isotopes(mol, new_isotopes)



### Different ways of storing atom/bond information about the input structures ###

# A TypedMolecule contains the input molecule, unmodified, along with
# atom type, and bond type information; both as SMARTS fragments. The
# "canonical_bondtypes" uniquely charactizes a bond; two bonds will
# match if and only if their canonical bondtypes match. (Meaning:
# bonds must be of equivalent type, and must go between atoms of
# equivalent types.)


class TypedMolecule(object):
    def __init__(self, rdmol, rdmol_atoms, rdmol_bonds, atom_smarts_types,
                 bond_smarts_types, canonical_bondtypes):
        self.rdmol = rdmol

        # These exist as a performance hack. It's faster to store the
        # atoms and bond as a Python list than to do GetAtoms() and
        # GetBonds() again. The stage 2 TypedMolecule does not use
        # these.
        
        self.rdmol_atoms = rdmol_atoms
        self.rdmol_bonds = rdmol_bonds

        # List of SMARTS to use for each atom and bond
        self.atom_smarts_types = atom_smarts_types
        self.bond_smarts_types = bond_smarts_types

        # List of canonical bondtype strings
        self.canonical_bondtypes = canonical_bondtypes

        # Question: Do I also want the original_rdmol_indices?  With
        # the normal SMARTS I can always do the substructure match
        # again to find the indices, but perhaps this will be needed
        # when atom class patterns are fully implemented.


# Start with a set of TypedMolecules. Find the canonical_bondtypes
# which only exist in all them, then fragment each TypedMolecule to
# produce a FragmentedTypedMolecule containing the same atom
# information but containing only bonds with those
# canonical_bondtypes.
        
class FragmentedTypedMolecule(object):
    def __init__(self, rdmol, rdmol_atoms, orig_atoms, orig_bonds,
                 atom_smarts_types, bond_smarts_types, canonical_bondtypes):
        self.rdmol = rdmol
        self.rdmol_atoms = rdmol_atoms
        self.orig_atoms = orig_atoms
        self.orig_bonds = orig_bonds
        # List of SMARTS to use for each atom and bond
        self.atom_smarts_types = atom_smarts_types
        self.bond_smarts_types = bond_smarts_types

        # List of canonical bondtype strings
        self.canonical_bondtypes = canonical_bondtypes

# A FragmentedTypedMolecule can contain multiple fragments. Once I've
# picked the FragmentedTypedMolecule to use for enumeration, I extract
# each of the fragments as the basis for an EnumerationMolecule.
        
class TypedFragment(object):
    def __init__(self, rdmol,
                 orig_atoms, orig_bonds,
                 atom_smarts_types, bond_smarts_types, canonical_bondtypes):
        self.rdmol = rdmol
        self.orig_atoms = orig_atoms
        self.orig_bonds = orig_bonds
        self.atom_smarts_types = atom_smarts_types
        self.bond_smarts_types = bond_smarts_types
        self.canonical_bondtypes = canonical_bondtypes



# The two possible bond types are
#    atom1_smarts + bond smarts + atom2_smarts
#    atom2_smarts + bond smarts + atom1_smarts
# The canonical bond type is the lexically smaller of these two.

def get_canonical_bondtypes(rdmol, bonds, atom_smarts_types, bond_smarts_types):
    canonical_bondtypes = []
    for bond, bond_smarts in zip(bonds, bond_smarts_types):
        atom1_smarts = atom_smarts_types[bond.GetBeginAtomIdx()]
        atom2_smarts = atom_smarts_types[bond.GetEndAtomIdx()]
        if atom1_smarts > atom2_smarts:
            atom1_smarts, atom2_smarts = atom2_smarts, atom1_smarts
        canonical_bondtypes.append("[%s]%s[%s]" % (atom1_smarts, bond_smarts, atom2_smarts))
    return canonical_bondtypes
    

# Create a TypedMolecule using the element-based typing scheme

# TODO: refactor this. It doesn't seem right to pass boolean flags.

def get_typed_molecule(rdmol, atom_typer, bond_typer, match_valences = Default.match_valences,
                       ring_matches_ring_only = Default.ring_matches_ring_only):
    atoms = list(rdmol.GetAtoms())
    atom_smarts_types = atom_typer(atoms)

    # Get the valence information, if requested
    if match_valences:
        new_atom_smarts_types = []
        for (atom, atom_smarts_type) in zip(atoms, atom_smarts_types):
            valence = atom.GetImplicitValence() + atom.GetExplicitValence()
            valence_str = "v%d" % valence
            if "," in atom_smarts_type:
                atom_smarts_type += ";" + valence_str
            else:
                atom_smarts_type += valence_str
            new_atom_smarts_types.append(atom_smarts_type)
        atom_smarts_types = new_atom_smarts_types
        

    # Store and reuse the bond information because I use it twice.
    # In a performance test, the times went from 2.0 to 1.4 seconds by doing this.
    bonds = list(rdmol.GetBonds())
    bond_smarts_types = bond_typer(bonds)
    if ring_matches_ring_only:
        new_bond_smarts_types = []
        for bond, bond_smarts in zip(bonds, bond_smarts_types):
            if bond.IsInRing():
                if bond_smarts == ":":
                    # No need to do anything; it has to be in a ring
                    pass
                else:
                    if "," in bond_smarts:
                        bond_smarts += ";@"
                    else:
                        bond_smarts += "@"
            else:
                if "," in bond_smarts:
                    bond_smarts += ";!@"
                else:
                    bond_smarts += "!@"
                    
            new_bond_smarts_types.append(bond_smarts)
        bond_smarts_types = new_bond_smarts_types

    canonical_bondtypes = get_canonical_bondtypes(rdmol, bonds, atom_smarts_types, bond_smarts_types)
    return TypedMolecule(rdmol, atoms, bonds, atom_smarts_types, bond_smarts_types, canonical_bondtypes)


# Create a TypedMolecule using the user-defined atom classes (Not implemented!)

def get_specified_types(rdmol, atom_types, ring_matches_ring_only):
    raise NotImplementedError("not tested!")
    # Make a copy because I will do some destructive edits
    rdmol = copy.copy(rdmol)
    
    atom_smarts_types = []
    atoms = list(mol.GetAtoms())
    for atom, atom_type in zip(atoms, atom_types):
        atom.SetAtomicNum(0)
        atom.SetMass(atom_type)
        atom_term = "%d*" % (atom_type,)
        if ring_matches_ring_only:
            if atom.IsInRing():
                atom_term += "R"
            else:
                atom_term += "!R"
        atom_smarts_types.append('[' + atom_term + ']')

    bonds = list(rdmol.GetBonds())
    bond_smarts_types = get_bond_smarts_types(mol, bonds, ring_matches_ring_only)
    canonical_bondtypes = get_canonical_bondtypes(mol, bonds, atom_smarts_types, bond_smarts_types)

    return TypedMolecule(mol, atoms, bonds, atom_smarts_types, bond_smarts_types, canonical_bondtypes)


def convert_input_to_typed_molecules(mols, atom_typer, bond_typer, match_valences, ring_matches_ring_only):
    typed_mols = []
    for molno, rdmol in enumerate(mols):
        typed_mol = get_typed_molecule(rdmol, atom_typer, bond_typer,
                                       match_valences=match_valences, ring_matches_ring_only=ring_matches_ring_only)
        typed_mols.append(typed_mol)

    return typed_mols

def _check_atom_classes(molno, num_atoms, atom_classes):
    if num_atoms != len(atom_classes):
        raise ValueError("mols[%d]: len(atom_classes) must be the same as the number of atoms" % (molno,))
    for atom_class in atom_classes:
        if not isinstance(atom_class, int):
            raise ValueError("mols[%d]: atom_class elements must be integers" % (molno,))
        if not (1 <= atom_class < 1000):
            raise ValueError("mols[%d]: atom_class elements must be in the range 1 <= value < 1000" %
                             (molno,))

#############################################

# This section deals with finding the canonical bondtype counts and
# making new TypedMolecule instances where the atoms contain only the
# bond types which are in all of the structures.

# In the future I would like to keep track of the bond types which are
# in the current subgraph. If any subgraph bond type count is ever
# larger than the maximum counts computed across the whole set, then
# prune. But so far I don't have a test set which drives the need for
# that.

# Return a dictionary mapping iterator item to occurence count
def get_counts(it):
    d = defaultdict(int)
    for item in it:
        d[item] += 1
    return dict(d)

# Merge two count dictionaries, returning the smallest count for any
# entry which is in both.
def intersect_counts(counts1, counts2):
    d = {}
    for k, v1 in counts1.iteritems():
        if k in counts2:
            v = min(v1, counts2[k])
            d[k] = v
    return d


# Figure out which canonical bonds SMARTS occur in every molecule
def get_canonical_bondtype_counts(typed_mols):
    # Get all of the canonical bond counts in the first molecule
    bondtype_counts = get_counts(typed_mols[0].canonical_bondtypes)

    # Iteratively intersect it with the other typed molecules
    for typed_mol in typed_mols[1:]:
        new_counts = get_counts(typed_mol.canonical_bondtypes)
        bondtype_counts = intersect_counts(bondtype_counts, new_counts)

    return bondtype_counts


# If I know which bondtypes exist in all of the structures, I can
# remove all bonds which aren't in all structures. RDKit's Molecule
# class doesn't let me edit in-place, so I end up making a new one
# which doesn't have unsupported bond types.

def remove_unknown_bondtypes(typed_mol, supported_canonical_bondtypes):
    emol = Chem.EditableMol(Chem.Mol())

    # Copy all of the atoms, even those which don't have any bonds. 
    for atom in typed_mol.rdmol_atoms:
        emol.AddAtom(atom)

    # Copy over all the bonds with a supported bond type.
    # Make sure to update the bond SMARTS and canonical bondtype lists.
    orig_bonds = []
    new_bond_smarts_types = []
    new_canonical_bondtypes = []
    for bond, bond_smarts, canonical_bondtype in zip(typed_mol.rdmol_bonds, typed_mol.bond_smarts_types,
                                                     typed_mol.canonical_bondtypes):
        if canonical_bondtype in supported_canonical_bondtypes:
            orig_bonds.append(bond)
            new_bond_smarts_types.append(bond_smarts)
            new_canonical_bondtypes.append(canonical_bondtype)
            emol.AddBond(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx(), bond.GetBondType())

    new_mol = emol.GetMol()
    return FragmentedTypedMolecule(new_mol, list(new_mol.GetAtoms()),
                                   typed_mol.rdmol_atoms, orig_bonds,
                                   typed_mol.atom_smarts_types, new_bond_smarts_types,
                                   new_canonical_bondtypes)

# The molecule at this point has been (potentially) fragmented by
# removing bonds with unsupported bond types. The MCS cannot contain
# more atoms than the fragment of a given molecule with the most
# atoms, and the same for bonds. Find those upper limits. Note that
# the fragment with the most atoms is not necessarily the one with the
# most bonds.

def find_upper_fragment_size_limits(rdmol, atoms):
    max_num_atoms = max_twice_num_bonds = 0
    for atom_indices in Chem.GetMolFrags(rdmol):
        num_atoms = len(atom_indices)
        if num_atoms > max_num_atoms:
            max_num_atoms = num_atoms

        # Every bond is connected to two atoms, so this is the
        # simplest way to count the number of bonds in the fragment.
        twice_num_bonds = 0
        for atom_index in atom_indices:
            # XXX Why is there no 'atom.GetNumBonds()'?
            twice_num_bonds += sum(1 for bond in atoms[atom_index].GetBonds())
        if twice_num_bonds > max_twice_num_bonds:
            max_twice_num_bonds = twice_num_bonds

    return max_num_atoms, max_twice_num_bonds // 2


####### Convert the selected TypedMolecule into an EnumerationMolecule

# I convert one of the typed fragment molecules (specifically, the one
# with the smallest largest fragment score) into a list of
# EnumerationMolecule instances. Each fragment from the typed molecule
# gets turned into an EnumerationMolecule.

# An EnumerationMolecule contains the data I need to enumerate all of
# its subgraphs.

# An EnumerationMolecule contains a list of 'Atom's and list of 'Bond's.
# Atom and Bond indices are offsets into those respective lists.
# An Atom has a list of "bond_indices", which are offsets into the bonds.
# A Bond has a 2-element list of "atom_indices", which are offsets into the atoms.

EnumerationMolecule = collections.namedtuple("Molecule", "rdmol atoms bonds directed_edges")
Atom = collections.namedtuple("Atom", "real_atom atom_smarts bond_indices is_in_ring")
Bond = collections.namedtuple("Bond", "real_bond bond_smarts canonical_bondtype atom_indices is_in_ring")

# A Bond is linked to by two 'DirectedEdge's; one for each direction.
# The DirectedEdge.bond_index references the actual RDKit bond instance.
# 'end_atom_index' is the index of the destination atom of the directed edge
# This is used in a 'directed_edges' dictionary so that
#     [edge.end_atom_index for edge in directed_edges[atom_index]]
# is the list of all atom indices connected to 'atom_index'
DirectedEdge = collections.namedtuple("DirectedEdge",
                                      "bond_index end_atom_index")

# A Subgraph is a list of atom and bond indices in an EnumerationMolecule
Subgraph = collections.namedtuple("Subgraph", "atom_indices bond_indices")

def get_typed_fragment(typed_mol, atom_indices):
    rdmol = typed_mol.rdmol
    rdmol_atoms = typed_mol.rdmol_atoms

    # I need to make a new RDKit Molecule containing only the fragment.
    # XXX Why is that? Do I use the molecule for more than the number of atoms and bonds?

    # Copy over the atoms
    emol = Chem.EditableMol(Chem.Mol())
    atom_smarts_types = []
    atom_map = {}
    for i, atom_index in enumerate(atom_indices):
        atom = rdmol_atoms[atom_index]
        emol.AddAtom(atom)
        atom_smarts_types.append(typed_mol.atom_smarts_types[atom_index])
        atom_map[atom_index] = i

    # Copy over the bonds.
    orig_bonds = []
    bond_smarts_types = []
    new_canonical_bondtypes = []
    for bond, orig_bond, bond_smarts, canonical_bondtype in zip(
                rdmol.GetBonds(), typed_mol.orig_bonds,
                typed_mol.bond_smarts_types, typed_mol.canonical_bondtypes):
        begin_atom_idx = bond.GetBeginAtomIdx()
        end_atom_idx = bond.GetEndAtomIdx()
        count = (begin_atom_idx in atom_map) + (end_atom_idx in atom_map)
        # Double check that I have a proper fragment
        if count == 2:
            bond_smarts_types.append(bond_smarts)
            new_canonical_bondtypes.append(canonical_bondtype)
            emol.AddBond(atom_map[begin_atom_idx], atom_map[end_atom_idx], bond.GetBondType())
            orig_bonds.append(orig_bond)
        elif count == 1:
            raise AssertionError("connected/disconnected atoms?")
    return TypedFragment(emol.GetMol(),
                         [typed_mol.orig_atoms[atom_index] for atom_index in atom_indices],
                         orig_bonds,
                         atom_smarts_types, bond_smarts_types, new_canonical_bondtypes)


def fragmented_mol_to_enumeration_mols(typed_mol, min_num_atoms=2):
    if min_num_atoms < 2:
        raise ValueError("min_num_atoms must be at least 2")

    fragments = []
    for atom_indices in Chem.GetMolFrags(typed_mol.rdmol):
        # No need to even look at fragments which are too small.
        if len(atom_indices) < min_num_atoms:
            continue

        # Convert a fragment from the TypedMolecule into a new
        # TypedMolecule containing only that fragment.

        # You might think I could merge 'get_typed_fragment()' with
        # the code to generate the EnumerationMolecule. You're
        # probably right. This code reflects history. My original code
        # didn't break the typed molecule down to its fragments.
        typed_fragment = get_typed_fragment(typed_mol, atom_indices)
        rdmol = typed_fragment.rdmol
        atoms = []
        for atom, orig_atom, atom_smarts_type in zip(rdmol.GetAtoms(), typed_fragment.orig_atoms,
                                                typed_fragment.atom_smarts_types):
            bond_indices = [bond.GetIdx() for bond in atom.GetBonds()]
            #assert atom.GetSymbol() == orig_atom.GetSymbol()
            atom_smarts = '[' + atom_smarts_type + ']'
            atoms.append(Atom(atom, atom_smarts, bond_indices, orig_atom.IsInRing()))

        directed_edges = collections.defaultdict(list)
        bonds = []
        for bond_index, (bond, orig_bond, bond_smarts, canonical_bondtype) in enumerate(
                zip(rdmol.GetBonds(), typed_fragment.orig_bonds,
                    typed_fragment.bond_smarts_types, typed_fragment.canonical_bondtypes)):
            atom_indices = [bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()]
            bonds.append(Bond(bond, bond_smarts, canonical_bondtype, atom_indices, orig_bond.IsInRing()))

            directed_edges[atom_indices[0]].append(DirectedEdge(bond_index, atom_indices[1]))
            directed_edges[atom_indices[1]].append(DirectedEdge(bond_index, atom_indices[0]))

        fragment = EnumerationMolecule(rdmol, atoms, bonds, dict(directed_edges))
        fragments.append(fragment)

    # Optimistically try the largest fragments first
    fragments.sort(key = lambda fragment: len(fragment.atoms), reverse=True)
    return fragments


####### Canonical SMARTS generation using Weininger, Weininger, and Weininger's CANGEN

# CANGEN "combines two separate algorithms, CANON and GENES.  The
# first stage, CANON, labels a molecualr structure with canonical
# labels. ... Each atom is given a numerical label on the basis of its
# topology. In the second stage, GENES generates the unique SMILES
# ... . [It] selects the starting atom and makes branching decisions
# by referring to the canonical labels as needed."


# CANON is based on the fundamental theorem of arithmetic, that is,
# the unique prime factorization theorem. Which means I need about as
# many primes as I have atoms.

# I could have a fixed list of a few thousand primes but I don't like
# having a fixed upper limit to my molecule size. I modified the code
# Georg Schoelly posted at http://stackoverflow.com/a/568618/64618 .
# This is one of many ways to generate an infinite sequence of primes.
def gen_primes():
    d = defaultdict(list)
    q = 2
    while 1:
        if q not in d:
            yield q
            d[q*q].append(q)
        else:
            for p in d[q]:
                d[p+q].append(p)
            del d[q]
        q += 1

_prime_stream = gen_primes()

# Code later on uses _primes[n] and if that fails, calls _get_nth_prime(n)
_primes = []

def _get_nth_prime(n):
    # Keep appending new primes from the stream until I have enough.
    current_size = len(_primes)
    while current_size <= n:
        _primes.append(next(_prime_stream))
        current_size += 1
    return _primes[n]

# Prime it with more values then will likely occur
_get_nth_prime(1000)

###

# The CANON algorithm is documented as:
#  (1) Set atomic vector to initial invariants. Go to step 3.
#  (2) Set vector to product of primes corresponding to neighbors' ranks.
#  (3) Sort vector, maintaining stability over previous ranks.
#  (4) Rank atomic vector.
#  (5) If not invariants partitioning, go to step 2.
#  (6) On first pass, save partitioning as symmetry classes [fmcs doesn't need this]
#  (7) If highest rank is smaller than number of nodes, break ties, go to step 2
#  (8) ... else done.


# I track the atom information as a list of CangenNode instances.

class CangenNode(object):
    # Using __slots__ improves get_initial_cangen_nodes performance by over 10%
    # and dropped my overall time (in one benchmark) from 0.75 to 0.73 seconds
    __slots__ = ["index", "atom_smarts", "value", "neighbors", "rank", "outgoing_edges"]
    def __init__(self, index, atom_smarts):
        self.index = index
        self.atom_smarts = atom_smarts  # Used to generate the SMARTS output
        self.value = 0
        self.neighbors = []
        self.rank = 0
        self.outgoing_edges = []

# The outgoing edge information is used to generate the SMARTS output
# The index numbers are offsets in the subgraph, not in the original molecule
OutgoingEdge = collections.namedtuple("OutgoingEdge",
                                      "from_atom_index bond_index bond_smarts other_node_idx other_node")

# Convert a Subgraph of a given EnumerationMolecule into a list of
# CangenNodes. This contains the more specialized information I need
# for canonicalization and for SMARTS generation.
def get_initial_cangen_nodes(subgraph, enumeration_mol, atom_assignment, do_initial_assignment=True):
    # The subgraph contains a set of atom and bond indices in the enumeration_mol.
    # The CangenNode corresponds to an atom in the subgraph, plus relations
    # to other atoms in the subgraph.
    # I need to convert from offsets in molecule space to offset in subgraph space.

    # Map from enumeration mol atom indices to subgraph/CangenNode list indices
    atom_map = {}

    cangen_nodes = []
    atoms = enumeration_mol.atoms
    canonical_labels = []
    for i, atom_index in enumerate(subgraph.atom_indices):
        atom_map[atom_index] = i
        cangen_nodes.append(CangenNode(i, atoms[atom_index].atom_smarts))
        canonical_labels.append([])

    # Build the neighbor and directed edge lists
     
    for bond_index in subgraph.bond_indices:
        bond = enumeration_mol.bonds[bond_index]
        from_atom_index, to_atom_index = bond.atom_indices
        from_subgraph_atom_index = atom_map[from_atom_index]
        to_subgraph_atom_index = atom_map[to_atom_index]

        from_node = cangen_nodes[from_subgraph_atom_index]
        to_node = cangen_nodes[to_subgraph_atom_index]
        from_node.neighbors.append(to_node)
        to_node.neighbors.append(from_node)

        canonical_bondtype = bond.canonical_bondtype
        canonical_labels[from_subgraph_atom_index].append(canonical_bondtype)
        canonical_labels[to_subgraph_atom_index].append(canonical_bondtype)

        from_node.outgoing_edges.append(
            OutgoingEdge(from_subgraph_atom_index, bond_index, bond.bond_smarts,
                         to_subgraph_atom_index, to_node))
        to_node.outgoing_edges.append(
            OutgoingEdge(to_subgraph_atom_index, bond_index, bond.bond_smarts,
                         from_subgraph_atom_index, from_node))

    if do_initial_assignment:
        # Do the initial graph invariant assignment. (Step 1 of the CANON algorithm)
        # These are consistent only inside of the given 'atom_assignment' lookup.
        for atom_index, node, canonical_label in zip(subgraph.atom_indices, cangen_nodes, canonical_labels):
            # The initial invariant is the sorted canonical bond labels
            # plus the atom smarts, separated by newline characters.
            #
            # This is equivalent to a circular fingerprint of width 2, and
            # gives more unique information than the Weininger method.
            canonical_label.sort()
            canonical_label.append(atoms[atom_index].atom_smarts)
            label = "\n".join(canonical_label)

            # The downside of using a string is that I need to turn it
            # into a number which is consistent across all of the SMARTS I
            # generate as part of the MCS search. Use a lookup table for
            # that which creates a new number of the label wasn't seen
            # before, or uses the old one if it was.
            node.value = atom_assignment[label]

    return cangen_nodes


# Rank a sorted list (by value) of CangenNodes
def rerank(cangen_nodes):
    rank = 0     # Note: Initial rank is 1, in line with the Weininger paper
    prev_value = -1
    for node in cangen_nodes:
        if node.value != prev_value:
            rank += 1
            prev_value = node.value
        node.rank = rank

# Given a start/end range in the CangenNodes, sorted by value,
# find the start/end for subranges with identical values
def find_duplicates(cangen_nodes, start, end):
    result = []
    prev_value = -1
    count = 0
    for index in xrange(start, end):
        node = cangen_nodes[index]
        if node.value == prev_value:
            count += 1
        else:
            if count > 1:
                # New subrange containing duplicates
                result.append( (start, index) )
            count = 1
            prev_value = node.value
            start = index
    if count > 1:
        # Last elements were duplicates
        result.append( (start, end) )
    return result

#@profile 
def canon(cangen_nodes):
    # Precondition: node.value is set to the initial invariant
    # (1) Set atomic vector to initial invariants (assumed on input)
    
    # Do the initial ranking
    cangen_nodes.sort(key = lambda node: node.value)
    rerank(cangen_nodes)

    # Keep refining the sort order until it's unambiguous
    master_sort_order = cangen_nodes[:]

    # Find the start/end range for each stretch of duplicates
    duplicates = find_duplicates(cangen_nodes, 0, len(cangen_nodes))

    PRIMES = _primes # micro-optimization; make this a local name lookup
    
    while duplicates:
        # (2) Set vector to product of primes corresponding to neighbor's ranks
        for node in cangen_nodes:
            try:
                node.value = PRIMES[node.rank]
            except IndexError:
                node.value = _get_nth_prime(node.rank)
        for node in cangen_nodes:
            # Apply the fundamental theorem of arithmetic; compute the
            # product of the neighbors' primes
            p = 1
            for neighbor in node.neighbors:
                p *= neighbor.value
            node.value = p
            

        # (3) Sort vector, maintaining stability over previous ranks
        # (I maintain stability by refining ranges in the
        # master_sort_order based on the new ranking)
        cangen_nodes.sort(key = lambda node: node.value)

        # (4) rank atomic vector
        rerank(cangen_nodes)

        # See if any of the duplicates have been resolved.
        new_duplicates = []
        unchanged = True  # This is buggy? Need to check the entire state XXX
        for (start, end) in duplicates:
            # Special case when there's only two elements to store.
            # This optimization sped up cangen by about 8% because I
            # don't go through the sort machinery
            if start+2 == end:
                node1, node2 = master_sort_order[start], master_sort_order[end-1]
                if node1.value > node2.value:
                    master_sort_order[start] = node2
                    master_sort_order[end-1] = node1
            else:
                subset = master_sort_order[start:end]
                subset.sort(key = lambda node: node.value)
                master_sort_order[start:end] = subset

            subset_duplicates = find_duplicates(master_sort_order, start, end)
            new_duplicates.extend(subset_duplicates)
            if unchanged:
                # Have we distinguished any of the duplicates?
                if not (len(subset_duplicates) == 1 and subset_duplicates[0] == (start, end)):
                    unchanged = False

        # (8) ... else done
        # Yippee! No duplicates left. Everything has a unique value.
        if not new_duplicates:
            break
            
        # (5) If not invariant partitioning, go to step 2
        if not unchanged:
            duplicates = new_duplicates
            continue
        
        duplicates = new_duplicates
        
        # (6) On first pass, save partitioning as symmetry classes
        pass # I don't need this information
        
        # (7) If highest rank is smaller than number of nodes, break ties, go to step 2
        # I follow the Weininger algorithm and use 2*rank or 2*rank-1.
        # This requires that the first rank is 1, not 0.
        for node in cangen_nodes:
            node.value = node.rank * 2

        # The choice of tie is arbitrary. Weininger breaks the first tie.
        # I break the last tie because it's faster in Python to delete
        # from the end than the beginning.
        start, end = duplicates[-1]
        cangen_nodes[start].value -= 1
        if end == start+2:
            # There were only two nodes with the same value. Now there
            # are none. Remove information about that duplicate.
            del duplicates[-1]
        else:
            # The first N-1 values are still duplicates.
            duplicates[-1] = (start+1, end)
        rerank(cangen_nodes)

    # Restore to the original order (ordered by subgraph atom index)
    # because the bond information used during SMARTS generation
    # references atoms by that order.
    cangen_nodes.sort(key=lambda node: node.index)


def get_closure_label(bond_smarts, closure):
    if closure < 10:
        return bond_smarts + str(closure)
    else:
        return bond_smarts + "%%%02d" % closure

# Precompute the initial closure heap. *Overall* performance went from 0.73 to 0.64 seconds!
_available_closures = range(1, 101)
heapify(_available_closures)

# The Weininger paper calls this 'GENES'; I call it "generate_smiles."

# I use a different algorithm than GENES. It's still use two
# passes. The first pass identifies the closure bonds using a
# depth-first search. The second pass builds the SMILES string.

def generate_smarts(cangen_nodes):
    start_index = 0
    best_rank = cangen_nodes[0].rank
    for i, node in enumerate(cangen_nodes):
        if node.rank < best_rank:
            best_rank = node.rank
            start_index = i
        node.outgoing_edges.sort(key=lambda edge: edge.other_node.rank)

    visited_atoms = [0] * len(cangen_nodes)
    closure_bonds = set()

    ## First, find the closure bonds using a DFS
    stack = []
    atom_idx = start_index
    stack.extend(reversed(cangen_nodes[atom_idx].outgoing_edges))
    visited_atoms[atom_idx] = True

    while stack:
        edge = stack.pop()
        if visited_atoms[edge.other_node_idx]:
            closure_bonds.add(edge.bond_index)
        else:
            visited_atoms[edge.other_node_idx] = 1
            for next_edge in reversed(cangen_nodes[edge.other_node_idx].outgoing_edges):
                if next_edge.other_node_idx == edge.from_atom_index:
                    # Don't worry about going back along the same route
                    continue
                stack.append(next_edge)


    available_closures = _available_closures[:]
    unclosed_closures = {}

    # I've identified the closure bonds.
    # Use a stack machine to traverse the graph and build the SMARTS.
    # The instruction contains one of 4 instructions, with associated data
    #   0: add the atom's SMARTS and put its connections on the machine
    #   1: add the bond's SMARTS and put the other atom on the machine
    #   3: add a ')' to the SMARTS
    #   4: add a '(' and the bond SMARTS
    
    smiles_terms = []
    stack = [(0, (start_index, -1))]
    while stack:
        action, data = stack.pop()
        if action == 0:
            # Add an atom.

            # The 'while 1:' emulates a goto for the special case
            # where the atom is connected to only one other atom.  I
            # don't need to use the stack machinery for that case, and
            # can speed up this function by about 10%.
            while 1:
                # Look at the bonds starting from this atom
                num_neighbors = 0
                atom_idx, prev_bond_idx = data
                smiles_terms.append(cangen_nodes[atom_idx].atom_smarts)
                outgoing_edges = cangen_nodes[atom_idx].outgoing_edges
                for outgoing_edge in outgoing_edges:
                    bond_idx = outgoing_edge.bond_index

                    # Is this a ring closure bond?
                    if bond_idx in closure_bonds:
                        # Have we already seen it before?
                        if bond_idx not in unclosed_closures:
                            # This is new. Add as a ring closure.
                            closure = heappop(available_closures)
                            smiles_terms.append(get_closure_label(outgoing_edge.bond_smarts, closure))
                            unclosed_closures[bond_idx] = closure
                        else:
                            closure = unclosed_closures[bond_idx]
                            smiles_terms.append(get_closure_label(outgoing_edge.bond_smarts, closure))
                            heappush(available_closures, closure)
                            del unclosed_closures[bond_idx]
                    else:
                        # This is a new outgoing bond.
                        if bond_idx == prev_bond_idx:
                            # Don't go backwards along the bond I just came in on
                            continue
                        if num_neighbors == 0:
                            # This is the first bond. There's a good chance that
                            # it's the only bond. 
                            data = (outgoing_edge.other_node_idx, bond_idx)
                            bond_smarts = outgoing_edge.bond_smarts
                        else:
                            # There are multiple bonds. Can't shortcut.
                            if num_neighbors == 1:
                                # Capture the information for the first bond
                                # This direction doesn't need the (branch) characters.
                                stack.append((0, data))
                                stack.append((1, bond_smarts))
                            
                            # Add information for this bond
                            stack.append((3, None))
                            stack.append((0, (outgoing_edge.other_node_idx, bond_idx)))
                            stack.append((4, outgoing_edge.bond_smarts))

                        num_neighbors += 1
                if num_neighbors != 1:
                    # If there's only one item then goto action==0 again.
                    break
                smiles_terms.append(bond_smarts)
        elif action == 1:
            # Process a bond which does not need '()'s
            smiles_terms.append(data) # 'data' is bond_smarts
            continue
            
        elif action == 3:
            smiles_terms.append(')')
        elif action == 4:
            smiles_terms.append('(' + data)  # 'data' is bond_smarts
        else:
            raise AssertionError

    return "".join(smiles_terms)


# Full canonicalization is about 5% slower unless there are well over 100 structures
# in the data set, which is not expected to be common.
# Commented out the canon() step until there's a better solution (eg, adapt based
# in the input size.)
def make_canonical_smarts(subgraph, enumeration_mol, atom_assignment):
    cangen_nodes = get_initial_cangen_nodes(subgraph, enumeration_mol, atom_assignment, True)
    #canon(cangen_nodes)
    smarts = generate_smarts(cangen_nodes)
    return smarts

## def make_semicanonical_smarts(subgraph, enumeration_mol, atom_assignment):
##     cangen_nodes = get_initial_cangen_nodes(subgraph, enumeration_mol, atom_assignment, True)
##     # There's still some order because of the canonical bond typing, but it isn't perfect
##     #canon(cangen_nodes)
##     smarts = generate_smarts(cangen_nodes)
##     return smarts

def make_arbitrary_smarts(subgraph, enumeration_mol, atom_assignment):
    cangen_nodes = get_initial_cangen_nodes(subgraph, enumeration_mol, atom_assignment, False)
    # Use an arbitrary order
    for i, node in enumerate(cangen_nodes):
        node.value = i
    smarts = generate_smarts(cangen_nodes)
    return smarts

        
############## Subgraph enumeration ##################

# A 'seed' is a subgraph containing a subset of the atoms and bonds in
# the graph. The idea is to try all of the ways in which to grow the
# seed to make a new seed which contains the original seed.

# There are two ways to grow a seed:
#   - add a bond which is not in the seed but where both of its
#            atoms are in the seed
#   - add a bond which is not in the seed but where one of its
#            atoms is in the seed (and the other is not)

# The algorithm takes the seed, and finds all of both categories of
# bonds. If there are N total such bonds then there are 2**N-1
# possible new seeds which contain the original seed. This is simply
# the powerset of the possible bonds, excepting the case with no
# bonds.

# Generate all 2**N-1 new seeds. Place the new seeds back in the
# priority queue to check for additional growth.

# I place the seeds in priority queue, sorted by score (typically the
# number of atoms) to preferentially search larger structures first. A
# simple stack or deque wouldn't work because the new seeds have
# between 1 to N-1 new atoms and bonds.

    
# Some useful preamble code
    
# Taken from the Python documentation
def powerset(iterable):
    "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

# Same as the above except the empty term is not returned
def nonempty_powerset(iterable):
    "nonempty_powerset([1,2,3]) --> (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)
    it = chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
    it.next()
    return it


# Call this to get a new unique function. Used to break ties in the
# priority queue.
tiebreaker = itertools.count().next

### The enumeration code


# Given a set of atoms, find all of the ways to leave those atoms.
# There are two possibilities:
#   1) bonds; which connect two atoms which are already in 'atom_indices'
#   2) directed edges; which go to atoms that aren't in 'atom_indices'
#     and which aren't already in visited_bond_indices. These are external
#     to the subgraph.
# The return is a 2-element tuple containing:
#  (the list of bonds from (1), the list of directed edges from (2))
def find_extensions(atom_indices, visited_bond_indices, directed_edges):
    internal_bonds = set()
    external_edges = []
    for atom_index in atom_indices:
        for directed_edge in directed_edges[atom_index]:
            # Skip outgoing edges which have already been evaluated
            if directed_edge.bond_index in visited_bond_indices:
                continue

            if directed_edge.end_atom_index in atom_indices:
                # case 1: This bond goes to another atom which is already in the subgraph.
                internal_bonds.add(directed_edge.bond_index)
            else:
                # case 2: This goes to a new (external) atom
                external_edges.append(directed_edge)

    # I don't think I need the list()
    return list(internal_bonds), external_edges


# Given the 2-element tuple (internal_bonds, external_edges),
# construct all of the ways to combine them to generate a new subgraph
# from the old one. This is done via a powerset.
# This generates a two-element tuple containing:
#   - the set of newly added atom indices (or None)
#   - the new subgraph

def all_subgraph_extensions(enumeration_mol, subgraph, visited_bond_indices, internal_bonds, external_edges):
    #print "Subgraph", len(subgraph.atom_indices), len(subgraph.bond_indices), "X", enumeration_mol.rdmol.GetNumAtoms()
    #print "subgraph atoms", subgraph.atom_indices
    #print "subgraph bonds", subgraph.bond_indices
    #print "internal", internal_bonds, "external", external_edges
    # only internal bonds
    if not external_edges:
        #assert internal_bonds, "Must have at least one internal bond"
        it = nonempty_powerset(internal_bonds)
        for internal_bond in it:
            # Make the new subgraphs
            bond_indices = set(subgraph.bond_indices)
            bond_indices.update(internal_bond)
            yield None, Subgraph(subgraph.atom_indices, frozenset(bond_indices)), 0, 0
        return

    # only external edges
    if not internal_bonds:
        it = nonempty_powerset(external_edges)
        exclude_bonds = set(chain(visited_bond_indices, (edge.bond_index for edge in external_edges)))
        for external_ext in it:
            new_atoms = frozenset(ext.end_atom_index for ext in external_ext)
            atom_indices = frozenset(chain(subgraph.atom_indices, new_atoms))
            bond_indices = frozenset(chain(subgraph.bond_indices,
                                            (ext.bond_index for ext in external_ext)))
            num_possible_atoms, num_possible_bonds = find_extension_size(
                enumeration_mol, new_atoms, exclude_bonds, external_ext)

            #num_possible_atoms = len(enumeration_mol.atoms) - len(atom_indices)
            #num_possible_bonds = len(enumeration_mol.bonds) - len(bond_indices)
            yield new_atoms, Subgraph(atom_indices, bond_indices), num_possible_atoms, num_possible_bonds
        return

    # Both internal bonds and external edges
    internal_powerset = list(powerset(internal_bonds))
    external_powerset = powerset(external_edges)

    exclude_bonds = set(chain(visited_bond_indices, (edge.bond_index for edge in external_edges)))

    for external_ext in external_powerset:
        if not external_ext:
            # No external extensions. Must have at least one internal bond.
            for internal_bond in internal_powerset[1:]:
                bond_indices = set(subgraph.bond_indices)
                bond_indices.update(internal_bond)
                yield None, Subgraph(subgraph.atom_indices, bond_indices), 0, 0
        else:
            new_atoms = frozenset(ext.end_atom_index for ext in external_ext)
            atom_indices = frozenset(chain(subgraph.atom_indices, new_atoms))
            #            no_go_bond_indices = set(chain(visited_bond_indices, extern

            bond_indices = frozenset(chain(subgraph.bond_indices,
                                            (ext.bond_index for ext in external_ext)))
            num_possible_atoms, num_possible_bonds = find_extension_size(
                enumeration_mol, atom_indices, exclude_bonds, external_ext)
            #num_possible_atoms = len(enumeration_mol.atoms) - len(atom_indices)
            for internal_bond in internal_powerset:
                bond_indices2 = frozenset(chain(bond_indices, internal_bond))
                #num_possible_bonds = len(enumeration_mol.bonds) - len(bond_indices2)
                yield new_atoms, Subgraph(atom_indices, bond_indices2), num_possible_atoms, num_possible_bonds


def find_extension_size(enumeration_mol, known_atoms, exclude_bonds, directed_edges):
    num_remaining_atoms = num_remaining_bonds = 0
    visited_atoms = set(known_atoms)
    visited_bonds = set(exclude_bonds)
    #print "start atoms", visited_atoms
    #print "start bonds", visited_bonds
    #print "Along", [directed_edge.bond_index for directed_edge in directed_edges]
    for directed_edge in directed_edges:
        #print "Take", directed_edge
        stack = [directed_edge.end_atom_index]

        # simple depth-first search search
        while stack:
            atom_index = stack.pop()
            for next_edge in enumeration_mol.directed_edges[atom_index]:
                #print "Visit", next_edge.bond_index, next_edge.end_atom_index
                bond_index = next_edge.bond_index
                if bond_index in visited_bonds:
                    #print "Seen bond", bond_index
                    continue
                num_remaining_bonds += 1
                visited_bonds.add(bond_index)
                #print "New BOND!", bond_index, "count", num_remaining_bonds

                next_atom_index = next_edge.end_atom_index
                if next_atom_index in visited_atoms:
                    #print "Seen atom"
                    continue
                num_remaining_atoms += 1
                #print "New atom!", next_atom_index, "count", num_remaining_atoms
                visited_atoms.add(next_atom_index)

                stack.append(next_atom_index)
                
    #print "==>", num_remaining_atoms, num_remaining_bonds
    return num_remaining_atoms, num_remaining_bonds

# Check if a SMARTS is in all targets.
# Uses a dictionary-style API, but please only use matcher[smarts]
# Caches all previous results.

class CachingTargetsMatcher(dict):
    def __init__(self, targets):
        self.targets = targets
        super(dict, self).__init__()
        
    def __missing__(self, smarts):
        pat = Chem.MolFromSmarts(smarts)
        if pat is None:
            raise AssertionError("Bad SMARTS: %r" % (smarts,))
        for target in self.targets:
            if not MATCH(target, pat):
                # Does not match. No need to continue processing
                self[smarts] = False
                return False
                # TODO: should I move the mismatch structure forward
                # so that it's tested earlier next time?
        # Matches everything
        self[smarts] = True
        return True

class VerboseCachingTargetsMatcher(object):
    def __init__(self, targets):
        self.targets = targets
        self.cache = {}
        self.num_lookups = self.num_cached_true = self.num_cached_false = 0
        self.num_search_true = self.num_search_false = self.num_matches = 0

    def __getitem__(self, smarts, missing=object()):
        self.num_lookups += 1
        x = self.cache.get(smarts, missing)
        if x is not missing:
            if x:
                self.num_cached_true += 1
            else:
                self.num_cached_false += 1
            return x
        
        pat = Chem.MolFromSmarts(smarts)
        if pat is None:
            raise AssertionError("Bad SMARTS: %r" % (smarts,))

        for i, target in enumerate(self.targets):
            if not MATCH(target, pat):
                # Does not match. No need to continue processing
                self.num_search_false += 1
                self.num_matches += i+1
                self.cache[smarts] = False
                N = len(self.targets)
                return False
                # TODO: should I move the mismatch structure forward
                # so that it's tested earlier next time?
        # Matches everything
        self.num_matches += i+1
        self.num_search_true += 1
        self.cache[smarts] = True
        return True
        
    def report(self):
        print >>sys.stderr, "%d tests of %d unique SMARTS, cache: %d True %d False, search: %d True %d False (%d substructure tests)" % (self.num_lookups, len(self.cache), self.num_cached_true, self.num_cached_false, self.num_search_true, self.num_search_false, self.num_matches)
        

##### Different maximization algorithms ######
def prune_maximize_bonds(subgraph, mol, num_remaining_atoms, num_remaining_bonds, best_sizes):
    # Quick check if this is a viable search direction
    num_atoms = len(subgraph.atom_indices)
    num_bonds = len(subgraph.bond_indices)
    best_num_atoms, best_num_bonds = best_sizes

    # Prune subgraphs which are too small can never become big enough
    diff_bonds = (num_bonds + num_remaining_bonds) - best_num_bonds
    if diff_bonds < 0:
        return True
    elif diff_bonds == 0:
        # Then we also maximize the number of atoms
        diff_atoms = (num_atoms + num_remaining_atoms) - best_num_atoms
        if diff_atoms <= 0:
            return True

    return False
    

def prune_maximize_atoms(subgraph, mol, num_remaining_atoms, num_remaining_bonds, best_sizes):
    # Quick check if this is a viable search direction
    num_atoms = len(subgraph.atom_indices)
    num_bonds = len(subgraph.bond_indices)
    best_num_atoms, best_num_bonds = best_sizes

    # Prune subgraphs which are too small can never become big enough
    diff_atoms = (num_atoms + num_remaining_atoms) - best_num_atoms
    if diff_atoms < 0:
        return True
    elif diff_atoms == 0:
        diff_bonds = (num_bonds + num_remaining_bonds) - best_num_bonds
        if diff_bonds <= 0:
            return True
    else:
        #print "Could still have", diff_atoms
        #print num_atoms, num_remaining_atoms, best_num_atoms
        pass

    return False

##### Callback handlers for storing the "best" information #####x

class _SingleBest(object):
    def __init__(self, timer, verbose):
        self.best_num_atoms = self.best_num_bonds = -1
        self.best_smarts = None
        self.sizes = (-1, -1)
        self.timer = timer
        self.verbose = verbose

    def _new_best(self, num_atoms, num_bonds, smarts):
        self.best_num_atoms = num_atoms
        self.best_num_bonds = num_bonds
        self.best_smarts = smarts
        self.sizes = sizes = (num_atoms, num_bonds)
        self.timer.mark("new best")
        if self.verbose:
            dt = self.timer.mark_times["new best"] - self.timer.mark_times["start fmcs"]
            sys.stderr.write("Best after %.1fs: %d atoms %d bonds %s\n" % (dt, num_atoms, num_bonds, smarts))
        return sizes

    def get_result(self, completed):
        return MCSResult(self.best_num_atoms, self.best_num_bonds, self.best_smarts, completed)

class MCSResult(object):
    def __init__(self, num_atoms, num_bonds, smarts, completed):
        self.num_atoms = num_atoms
        self.num_bonds = num_bonds
        self.smarts = smarts
        self.completed = completed
    def __nonzero__(self):
        return self.smarts is not None
        

class SingleBestAtoms(_SingleBest):
    def add_new_match(self, subgraph, mol, smarts):
        sizes = self.sizes
        
        # See if the subgraph match is better than the previous best
        num_subgraph_atoms = len(subgraph.atom_indices)
        if num_subgraph_atoms < sizes[0]:
            return sizes

        num_subgraph_bonds = len(subgraph.bond_indices)
        if num_subgraph_atoms == sizes[0]:
            if num_subgraph_bonds <= sizes[1]:
                return sizes

        return self._new_best(num_subgraph_atoms, num_subgraph_bonds, smarts)

class SingleBestBonds(_SingleBest):
    def add_new_match(self, subgraph, mol, smarts):
        sizes = self.sizes
        
        # See if the subgraph match is better than the previous best
        num_subgraph_bonds = len(subgraph.bond_indices)
        if num_subgraph_bonds < sizes[1]:
            return sizes

        num_subgraph_atoms = len(subgraph.atom_indices)
        if num_subgraph_bonds == sizes[1] and num_subgraph_atoms <= sizes[0]:
            return sizes
        return self._new_best(num_subgraph_atoms, num_subgraph_bonds, smarts)



### Check if there are any ring atoms; used in --complete-rings-only

# This is (yet) another depth-first graph search algorithm

def check_complete_rings_only(smarts, subgraph, enumeration_mol):
    #print "check", smarts, len(subgraph.atom_indices), len(subgraph.bond_indices)

    atoms = enumeration_mol.atoms
    bonds = enumeration_mol.bonds

    # First, are any of bonds in the subgraph ring bonds in the original structure?
    ring_bonds = []
    for bond_index in subgraph.bond_indices:
        bond = bonds[bond_index]
        if bond.is_in_ring:
            ring_bonds.append(bond_index)

    #print len(ring_bonds), "ring bonds"
    if not ring_bonds:
        # No need to check .. this is an acceptable structure
        return True

    if len(ring_bonds) <= 2:
        # No need to check .. there are no rings of size 2
        return False

    # Otherwise there's more work. Need to ensure that
    # all ring atoms are still in a ring in the subgraph.

    confirmed_ring_bonds = set()
    subgraph_ring_bond_indices = set(ring_bonds)
    for bond_index in ring_bonds:
        #print "start with", bond_index, "in?", bond_index in confirmed_ring_bonds
        if bond_index in confirmed_ring_bonds:
            continue
        # Start a new search, starting from this bond
        from_atom_index, to_atom_index = bonds[bond_index].atom_indices

        # Map from atom index to depth in the bond stack
        atom_depth = {from_atom_index: 0,
                      to_atom_index: 1}
        bond_stack = [bond_index]
        backtrack_stack = []
        prev_bond_index = bond_index
        current_atom_index = to_atom_index

        while 1:
            # Dive downwards, ever downwards
            next_bond_index = next_atom_index = None
            this_is_a_ring = False
            for outgoing_edge in enumeration_mol.directed_edges[current_atom_index]:
                if outgoing_edge.bond_index == prev_bond_index:
                    # Don't loop back
                    continue
                if outgoing_edge.bond_index not in subgraph_ring_bond_indices:
                    # Only advance along ring edges which are in the subgraph
                    continue

                if outgoing_edge.end_atom_index in atom_depth:
                    #print "We have a ring"
                    # It's a ring! Mark everything as being in a ring
                    confirmed_ring_bonds.update(bond_stack[atom_depth[outgoing_edge.end_atom_index]:])
                    confirmed_ring_bonds.add(outgoing_edge.bond_index)
                    if len(confirmed_ring_bonds) == len(ring_bonds):
                        #print "Success!"
                        return True
                    this_is_a_ring = True
                    continue

                # New atom. Need to explore it.
                #print "we have a new bond", outgoing_edge.bond_index, "to atom", outgoing_edge.end_atom_index
                if next_bond_index is None:
                    # This will be the immediate next bond to search in the DFS
                    next_bond_index = outgoing_edge.bond_index
                    next_atom_index = outgoing_edge.end_atom_index
                else:
                    # Otherwise, backtrack and examine the other bonds
                    backtrack_stack.append(
                        (len(bond_stack), outgoing_edge.bond_index, outgoing_edge.end_atom_index) )

            if next_bond_index is None:
                # Could not find a path to take. Might be because we looped back.
                if this_is_a_ring:
                    #assert prev_bond_index in confirmed_ring_bonds, (prev_bond_index, confirmed_ring_bonds)
                    # We did! That means we can backtrack
                    while backtrack_stack:
                        old_size, prev_bond_index, current_atom_index = backtrack_stack.pop()
                        if bond_index not in confirmed_ring_bonds:
                            # Need to explore this path.
                            # Back up and start the search from here
                            del bond_stack[old_size:]
                            break
                    else:
                        # No more backtracking. We fail. Try next bond?
                        # (If it had been sucessful then the
                        #    len(confirmed_ring_bonds) == len(ring_bonds)
                        # would have return True)
                        break
                else:
                    # Didn't find a ring, nowhere to advance
                    return False
            else:
                # Continue deeper
                bond_stack.append(next_bond_index)
                atom_depth[next_atom_index] = len(bond_stack)
                prev_bond_index = next_bond_index
                current_atom_index = next_atom_index

        # If we reached here then try the next bond
        #print "Try again"


class SingleBestAtomsCompleteRingsOnly(_SingleBest):
    def add_new_match(self, subgraph, mol, smarts):
        sizes = self.sizes
        
        # See if the subgraph match is better than the previous best
        num_subgraph_atoms = len(subgraph.atom_indices)
        if num_subgraph_atoms < sizes[0]:
            return sizes

        num_subgraph_bonds = len(subgraph.bond_indices)
        if num_subgraph_atoms == sizes[0] and num_subgraph_bonds <= sizes[1]:
            return sizes

        if check_complete_rings_only(smarts, subgraph, mol):
            return self._new_best(num_subgraph_atoms, num_subgraph_bonds, smarts)
        return sizes
        

class SingleBestBondsCompleteRingsOnly(_SingleBest):
    def add_new_match(self, subgraph, mol, smarts):
        sizes = self.sizes
        
        # See if the subgraph match is better than the previous best
        num_subgraph_bonds = len(subgraph.bond_indices)
        if num_subgraph_bonds < sizes[1]:
            return sizes
        
        num_subgraph_atoms = len(subgraph.atom_indices)
        if num_subgraph_bonds == sizes[1] and num_subgraph_atoms <= sizes[0]:
            return sizes

        if check_complete_rings_only(smarts, subgraph, mol):
            return self._new_best(num_subgraph_atoms, num_subgraph_bonds, smarts)
        return sizes
    
_maximize_options = {
    ("atoms", False): (prune_maximize_atoms, SingleBestAtoms),
    ("atoms", True): (prune_maximize_atoms, SingleBestAtomsCompleteRingsOnly),
    ("bonds", False): (prune_maximize_bonds, SingleBestBonds),
    ("bonds", True): (prune_maximize_bonds, SingleBestBondsCompleteRingsOnly),
    }


###### The engine of the entire system. Enumerate subgraphs and see if they match. #####

def enumerate_subgraphs(enumeration_mols, prune, atom_assignment, matches_all_targets, hits, timeout,
                        heappush, heappop):
    if timeout is None:
        end_time = None
    else:
        end_time = time.time() + timeout

    seeds = []
        
    best_sizes = (0, 0)
    # Do a quick check for the not uncommon case where one of the input fragments
    # is the largest substructure or one off from the largest.
    for mol in enumeration_mols:
        atom_range = range(len(mol.atoms))
        bond_set = set(range(len(mol.bonds)))
        subgraph = Subgraph(atom_range, bond_set)
        if not prune(subgraph, mol, 0, 0, best_sizes):
            # Micro-optimization: the largest fragment SMARTS doesn't
            # need to be canonicalized because there will only ever be
            # one match. It's also unlikely that the other largest
            # fragments need canonicalization.
            smarts = make_arbitrary_smarts(subgraph, mol, atom_assignment)
            if matches_all_targets[smarts]:
                best_sizes = hits.add_new_match(subgraph, mol, smarts)
            
    
    for mol in enumeration_mols:
        directed_edges = mol.directed_edges
        # Using 20001 random ChEMBL pairs, timeout=15.0 seconds
        #  1202.6s with original order
        #  1051.9s sorting by (bond.is_in_ring, bond_index)
        #  1009.7s sorting by (bond.is_in_ring + atom1.is_in_ring + atom2.is_in_ring)
        #  1055.2s sorting by (if bond.is_in_ring: 2; else: -(atom1.is_in_ring + atom2.is_in_ring))
        #  1037.4s sorting by (atom1.is_in_ring + atom2.is_in_ring)
        sorted_bonds = list(enumerate(mol.bonds))
        def get_bond_ring_score((bond_index, bond), atoms=mol.atoms):
            a1, a2 = bond.atom_indices
            return bond.is_in_ring + atoms[a1].is_in_ring + atoms[a2].is_in_ring
        sorted_bonds.sort(key = get_bond_ring_score)

        visited_bond_indices = set()
        num_remaining_atoms = len(mol.atoms)-2
        num_remaining_bonds = len(mol.bonds)
        for bond_index, bond in sorted_bonds: #enumerate(mol.bonds): #
            #print "bond_index", bond_index, len(mol.bonds)
            visited_bond_indices.add(bond_index)
            num_remaining_bonds -= 1
            subgraph = Subgraph(bond.atom_indices, frozenset([bond_index]))

            # I lie about the remaining atom/bond sizes here.
            if prune(subgraph, mol, num_remaining_atoms, num_remaining_bonds, best_sizes):
                continue
            # bond.canonical_bondtype doesn't necessarily give the same
            # SMARTS as make_canonical_smarts, but that doesn't matter.
            # 1) I know it's canonical, 2) it's faster, and 3) there is
            # no place else which generates single-bond canonical SMARTS.
            #smarts = make_canonical_smarts(subgraph, mol, atom_assignment)
            smarts = bond.canonical_bondtype
            if matches_all_targets[smarts]:
                best_sizes = hits.add_new_match(subgraph, mol, smarts)
            else:
                raise AssertionError("This should never happen: %r" % (smarts,))
                continue

            a1, a2 = bond.atom_indices
            outgoing_edges = [e for e in (directed_edges[a1] + directed_edges[a2])
                  if e.end_atom_index not in bond.atom_indices and e.bond_index not in visited_bond_indices]

            empty_internal = frozenset()
            if not outgoing_edges:
                pass
            else:
                # The priority is the number of bonds in the subgraph, ordered so
                # that the subgraph with the most bonds comes first. Since heapq
                # puts the smallest value first, I reverse the number. The initial
                # subgraphs have 1 bond, so the initial score is -1.
                heappush(seeds, (-1, tiebreaker(), subgraph,
                                 visited_bond_indices.copy(), empty_internal, outgoing_edges,
                                 mol, directed_edges))
    
    # I made so many subtle mistakes where I used 'subgraph' instead
    # of 'new_subgraph' in the following section that I finally
    # decided to get rid of 'subgraph' and use 'old_subgraph' instead.
    del subgraph

    while seeds:
        if end_time:
            if time.time() >= end_time:
                return False
            
        #print "There are", len(seeds), "seeds", seeds[0][:2]
        score, _, old_subgraph, visited_bond_indices, internal_bonds, external_edges, mol, directed_edges = heappop(seeds)

        new_visited_bond_indices = visited_bond_indices.copy()
        new_visited_bond_indices.update(internal_bonds)
        ## for edge in external_edges:
        ##     assert edge.bond_index not in new_visited_bond_indices
        new_visited_bond_indices.update(edge.bond_index for edge in external_edges)

        for new_atoms, new_subgraph, num_remaining_atoms, num_remaining_bonds in \
               all_subgraph_extensions(mol, old_subgraph, visited_bond_indices, internal_bonds, external_edges):
            if prune(new_subgraph, mol, num_remaining_atoms, num_remaining_bonds, best_sizes):
                #print "PRUNE", make_canonical_smarts(new_subgraph, mol, atom_assignment)
                continue
            smarts = make_canonical_smarts(new_subgraph, mol, atom_assignment)
            if matches_all_targets[smarts]:
                #print "YES", smarts
                best_sizes = hits.add_new_match(new_subgraph, mol, smarts)
            else:
                #print "NO", smarts
                continue

            if not new_atoms:
                continue

            new_internal_bonds, new_external_edges = find_extensions(
                new_atoms, new_visited_bond_indices, directed_edges)

            if new_internal_bonds or new_external_edges:
                # Rank so the subgraph with the highest number of bonds comes first
                heappush(seeds, (-len(new_subgraph.bond_indices), tiebreaker(), new_subgraph,
                                 new_visited_bond_indices, new_internal_bonds, new_external_edges,
                                 mol, directed_edges))

    return True


# Assign a unique identifier to every unique key
class Uniquer(dict):
    def __init__(self):
        self.counter = itertools.count().next
    def __missing__(self, key):
        self[key] = count = self.counter()
        return count


# This is here only so I can see it in the profile statistics
def MATCH(mol, pat):
    return mol.HasSubstructMatch(pat)

class VerboseHeapOps(object):
    def __init__(self, trigger, verbose_delay):
        self.num_seeds_added = 0
        self.num_seeds_processed = 0
        self.verbose_delay = verbose_delay
        self._time_for_next_report = time.time() + verbose_delay
        self.trigger = trigger
        
    def heappush(self, seeds, item):
        self.num_seeds_added += 1
        return heappush(seeds, item)
    
    def heappop(self, seeds):
        if time.time() >= self._time_for_next_report:
            self.trigger()
            self.report()
            self._time_for_next_report = time.time() + self.verbose_delay
        self.num_seeds_processed += 1
        return heappop(seeds)

    def trigger_report(self):
        self.trigger()
        self.report()

    def report(self):
        print >>sys.stderr, "  %d subgraphs enumerated, %d processed" % (
            self.num_seeds_added, self.num_seeds_processed)

def compute_mcs(enumeration_mols, targets, maximize = Default.maximize,
                complete_rings_only = Default.complete_rings_only,
                timeout = Default.timeout,
                timer = None, verbose=False, verbose_delay=1.0):
    assert timer is not None
    atom_assignment = Uniquer()
    if verbose:
        if verbose_delay < 0.0:
            raise ValueError("verbose_delay may not be negative")
        matches_all_targets = VerboseCachingTargetsMatcher(list(targets))
        heapops = VerboseHeapOps(matches_all_targets.report, verbose_delay)
        push = heapops.heappush
        pop = heapops.heappop
        end_verbose = heapops.trigger_report
    else:
        matches_all_targets = CachingTargetsMatcher(list(targets))
        push = heappush
        pop = heappop
        end_verbose = lambda: 1
    
    try:
        prune, hits_class = _maximize_options[(maximize, bool(complete_rings_only))]
    except KeyError:
        raise ValueError("Unknown 'maximize' option %r" % (maximize,))

    hits = hits_class(timer, verbose)

    success = enumerate_subgraphs(enumeration_mols, prune, atom_assignment, matches_all_targets, hits,
                                  timeout, push, pop)
    end_verbose()
    
    return hits.get_result(success)
        
########## Main driver for the MCS code

class Timer(object):
    def __init__(self):
        self.mark_times = {}
    def mark(self, name):
        self.mark_times[name] = time.time()

def _update_times(timer, times):
    if times is None:
        return
    for (dest, start, end) in ( ("fragment", "start fmcs", "end fragment"),
                                ("select", "end fragment", "end select"),
                                ("enumerate", "end select", "end fmcs"),
                                ("best_found", "start fmcs", "new best"),
                                ("mcs", "start fmcs", "end fmcs") ):
        try:
            diff = timer.mark_times[end] - timer.mark_times[start]
        except KeyError:
            diff = None
        times[dest] = diff



def fmcs(mols, min_num_atoms=2,
         maximize = Default.maximize,
         atom_compare = Default.atom_compare,
         bond_compare = Default.bond_compare,
         match_valences = Default.match_valences,
         ring_matches_ring_only = False,
         complete_rings_only = False,
         timeout=Default.timeout,
         times=None,
         verbose=False,
         verbose_delay=1.0,
         ):

    timer = Timer()
    timer.mark("start fmcs")

    if min_num_atoms < 2:
        raise ValueError("min_num_atoms must be at least 2")
    if timeout is not None:
        if timeout <= 0.0:
            raise ValueError("timeout must be None or a positive value")

    if complete_rings_only:
        ring_matches_ring_only = True

    try:
        atom_typer = atom_typers[atom_compare]
    except KeyError:
        raise ValueError("Unknown atom_compare option %r" % (atom_compare,))
    try:
        bond_typer = bond_typers[bond_compare]
    except KeyError:
        raise ValueError("Unknown bond_compare option %r" % (bond_compare,))


    # Make copies of all of the molecules so I can edit without worrying about the original
    typed_mols = convert_input_to_typed_molecules(mols, atom_typer, bond_typer,
                                                  match_valences = match_valences,
                                                  ring_matches_ring_only = ring_matches_ring_only)
    bondtype_counts = get_canonical_bondtype_counts(typed_mols)
    fragmented_mols = [remove_unknown_bondtypes(typed_mol, bondtype_counts) for typed_mol in typed_mols]
    timer.mark("end fragment")

    sizes = []
    max_num_atoms = fragmented_mols[0].rdmol.GetNumAtoms()
    max_num_bonds = fragmented_mols[0].rdmol.GetNumBonds()
    for tiebreaker, (typed_mol, fragmented_mol) in enumerate(zip(typed_mols, fragmented_mols)):
        num_atoms, num_bonds = find_upper_fragment_size_limits(fragmented_mol.rdmol,
                                                               fragmented_mol.rdmol_atoms)
        if num_atoms < min_num_atoms:
            timer.mark("end select")
            timer.mark("end fmcs")
            _update_times(timer, times)
            return MCSResult(-1, -1, None, True)
        if num_atoms < max_num_atoms:
            max_num_atoms = num_atoms
        if num_bonds < max_num_bonds:
            max_num_bonds = num_bonds
        sizes.append( (num_bonds, num_atoms, tiebreaker, typed_mol, fragmented_mol) )
        
    if sizes is None:
        # There was a short-cut exit because one of the molecules didn't have a large enough fragment
        timer.mark("end select")
        timer.mark("end fmcs")
        _update_times(timer, times)
        return MCSResult(-1, -1, None, True)
    assert min(size[1] for size in sizes) >= min_num_atoms

    # Sort so the molecule with the smallest largest fragment (by bonds) comes first.
    # Break ties with the smallest number of atoms.
    # Break secondary ties by position.
    sizes.sort()
    #print "Using", Chem.MolToSmiles(sizes[0][4].rdmol)

    timer.mark("end select")

    # Use the first as the query, the rest as the targets
    query_fragments = fragmented_mol_to_enumeration_mols(sizes[0][4], min_num_atoms)

    targets = [size[3].rdmol for size in sizes[1:]]

    timer.mark("start enumeration")
    mcs_result = compute_mcs(query_fragments, targets, maximize=maximize,
                             complete_rings_only=complete_rings_only, timeout=timeout,
                             timer=timer, verbose=verbose, verbose_delay=verbose_delay)
    timer.mark("end fmcs")
    _update_times(timer, times)
    return mcs_result


######### Helper functions to generate structure/fragment output given an MCS match

# Given a Subgraph (with atom and bond indices) describing a
# fragment, make a new molecule object with only that fragment

def subgraph_to_fragment(mol, subgraph):
    emol = Chem.EditableMol(Chem.Mol())
    atom_map = {}
    for atom_index in subgraph.atom_indices:
        emol.AddAtom(mol.GetAtomWithIdx(atom_index))
        atom_map[atom_index] = len(atom_map)

    for bond_index in subgraph.bond_indices:
        bond = mol.GetBondWithIdx(bond_index)
        emol.AddBond(atom_map[bond.GetBeginAtomIdx()],
                     atom_map[bond.GetEndAtomIdx()],
                     bond.GetBondType())

    return emol.GetMol()
    

# Convert a subgraph into a SMILES
def make_fragment_smiles(mcs, mol, subgraph, args=None):
    fragment = subgraph_to_fragment(mol, subgraph)
    new_smiles = Chem.MolToSmiles(fragment)
    return "%s %s\n" % (new_smiles, mol.GetProp("_Name"))


def _copy_sd_tags(mol, fragment):
    fragment.SetProp("_Name", mol.GetProp("_Name"))
    # Copy the existing names over
    for name in mol.GetPropNames():
        if name.startswith("_"):
            continue
        fragment.SetProp(name, mol.GetProp(name))

def _MolToSDBlock(mol):
    # Huh?! There's no way to get the entire SD record?
    mol_block = Chem.MolToMolBlock(mol, kekulize=False)
    tag_data = []
    for name in mol.GetPropNames():
        if name.startswith("_"):
            continue
        value = mol.GetProp(name)
        tag_data.append("> <" + name + ">\n")
        tag_data.append(value + "\n")
        tag_data.append("\n")
    tag_data.append("$$$$\n")
    return mol_block + "".join(tag_data)

def _save_other_tags(mol, fragment, mcs, orig_mol, subgraph, args):
    if args.save_counts_tag is not None:
        if not mcs:
            line = "-1 -1 -1"
        elif mcs.num_atoms == 0:
            line = "0 0 0"
        else:
            line = "1 %d %d" % (mcs.num_atoms, mcs.num_bonds)
        mol.SetProp(args.save_counts_tag, line)

    if args.save_smiles_tag is not None:
        if mcs and mcs.num_atoms > 0:
            smiles = Chem.MolToSmiles(fragment)
        else:
            smiles = "-"
        mol.SetProp(args.save_smiles_tag, smiles)

    if args.save_smarts_tag is not None:
        if mcs and mcs.num_atoms > 0:
            smarts = mcs.smarts
        else:
            smarts = "-"
        mol.SetProp(args.save_smarts_tag, smarts)
    

# Convert a subgraph into an SD file
def make_fragment_sdf(mcs, mol, subgraph, args):
    fragment = subgraph_to_fragment(mol, subgraph)
    Chem.FastFindRings(fragment)
    _copy_sd_tags(mol, fragment)

    if args.save_atom_class_tag is not None:
        output_tag = args.save_atom_class_tag
        atom_classes = get_selected_atom_classes(mol, subgraph.atom_indices)
        if atom_classes is not None:
            fragment.SetProp(output_tag, " ".join(map(str, atom_classes)))

    _save_other_tags(fragment, fragment, mcs, mol, subgraph, args)

    return _MolToSDBlock(fragment)

# 
def make_complete_sdf(mcs, mol, subgraph, args):
    fragment = copy.copy(mol)
    _copy_sd_tags(mol, fragment)

    if args.save_atom_indices_tag is not None:
        output_tag = args.save_atom_indices_tag
        s = " ".join(str(index) for index in subgraph.atom_indices)
        fragment.SetProp(output_tag, s)

    _save_other_tags(fragment, subgraph_to_fragment(mol, subgraph), mcs, mol, subgraph, args)

    return _MolToSDBlock(fragment)


structure_format_functions = {
    "fragment-smiles": make_fragment_smiles,
    "fragment-sdf": make_fragment_sdf,
    "complete-sdf": make_complete_sdf,
    }
def make_structure_format(format_name, mcs, mol, subgraph, args):
    try:
        func = structure_format_functions[format_name]
    except KeyError:
        raise ValueError("Unknown format %r" % (format_name,))
    return func(mcs, mol, subgraph, args)



def parse_num_atoms(s):
    num_atoms = int(s)
    if num_atoms < 2:
        raise argparse.ArgumentTypeError("must be at least 2, not %s" % s)
    return num_atoms

def parse_timeout(s):
    if s == "none":
        return None
    timeout = float(s)
    if timeout < 0.0:
        raise argparse.ArgumentTypeError("Must be a non-negative value, not %r" % (s,))
    return timeout
        

class starting_from(object):
    def __init__(self, left):
        self.left = left
    def __contains__(self, value):
        return self.left <= value 

range_pat = re.compile(r"(\d+)-(\d*)")
value_pat = re.compile("(\d+)")
def parse_select(s):
    ranges = []
    start = 0
    while 1:
        m = range_pat.match(s, start)
        if m is not None:
            # Selected from 'left' to (and including) 'right'
            # Convert into xrange fields, starting from 0
            left = int(m.group(1))
            right = m.group(2)
            if not right:
                ranges.append(starting_from(left-1))
            else:
                ranges.append( xrange(left-1, int(right)) )
        else:
            # Selected a single value
            m = value_pat.match(s, start)
            if m is not None:
                val = int(m.group(1))
                ranges.append( xrange(val-1, val) )
            else:
                raise argparse.ArgumentTypeError("Unknown character at position %d of %r" %(
                    start+1, s))
        start = m.end()
        # Check if this is the end of string or a ','
        t = s[start:start+1]
        if not t:
            break
        if t == ",":
            start += 1
            continue
        raise argparse.ArgumentTypeError("Unknown character at position %d of %r" % (
            start+1, s))
    return ranges



parser = argparse.ArgumentParser(description="Find the maximum common substructure of a set of structures",
     epilog = "For more details on these options, see https://bitbucket.org/dalke/fmcs/")
parser.add_argument("filename", nargs=1,
                    help="SDF or SMILES file")

parser.add_argument("--maximize", choices=["atoms", "bonds"],
                    default=Default.maximize,
                    help="Maximize the number of 'atoms' or 'bonds' in the MCS. (Default: %s)" % (Default.maximize,))
parser.add_argument("--min-num-atoms", type=parse_num_atoms, default=2,
                    metavar="INT",
                    help="Minimimum number of atoms in the MCS (Default: 2)")


compare_shortcuts = {
    "topology": ("any", "any"),
    "elements": ("elements", "any"),
    "types": ("elements", "bondtypes"),
    }
class CompareAction(argparse.Action):
    def __call__(self, parser, namespace, value, option_string=None):
        atom_compare_name, bond_compare_name = compare_shortcuts[value]
        namespace.atom_compare = atom_compare_name
        namespace.bond_compare = bond_compare_name


parser.add_argument("--compare", choices = ["topology", "elements", "types"],
                    default=None, action=CompareAction, help=
                    "Use 'topology' as a shorthand for '--atom-compare any --bond-compare any', "
                    "'elements' is '--atom-compare elements --bond-compare any', "
                    "and 'types' is '--atom-compare elements --bond-compare bondtypes' "
                    "(Default: types)")

parser.add_argument("--atom-compare", choices=["any", "elements", "isotopes"],
                    default=None, help=(
                        "Specify the atom comparison method. With 'any', every atom matches every "
                        "other atom. With 'elements', atoms match only if they contain the same element. "
                        "With 'isotopes', atoms match only if they have the same isotope number; element "
                        "information is ignored so [5C] and [5P] are identical. This can be used to "
                        "implement user-defined atom typing. "
                        "(Default: elements)"))

parser.add_argument("--bond-compare", choices=["any", "bondtypes"],
                    default="bondtypes", help=(
                        "Specify the bond comparison method. With 'any', every bond matches every "
                        "other bond. With 'bondtypes', bonds are the same only if their bond types "
                        "are the same. (Default: bondtypes)"))

parser.add_argument("--atom-class-tag", metavar="TAG", help=
                    "Use atom class assignments from the field 'TAG'. The tag data must contain a space "
                    "separated list of integers in the range 1-10000, one for each atom. Atoms are "
                    "identical if and only if their corresponding atom classes are the same. Note "
                    "that '003' and '3' are treated as identical values. (Not used by default)")

## parser.add_argument("--match-valences", action="store_true",
##                     help=
##                     "Modify the atom comparison so that two atoms must also have the same total "
##                     "bond order in order to match.")

                        
parser.add_argument("--ring-matches-ring-only", action="store_true",
                    help=
                    "Modify the bond comparison so that ring bonds only match ring bonds and chain "
                    "bonds only match chain bonds. (Ring atoms can still match non-ring atoms.) ")

parser.add_argument("--complete-rings-only", action="store_true",
                    help=
                    "If a bond is a ring bond in the input structures and a bond is in the MCS "
                    "then the bond must also be in a ring in the MCS. Selecting this option also "
                    "enables --ring-matches-ring-only.")

parser.add_argument("--select", type=parse_select, action="store",
                    default="1-",
                    help=
                    "Select a subset of the input records to process. Example: 1-10,13,20,50- "
                    "(Default: '1-', which selects all structures)")

parser.add_argument("--timeout", type=parse_timeout, metavar="SECONDS",
                    default=Default.timeout,
                    help=
                    "Report the best solution after running for at most 'timeout' seconds. "
                    "Use 'none' for no timeout. (Default: %s)" % (Default.timeout_string,))

parser.add_argument("--output", "-o", metavar="FILENAME",
                    help="Write the results to FILENAME (Default: use stdout)")

parser.add_argument("--output-format", choices = ["smarts", "fragment-smiles", "fragment-sdf", "complete-sdf"],
                    default="smarts", help=
                    "'smarts' writes the SMARTS pattern including the atom and bond criteria. "
                    "'fragment-smiles' writes a matching fragment as a SMILES string. "
                    "'fragment-sdf' writes a matching fragment as a SD file; see --save-atom-class for "
                    "details on how atom class information is saved. "
                    "'complete-sdf' writes the entire SD file with the fragment information stored in "
                    "the tag specified by --save-fragment-indices-tag. (Default: smarts)")

parser.add_argument("--output-all", action="store_true",
                    help=
                    "By default the structure output formats only show an MCS for the first input structure. "
                    "If this option is enabled then an MCS for all of the structures are shown.")

parser.add_argument("--save-atom-class-tag", metavar="TAG", help=
                    "If atom classes are specified (via --class-tag) and the output format is 'fragment-sdf' "
                    "then save the substructure atom classes to the tag TAG, in fragment atom order. By "
                    "default this is the value of --atom-class-tag.")

parser.add_argument("--save-counts-tag", metavar="TAG", help=
                    "Save the fragment count, atom count, and bond count to the specified SD tag as "
                    "space separated integers, like '1 9 8'. (The fragment count will not be larger than "
                    "1 until fmcs supports disconnected MCSes.)")

parser.add_argument("--save-atom-indices-tag", metavar="TAG", help=
                    "If atom classes are specified and the output format is 'complete-sdf' "
                    "then save the MCS fragment atom indices to the tag TAG, in MCS order. "
                    "(Default: mcs-atom-indices)")

parser.add_argument("--save-smarts-tag", metavar="TAG", help=
                    "Save the MCS SMARTS to the specified SD tag. Uses '-' if there is no MCS")

parser.add_argument("--save-smiles-tag", metavar="TAG", help=
                    "Save the fragment SMILES to the specified SD tag. Uses '-' if there is no MCS")


parser.add_argument("--times", action="store_true",
                    help="Print timing information to stderr")
parser.add_argument("-v", "--verbose", action="count", dest="verbosity",
                    help="Print progress statistics to stderr. Use twice for higher verbosity.")
parser.add_argument("--version", action="version", version="%(prog)s " + __version__)


# RDKit's match function only returns the atom indices of the match.
# To get the bond indices, I need to go through the pattern molecule.
def _get_match_bond_indices(pat, mol, match_atom_indices):
    bond_indices = []
    for bond in pat.GetBonds():
        mol_atom1 = match_atom_indices[bond.GetBeginAtomIdx()]
        mol_atom2 = match_atom_indices[bond.GetEndAtomIdx()]
        bond = mol.GetBondBetweenAtoms(mol_atom1, mol_atom2)
        assert bond is not None
        bond_indices.append(bond.GetIdx())
    return bond_indices

def main(args=None):
    args = parser.parse_args(args)

    filename = args.filename[0]
    fname = filename.lower()
    if fname.endswith(".smi"):
        try:
            reader = Chem.SmilesMolSupplier(filename, titleLine=False)
        except IOError:
            raise SystemExit("Unable to open SMILES file %r" % (filename,))
    elif fname.endswith(".sdf"):
        try:
            reader = Chem.SDMolSupplier(filename)
        except IOError:
            raise SystemExit("Unable to open SD file %r" % (filename,))
    elif fname.endswith(".gz"):
        raise SystemExit("gzip compressed files not yet supported")
    else:
        raise SystemExit("Only SMILES (.smi) and SDF (.sdf) files are supported")

    if args.min_num_atoms < 2:
        parser.error("--min-num-atoms must be at least 2")

    if args.atom_compare is None:
        if args.atom_class_tag is None:
            args.atom_compare = "elements" # Default atom comparison
        else:
            args.atom_compare = "isotopes" # Assing the atom classes to the isotope fields
    else:
        if args.atom_class_tag is not None:
            parser.error("Cannot specify both --atom-compare and --atom-class-tag fields")

    # RDKit uses special property names starting with "_"
    # It's dangerous to use some of them directly
    for name in ("atom_class_tag", "save_atom_class_tag", "save_counts_tag", "save_atom_indices_tag",
                 "save_smarts_tag", "save_smiles_tag"):
        value = getattr(args, name)
        if value is not None:
            if value.startswith("_"):
                parser.error("--%s value may not start with a '_': %r" % (name.replace("_", "-"), value))

    # Set up some defaults depending on the output format
    atom_class_tag = args.atom_class_tag
    if args.output_format == "fragment-sdf":
        if atom_class_tag is not None:
            if args.save_atom_class_tag is None:
                args.save_atom_class_tag = atom_class_tag

    if args.output_format == "complete-sdf":
        if (args.save_atom_indices_tag is None and
            args.save_counts_tag is None and
            args.save_smiles_tag is None and
            args.save_smarts_tag is None):
            parser.error("Using --output-format complete-sdf is useless without at least one "
                         "of --save-atom-indices-tag, --save-smarts-tag, --save-smiles-tag, "
                         "or --save-counts-tag")

    t1 = time.time()
    structures = []
    if args.verbosity > 1:
        sys.stderr.write("Loading structures from %s ..." % (filename,))
        
    for molno, mol in enumerate(reader):
        if not any(molno in range_ for range_ in args.select):
            continue
        if mol is None:
            print >>sys.stderr, "Skipping unreadable structure #%d" % (molno+1,)
            continue
        if atom_class_tag is not None:
            try:
                assign_isotopes_from_class_tag(mol, atom_class_tag)
            except ValueError, err:
                raise SystemExit("Structure #%d: %s" % (molno+1, err))
        structures.append(mol)
        if args.verbosity > 1:
            if len(structures) % 100 == 0:
                sys.stderr.write("\rLoaded %d structures from %s ..." % (len(structures), filename))
                sys.stderr.flush() # not needed; it's stderr. But I'm cautious.

    if args.verbosity > 1:
        sys.stderr.write("\r")

    times = {"load": time.time()-t1}
    
    if args.verbosity:
        print >>sys.stderr, "Loaded", len(structures), "structures from", filename, "    "

    if len(structures) < 2:
        raise SystemExit("Input file %r must contain at least two structures" % (filename,))

    mcs = fmcs(structures,
               min_num_atoms = args.min_num_atoms,
               maximize = args.maximize,
               atom_compare = args.atom_compare,
               bond_compare = args.bond_compare,
               #match_valences = args.match_valences,
               match_valences = False, # Do I really want to support this?
               ring_matches_ring_only = args.ring_matches_ring_only,
               complete_rings_only = args.complete_rings_only,
               timeout = args.timeout,
               times = times,
               verbose = args.verbosity > 1,
               verbose_delay = 1.0,
        )

    msg_format = "Total time %(total).2f seconds: load %(load).2f fragment %(fragment).2f select %(select).2f enumerate %(enumerate).2f"
    times["total"] = times["mcs"] + times["load"]

    if mcs and mcs.completed:
        msg_format += " (MCS found after %(best_found).2f)"

    del mol

    if args.output:
        outfile = open(args.output, "w")
    else:
        outfile = sys.stdout

    if args.output_format == "smarts":
        if not mcs:
            outfile.write("No MCS found\n")
        else:
            if mcs.completed:
                status = "(complete search)"
            else:
                status = "(timed out)"
            outfile.write("%s %d atoms %d bonds %s\n" % (
                mcs.smarts, mcs.num_atoms, mcs.num_bonds, status))

    else:
        if mcs.smarts is None:
            # There is no MCS. Use something which can't match.
            pat = Chem.MolFromSmarts("[CN]")
        else:
            # Need to make a structure output
            pat = Chem.MolFromSmarts(mcs.smarts)
        for structure in structures:
            atom_indices = structure.GetSubstructMatch(pat)
            bond_indices = _get_match_bond_indices(pat, structure, atom_indices)
            subgraph = Subgraph(atom_indices, bond_indices)
            if atom_class_tag:
                restore_isotopes(structure)

            outfile.write(make_structure_format(args.output_format, mcs, structure, subgraph, args))

            if not args.output_all:
                break

    if args.output:
        outfile.close()

    if args.times or args.verbosity:
        print >>sys.stderr, msg_format % times

if __name__ == "__main__":
    main(sys.argv[1:])