This file is indexed.

/usr/include/gamera/plugins/structural.hpp is in python-gamera-dev 3.3.3-2+deb7u1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
/*
 *
 * Copyright (C) 2001-2009
 * Ichiro Fujinaga, Michael Droettboom, Karl MacMillan,
 * and Christoph Dalitz
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#ifndef mgd11272002_relational
#define mgd11272002_relational

#include "gamera.hpp"
#include <math.h>
#include <algorithm>

namespace Gamera {
  template<class T, class U>
  bool bounding_box_grouping_function(T& a, U& b, double threshold) {
    if (threshold < 0)
      throw std::runtime_error("Threshold must be a positive number.");
    size_t int_threshold = size_t(threshold + 0.5); // rounding
    return b->intersects(a->expand(int_threshold));
  }

  template<class T, class U>
  bool shaped_grouping_function(T& a, U& b, double threshold) {
    if (threshold < 0)
      throw std::runtime_error("Threshold must be a positive number.");

    size_t int_threshold = size_t(threshold + 0.5);

    Rect r = a.intersection(b.expand(int_threshold));
    if (r.ul_x() > r.lr_x() || r.ul_y() > r.lr_y())
      return false;
    T a_roi(a, r);

    r = b.intersection(a.expand(int_threshold));
    if (r.ul_x() > r.lr_x() || r.ul_y() > r.lr_y())
      return false;
    U b_roi(b, r);

    double threshold_2 = threshold * threshold;
    long start_c, end_c, dir_c;
    long start_r, end_r, dir_r;

    if (b_roi.center_y() > a_roi.center_y()) {
      start_r = a_roi.nrows() - 1;
      end_r = -1;
      dir_r = -1;
    } else {
      start_r = 0;
      end_r = a_roi.nrows();
      dir_r = 1;
    }

    if (b_roi.center_x() > a_roi.center_x()) {
      start_c = a_roi.ncols() - 1;
      end_c = -1;
      dir_c = -1;
    } else {
      start_c = 0;
      end_c = a_roi.ncols();
      dir_c = 1;
    }

    // Yes, that's right: a goto statement.
    // According to Stroustrup "C++ Programming Language, 3rd ed.":
    //   "One of the few sensible uses of goto in ordinary code is to
    //   break out from a nested loop or switch-statement."

    for (long r = start_r; r != end_r; r += dir_r) {
      for (long c = start_c; c != end_c; c += dir_c) {
	if (is_black(a_roi.get(Point(c, r)))) {
	  bool is_edge = false;
	  if (r == 0l || (size_t)r == a_roi.nrows() - 1 ||
	      c == 0l || (size_t)c == a_roi.ncols() - 1) {
	    is_edge = true;
	    goto edge_found;
	  } else {
	    for (long ri = r - 1; ri < r + 2; ++ri) {
	      for (long ci = c - 1; ci < c + 2; ++ci) {
		if (is_white(a_roi.get(Point(ci, ri)))) {
		  is_edge = true;
		  goto edge_found;
		}
	      }
	    }
	  }
	  continue;
	edge_found:
	  double a_y = double(r + a_roi.ul_y());
	  double a_x = double(c + a_roi.ul_x());
	  for (size_t r2 = 0; r2 < b_roi.nrows(); ++r2) {
	    for (size_t c2 = 0; c2 < b_roi.ncols(); ++c2) {
	      if (is_black(b_roi.get(Point(c2, r2)))) {
		double distance_y = double(r2 + b_roi.ul_y()) - a_y;
		double distance_x = double(c2 + b_roi.ul_x()) - a_x;
		double distance = distance_x*distance_x + distance_y*distance_y;
		if (distance <= threshold_2)
		  return true;
	      }
	    }
	  }
	}
      }
    }
    return false;
  }

  template<class T, class U>
  FloatVector *polar_distance(T &a, U &b) {
    double x = (double)a.center_x() - (double)b.center_x();
    double y = (double)a.center_y() - (double)b.center_y();
    double r = sqrt(pow(x, 2.0) + pow(y, 2.0));
    double q;
    if (x == 0)
      q = M_PI / 2;
    else
      q = atan(y / x);
    if (y > 0)
      q += M_PI;
    double avg_diag = ((sqrt(pow(a.nrows(), 2.0) + pow(a.ncols(), 2.0)) +
			sqrt(pow(b.nrows(), 2.0) + pow(b.ncols(), 2.0))) / 2.0);
    FloatVector *result = new FloatVector(3);
    (*result)[0] = r / avg_diag;
    (*result)[1] = q;
    (*result)[2] = r;
    return result;
  }

  int polar_match(double r1, double q1, double r2, double q2) {
    static const double ANGULAR_THRESHOLD = M_PI / 6.0;
    static const double DISTANCE_THRESHOLD = 1.6;
    double distance1, distance2;
    if (r1 > r2) {
      distance1 = r1;
      distance2 = r2;
    } else {
      distance1 = r2;
      distance2 = r1;
    }
    double q = fabs(q1 - q2);
    if (q1 > M_PI)
      q = std::min(q, fabs((M_PI - q1) - q2));
    if (q2 > M_PI)
      q = std::min(q, fabs((M_PI - q2) - q1));
    return (q < ANGULAR_THRESHOLD && (distance1 / distance2) < DISTANCE_THRESHOLD);
  }

#define ITMAX 100
#define EPS 3.0e-7
#define FPMIN 1.0e-30

  // From Numerical Recipes in C
  double gammln(const double xx) {
    static double cof[6] = {76.18009172947146,-86.50532032941677,
			    24.01409824083091,-1.231739572450155,
			    0.1208650973866179e-2,-0.5395239384953e-5};
    double x, y;
    x = y = xx;
    double tmp = x + 5.5;
    tmp -= (x + 0.5) * log(tmp);
    double ser = 1.000000000190015;
    for (size_t i = 0; i < 6; ++i) {
      y += 1.0;
      ser += cof[i] / y;
    }
    return -tmp / log(2.5066282746310005 * ser / x);
  }

  // From Numerical Recipes in C
  void gser(const double a, const double x, double& gamser, double& gln) {
    gln = gammln(a);
    if (x < 0.0)
      throw std::range_error("x less than 0.0 in argument to gser");
    else if (x == 0) {
      gamser = 0.0;
      return;
    }

    double ap = a;
    double delta, sum;
    delta = sum = 1.0 / a;
    for (size_t i = 0; i < ITMAX; ++i) {
      ap += 1;
      delta *= x / ap;
      sum += delta;
      if (fabs(delta) < fabs(sum) * EPS) {
	gamser = sum * exp(-x + a * log(x) - gln);
	return;
      }
    }
    throw std::range_error("a too large to compute in gser.");
  }

  // From Numerical Recipes in C
  void gcf(const double a, const double x, double& gammcf, double& gln) {
    gln = gammln(a);
    double b, c, d, h;
    b = x + 1.0 - a;
    c = 1.0 / FPMIN;
    h = d = 1.0 / b;
    double i = 1;
    for (; i <= ITMAX; ++i) {
      double an = -i * (i - a);
      b += 2.0;
      d = an * d + b;
      if (fabs(d) < FPMIN)
	d = FPMIN;
      c = b + an / c;
      if (fabs(c) < FPMIN)
	c = FPMIN;
      d = 1.0 / d;
      double delta = d * c;
      h *= delta;
      if (fabs(delta - 1.0) < EPS)
	break;
    }
    if (i > ITMAX)
      throw std::runtime_error("a too large in gcf.");
    try {
      gammcf = exp(-x + a * log(x) - gln) * h;
    } catch (std::overflow_error) {
      gammcf = std::numeric_limits<double>::max();
    }
  }

  // From Numerical Recipes in C
  double gammq(const double a, const double x) {
    double gamser, gln;
    if (x < 0.0 || a <= 0.0)
      throw std::range_error("Invalid arguments to gammq.");
    if (x < a + 1.0) {
      gser(a, x, gamser, gln);
      return 1.0 - gamser;
    } else {
      gcf(a, x, gamser, gln);
      return gamser;
    }
  }

  // From Numerical Recipes in C
  void least_squares_fit(const PointVector& points, double& a, double& b, double& q) {
    if (points.size() == 1) {
      a = 0.0;
      b = points[0].x();
      q = 1.0;
      return;
    }

    double sx, sy, st2, sxoss, chi2;
    sx = sy = st2 = a = b = chi2 = 0.0;

    for (PointVector::const_iterator i = points.begin(); i != points.end(); ++i) {
      sx += double((*i).x());
      sy += double((*i).y());
    }

    sxoss = sx / points.size();

    for (PointVector::const_iterator i = points.begin(); i != points.end(); ++i) {
      double t = double((*i).x()) - sxoss;
      st2 += t * t;
      b += t * double((*i).y());
    }

    b /= st2;
    a = (sy - sx * b) / points.size();

    for (PointVector::const_iterator i = points.begin(); i != points.end(); ++i) {
      double tmp = (double((*i).y()) - a - b * double((*i).x()));
      chi2 += tmp * tmp;
    }

    q = 1.0;

    if (points.size() >= 3) {
      try {
	q = gammq(0.5 * (points.size() - 2), 0.5 * chi2);
      } catch (std::exception) {
	;
      }
    }
  }

  PyObject* least_squares_fit(const PointVector* points) {
    double a, b, q;
    least_squares_fit(*points, a, b, q);
    return Py_BuildValue(CHAR_PTR_CAST "fff", b, a, q);
  }

  PyObject* least_squares_fit_xy(const PointVector* points) {
    double a, b, q;
    int x_of_y = 0;
    size_t xmin, xmax, ymin, ymax;
    PointVector::const_iterator p;
    p = points->begin();
    xmin = xmax = p->x(); ymin = ymax = p->y();
    for (p = points->begin() + 1; p != points->end(); ++p) {
      if (p->x() > xmax) xmax = p->x();
      if (p->x() < xmin) xmin = p->x();
      if (p->y() > ymax) ymax = p->y();
      if (p->y() < ymin) ymin = p->y();
    }
    if ((xmax-xmin) > (ymax-ymin)) {
      // line closer to horizontal
      least_squares_fit(*points, a, b, q);
    } else {
      // line closer to vertical
      PointVector transposed;
      for (p=points->begin(); p!=points->end(); ++p) {
        transposed.push_back(Point(p->y(),p->x()));
      }
      least_squares_fit(transposed, a, b, q);
      x_of_y = 1;
    }

    return Py_BuildValue(CHAR_PTR_CAST "fffi", b, a, q, x_of_y);
  }

  // straightforward implementation of Wagner and Fischer's algorithm from 1974
  int edit_distance(std::string s1, std::string s2)
  {
    size_t s1len, s2len;       // length of the two strings
    IntVector *prev, *curr;    // previous and current matrix column
    IntVector *tmp;
    size_t result, add, del, sub;
    size_t i,j;
  
    s1len = s1.size(); s2len = s2.size();
    if (s1len == 0) return s2len;
    if (s2len == 0) return s1len;

    prev = new IntVector(s1len+1);
    curr = new IntVector(s1len+1);
    for (i=0; i<s1len+1; i++) (*prev)[i] = i;

    for (j=1; j<s2len+1; j++) {
      if (j>1) {
        // move one column further in evaluation matrix
        tmp = prev;
        prev = curr;
        curr = tmp;
      }
      (*curr)[0] = j;
      for (i=1; i<s1len+1; i++) {
        // cost of different transformation operations
        if (s1[i-1] == s2[j-1])
          sub = (*prev)[i-1];
        else
          sub = (*prev)[i-1] + 1;
        add = (*prev)[i] + 1;
        del = (*curr)[i-1] + 1;
        (*curr)[i] = std::min(sub, std::min(add,del));
      }
    }

    result = (*curr)[s1len];
    delete prev; delete curr;
    return result;
  }

}
#endif