/usr/include/gamera/rle_data.hpp is in python-gamera-dev 3.3.3-2+deb7u1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 | /*
*
* Copyright (C) 2001-2005 Ichiro Fujinaga, Michael Droettboom, and Karl MacMillan
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
Compressed Image Data (run-length compression)
Authors
-------
Karl MacMillan <karlmac@peabody.jhu.edu>
Michael Droettboom <mdboom@jhu.edu>
History
-------
Started 5/15/2002 KWM
Virtually rewritten 4/1/2005 MGD
*/
#include "image_data.hpp"
#include "dimensions.hpp"
#include "accessor.hpp"
#include <vector>
#include <list>
#include <utility>
#include <cassert>
#include <iterator>
#ifndef kwm05072002_rle_data
#define kwm05072002_rle_data
namespace Gamera {
namespace RleDataDetail {
/*
This file contains a run-length compressed vector (not quite a complete
interface for std::vector) and a Image Data object based on that vector.
This is for use with very large 1-bit matrices. The performance should be
acceptable for images that compress well (i.e. have few transitions from
white to black), but will perform _very_ poorly as the number of transitions
increases. Random-access is provided to this data, but this requires searching
all the way through the list of runs for every single access. The iterators
have certain tricks to make this faster, but performance will be much better
for reading than writing.
Encoding Scheme
---------------
The old implementation stored only 'black' - i.e. non-zero
pixels. This seemed to not work at all, but the original
author, Karl, no longer works on Gamera so it is hard to say
whether this never fully worked or some other change in Gamera
broke this code. The CVS history seems to point to the former.
The new implementation stores a run for each value, storing only
the run's end. Pixels "off the end" of a list of runs are
assumed to be zero. This keeps the memory consumption for large
white areas of the image to a minimum. This change helps keep
the iterators in sync with the data. In the old scheme, when an
iterator was in a white area, it was impossible to tell what the
next black area would be without rescanning the entire chunk.
The first fix tried was to store an iterator to the next run,
and then do a containment test when returning the pixel value.
In profiling, this overhead seemed too heavy. Now, the iterator
is always inside some run, regardless of color (or at the end of
a run chunk where the pixel is assumed to be white).
This makes it easy to move to the next/previous run, except if
the run list is changed out from under us. This will make the
iterator's pointer to the current run invalid. The RleVector
object (which manages the runs) has a value m_dirty which
increments every time the structure of the run lists changes
(but not merely the pixel values). The iterators on the run
data check their own internal copy of m_dirty against
RleVector's everytime a pixel access needs to be made. If
different, a full search of the run list is performed to find
the correct current run, and then the iterator's copy of m_dirty
is updated. If the same, the iterator's pointer to the current
run is valid. m_dirty is an integer value and not a flag
because multiple iterators may by working on the same data at
the same time. This makes the semaphore work for all of them
and not just the first one to access the data after an
underlying change.
In order to reduce the amount of time needed to find a
particular run (which is prohibitive when the list of runs is
very long) we store an array of lists of runs. Each list stores
a range of coordinates determined by the static variable
RLE_CHUNK. This means that we will sometimes break runs when
they could be encoded as single run, but it makes the
performance more even. To find the list that stores a particular
position, simply divide by RLE_CHUNK - i.e.
list_of_runs = array_of_lists[pos / RLE_CHUNK]
Once you have the appropriate list, it is still necessary to
scan through to find the particular run (or lack of run if the
pixel is white). All we have done by using this array is to
limit the length of the list that needs to be scanned by
RLE_CHUNK.
SPACE REDUCTION
---------------
A further optimization for space has been added to take
advantage of the fact that the positions stored in the run can
be stored as an offest from the first possible position in a
given list of runs (which I call a 'chunk'). If the positions
stored in the runs are relative to the current chunk, we only
need a type large enough to hold RLE_CHUNK positions. Setting
RLE_CHUNK to 256 allows us to use an unsigned char for the
positions in the run. If these relative positions weren't used
we would have to allow the positions to be very large (probably
at least size_t). The drawback to this space reduction is that
we now have to convert between two sets of positions (global and
relative).
*/
/*
see note above - this must be smaller than the largest number that the
type of end in the Run class can hold. This must be a power of 2
*/
static const size_t RLE_CHUNK = 256;
static const size_t RLE_CHUNK_1 = 255; // RLE_CHUNK - 1
static const size_t RLE_CHUNK_BITS = 8; // log2(RLE_CHUNK)
/*
Again, see note above - this should be selected with reference to
RLE_CHUNK.
*/
typedef unsigned char runsize_t;
/*
These are convenience functions to make dealing
with the list iterators a little easier.
*/
template<class T>
T next(T i) {
return ++i;
}
template<class T>
T prev(T i) {
return --i;
}
/*
This class holds the actual run as a value, beginning position, and
ending position. It also includes some methods for convenience. It
doesn't hide the data members because it is not exported as a public
interface. IMPORTANT - all positions are relative to the current
chunk.
*/
template<class T>
class Run {
public:
typedef T value_type;
Run(runsize_t e, T v)
: end(e), value(v) {
}
runsize_t end;
// The value of the run (for connected-component
// labeling).
T value;
};
/*
These are some quick functions to help with handling the
positions in the runs.
*/
inline runsize_t get_rel_pos(size_t global_pos) {
return global_pos & RLE_CHUNK_1;
}
inline size_t get_global_pos(runsize_t rel_pos, size_t chunk) {
return size_t(rel_pos) + (chunk << RLE_CHUNK_BITS);
}
inline size_t get_chunk(size_t pos) {
return pos >> RLE_CHUNK_BITS;
}
/*
RLEProxy
The RleVectorIterator cannot return a reference for
assignment because assignment is not a simple operation.
This proxy class is returned instead which allows either
conversion to the value for read access or setting a value
in the runlength data for assignment. It is similar to
the CCProxy in connected_componenent_iterators.hpp.
There are two cases for the Proxy:
a) we have a position that is in the middle of a run (so we have
a pointer to an iterator that points to the run - we use
a pointer so we can determine whether or not we have the
iterator by comparison to 0).
b) we only have the position and not an iterator.
Case 'a' allows us to avoid a rather slow lookup, but we can't
always use this optimization.
*/
template<class T>
// T is the RleVector type
class RLEProxy {
public:
typedef typename T::value_type value_type;
typedef typename T::list_type::iterator iterator;
RLEProxy(T* vec, size_t pos) {
m_vec = vec;
m_pos = pos;
m_iterator = 0;
m_dirty = vec->m_dirty;
}
RLEProxy(T* vec, size_t pos, const iterator* it) {
m_vec = vec;
m_pos = pos;
m_iterator = it;
m_dirty = vec->m_dirty;
}
// this is for RleVector[] - so, so, stupid, but oh well
RLEProxy(T* vec, size_t pos, iterator i) {
m_vec = vec;
m_pos = pos;
m_i = i;
m_iterator = &m_i;
m_dirty = vec->m_dirty;
}
void operator=(value_type v) {
if (m_dirty == m_vec->m_dirty && m_iterator != 0)
m_vec->set(m_pos, v, *m_iterator);
else
m_vec->set(m_pos, v);
}
operator value_type() const {
if (m_dirty == m_vec->m_dirty && m_iterator != 0)
return (*m_iterator)->value;
return m_vec->get(m_pos);
}
private:
T* m_vec;
size_t m_pos;
const iterator* m_iterator;
iterator m_i;
size_t m_dirty;
};
/*
RleVectorIterator and ConstRleVectorIterator provide STL style
iterator access to the run-length compressed data. Currently
they are lazy - they only get a value when they are dereferenced.
It is probably possible to speed these up slightly by keeping up
with which run we are currently in, but it would mean messing around
in the internals of RleVector. For now I consider the tradeoff of
performance for separation and simplicity to be worthwhile.
*/
// helper for the iterators
template<class I>
I find_run_in_list(I i, I end, runsize_t rel_pos) {
for (; i != end; ++i) {
if (i->end >= rel_pos)
return i;
}
return i;
}
template<class V, class Iterator, class ListIterator>
class RleVectorIteratorBase {
public:
typedef typename V::value_type value_type;
typedef int difference_type;
typedef std::random_access_iterator_tag iterator_tag;
typedef Iterator self;
typedef ListIterator iterator;
RleVectorIteratorBase() : m_dirty(0) { }
RleVectorIteratorBase(V* vec, size_t pos) : m_dirty(0) {
m_vec = vec;
m_pos = pos;
// find the current iterator (if there is one)
size_t m_chunk = get_chunk(m_pos);
runsize_t rel_pos = get_rel_pos(m_pos);
m_i = find_run_in_list(m_vec->m_data[m_chunk].begin(),
m_vec->m_data[m_chunk].end(), rel_pos);
}
self& operator++() {
m_pos++;
if (!check_chunk()) {
if (m_i != m_vec->m_data[m_chunk].end()) {
if (get_rel_pos(m_pos) > m_i->end) {
++m_i;
}
}
}
return (self&)*this;
}
self operator++(int) {
self tmp;
tmp.m_vec = m_vec;
tmp.m_pos = m_pos;
tmp.m_chunk = m_chunk;
tmp.m_i = m_i;
this->operator++();
return tmp;
}
self& operator--() {
m_pos--;
if (!check_chunk()) {
if (m_i != m_vec->m_data[m_chunk].begin()) {
iterator prev_i = prev(m_i);
if (get_rel_pos(m_pos) <= prev_i->end) {
m_i = prev_i;
}
}
}
return (self&)*this;
}
self operator--(int) {
self tmp;
tmp.m_vec = m_vec;
tmp.m_pos = m_pos;
tmp.m_chunk = m_chunk;
tmp.m_i = m_i;
this->operator++();
return tmp;
}
self& operator+=(size_t n) {
m_pos += n;
if (!check_chunk()) {
m_i = find_run_in_list(m_vec->m_data[m_chunk].begin(),
m_vec->m_data[m_chunk].end(), get_rel_pos(m_pos));
}
return (self&)*this;
}
self operator+(size_t n) const {
self tmp;
tmp.m_vec = m_vec;
tmp.m_pos = m_pos;
tmp.m_chunk = m_chunk;
tmp.m_i = m_i;
tmp.m_dirty = m_dirty;
tmp += n;
return tmp;
}
self& operator-=(size_t n) {
m_pos -= n;
if (!check_chunk()) {
m_i = find_run_in_list(m_vec->m_data[m_chunk].begin(),
m_vec->m_data[m_chunk].end(), get_rel_pos(m_pos));
}
return (self&)*this;
}
self operator-(size_t n) const {
self tmp;
tmp.m_vec = m_vec;
tmp.m_pos = m_pos;
tmp.m_chunk = m_chunk;
tmp.m_dirty = m_dirty;
tmp -= n;
return tmp;
}
bool operator==(const self& other) const {
return m_pos == other.m_pos;
}
bool operator!=(const self& other) const {
return m_pos != other.m_pos;
}
bool operator<(const self& other) const {
return m_pos < other.m_pos;
}
bool operator<=(const self& other) const {
return m_pos <= other.m_pos;
}
bool operator>(const self& other) const {
return m_pos > other.m_pos;
}
bool operator>=(const self& other) const {
return m_pos >= other.m_pos;
}
difference_type operator-(const self& other) const {
return m_pos - other.m_pos;
}
value_type get() const {
// Unfortunately, for const-correctness reasons, I can't change
// m_i or m_dirty here, so multiple calls to the get without moving
// the iterator when the data is dirty will result in a search through
// the run list chunk each time.
iterator i;
if (m_dirty != m_vec->m_dirty)
i = find_run_in_list(m_vec->m_data[m_chunk].begin(),
m_vec->m_data[m_chunk].end(), get_rel_pos(m_pos));
else
i = m_i;
if (i != m_vec->m_data[m_chunk].end())
return i->value;
return 0;
}
void set(const value_type& v) {
if (m_dirty != m_vec->m_dirty) {
m_i = find_run_in_list(m_vec->m_data[m_chunk].begin(),
m_vec->m_data[m_chunk].end(), get_rel_pos(m_pos));
m_dirty = m_vec->m_dirty;
}
m_vec->set(m_pos, v, m_i);
}
protected:
bool check_chunk() {
if (m_dirty != m_vec->m_dirty || m_chunk != get_chunk(m_pos)) {
if (m_pos >= m_vec->m_size) {
m_chunk = m_vec->m_data.size() - 1;
m_i = m_vec->m_data[m_chunk].end();
} else {
m_chunk = get_chunk(m_pos);
m_i = find_run_in_list(m_vec->m_data[m_chunk].begin(),
m_vec->m_data[m_chunk].end(), get_rel_pos(m_pos));
}
m_dirty = m_vec->m_dirty;
return true;
} else {
return false;
}
}
V* m_vec;
size_t m_pos;
size_t m_chunk;
iterator m_i;
size_t m_dirty;
};
template<class V>
class RleVectorIterator : public RleVectorIteratorBase<V, RleVectorIterator<V>,
typename V::list_type::iterator> {
public:
typedef RleVectorIterator self;
typedef RleVectorIteratorBase<V, self, typename V::list_type::iterator> base;
using base::m_i;
using base::m_vec;
using base::m_chunk;
using base::m_pos;
using base::m_dirty;
typedef RLEProxy<V> proxy_type;
typedef proxy_type reference;
typedef proxy_type pointer;
RleVectorIterator() : base() { }
RleVectorIterator(V* vec, size_t pos) : base(vec, pos) { }
proxy_type operator*() const {
// Unfortunately, for const-correctness reasons, I can't change
// m_i or m_dirty here, so multiple calls to the get without moving
// the iterator when the data is dirty will result in a search through
// the run list chunk each time.
typename base::iterator i;
if (m_dirty != m_vec->m_dirty)
i = find_run_in_list(m_vec->m_data[m_chunk].begin(),
m_vec->m_data[m_chunk].end(), get_rel_pos(m_pos));
else
i = m_i;
if (i != m_vec->m_data[m_chunk].end())
return proxy_type(m_vec, m_pos, &i);
return proxy_type(m_vec, m_pos);
}
};
template<class V>
class ConstRleVectorIterator
: public RleVectorIteratorBase<V, ConstRleVectorIterator<V>,
typename V::list_type::const_iterator> {
public:
typedef ConstRleVectorIterator self;
typedef RleVectorIteratorBase<V, self, typename V::list_type::const_iterator> base;
using base::m_i;
using base::m_vec;
using base::m_chunk;
using base::m_pos;
using base::m_dirty;
typedef void reference;
typedef typename V::value_type* pointer;
ConstRleVectorIterator() { }
ConstRleVectorIterator(V* vec, size_t pos) : base(vec, pos) { }
typename V::value_type operator*() const {
// Unfortunately, for const-correctness reasons, I can't change
// m_i or m_dirty here, so multiple calls to the get without moving
// the iterator when the data is dirty will result in a search through
// the run list chunk each time.
typename base::iterator i;
if (m_dirty != m_vec->m_dirty)
i = find_run_in_list(m_vec->m_data[m_chunk].begin(),
m_vec->m_data[m_chunk].end(), get_rel_pos(m_pos));
else
i = m_i;
if (i != m_vec->m_data[m_chunk].end()) {
return i->value;
}
return 0;
}
};
/*
RleVector is a run-length compressed vector. It is optimized for
space efficiency for document images (i.e. images with a background
color) and places an emphasis on correctness rather than absolute
performance.
*/
template<class Data>
class RleVector {
public:
// typedefs for convenience
typedef RLEProxy<RleVector> proxy_type;
typedef Data value_type;
typedef proxy_type reference;
typedef proxy_type pointer;
typedef int difference_type;
typedef Run<value_type> run_type;
typedef std::list<run_type> list_type;
typedef RleVector self;
// iterators
typedef RleVectorIterator<self> iterator;
typedef ConstRleVectorIterator<const self> const_iterator;
RleVector(size_t size = 0) : m_size(size), m_data((size >> RLE_CHUNK_BITS) + 1), m_dirty(0) { }
void resize(size_t size) {
m_size = size;
m_data.resize((m_size >> RLE_CHUNK_BITS) + 1);
}
size_t size() const { return m_size; }
/*
Return the value at the specified position.
*/
value_type get(size_t pos) const {
assert(pos < m_size);
size_t chunk = get_chunk(pos);
runsize_t rel_pos = get_rel_pos(pos);
// seems redundant and probably just slows things down, so removed
// if (m_data[chunk].empty())
// return 0;
typename list_type::const_iterator i;
for (i = m_data[chunk].begin(); i != m_data[chunk].end(); ++i) {
if (i->end >= rel_pos)
return i->value;
}
return 0;
}
reference operator[](size_t pos) {
size_t chunk = get_chunk(pos);
typename list_type::iterator i = find_run_in_list(m_data[chunk].begin(),
m_data[chunk].end(),
get_rel_pos(pos));
if (i != m_data[chunk].end()) {
return proxy_type(this, pos, i);
}
return proxy_type(this, pos);
}
/*
Set the value at the specified position. This will
create, split, or merge runs as necessary.
*/
void set(size_t pos, value_type v) {
size_t chunk = get_chunk(pos);
if (m_data[chunk].empty())
set(pos, v, m_data[chunk].end());
else {
typename list_type::iterator i = find_run_in_list
(m_data[chunk].begin(),
m_data[chunk].end(), get_rel_pos(pos));
set(pos, v, i);
}
}
void set(size_t pos, value_type v, typename list_type::iterator i) {
assert(pos < m_size);
size_t chunk = get_chunk(pos);
runsize_t rel_pos = get_rel_pos(pos);
/*
If the list is empty our job is easy - just insert
a run.
*/
if (m_data[chunk].empty()) {
//// Empty run list, create new run(s)
if (v != 0) {
if (rel_pos > 0)
m_data[chunk].push_back(run_type(rel_pos - 1, 0));
m_data[chunk].push_back(run_type(rel_pos, v));
m_dirty++;
}
} else {
if (i != m_data[chunk].end())
insert_in_run(pos, v, i);
else if (v != 0) {
//// At end of run list -- append new runs
typename list_type::iterator last = prev(m_data[chunk].end());
if (rel_pos - last->end > 1) {
m_data[chunk].push_back(run_type(rel_pos - 1, 0));
} else {
if (last->value == v) {
last->end++;
return;
}
}
m_data[chunk].push_back(run_type(rel_pos, v));
m_dirty++;
}
}
}
/*
Iterator access
*/
iterator begin() {
return iterator(this, 0);
}
iterator end() {
return iterator(this, m_size);
}
const_iterator begin() const {
return const_iterator(this, 0);
}
const_iterator end() const {
return const_iterator(this, m_size);
}
/*
This will print out a list of the the runs currently in
m_data - it is for debugging.
*/
void dump() {
typename list_type::iterator i;
size_t total = 0;
for (size_t j = 0; j < m_data.size(); j++) {
std::cout << "address: " << &(m_data[j]);
for (i = m_data[j].begin(); i != m_data[j].end(); ++i) {
std::cout << " end: " << int(i->end)
<< " value: " << i->value << std::endl << std::endl;
total++;
}
}
std::cout << "object contained " << total << " runs." << std::endl;
}
/*
This method is used to insert another run into the middle of
an existing run. It handles resizing or splitting the run as
necessary and will merge the inserted run as necessary.
*/
inline void insert_in_run(size_t pos, value_type v, typename list_type::iterator i) {
if (i->value != v) {
size_t chunk = get_chunk(pos);
runsize_t rel_pos = get_rel_pos(pos);
if (i != m_data[chunk].begin()) {
typename list_type::iterator prev_i = prev(i);
if (i->end - prev_i->end == 1) {
//// run of length 1
i->value = v;
merge_runs(i, chunk);
return;
}
if (prev_i->end + 1 == rel_pos) {
//// at beginning of run
// we do this value check here to avoid a creation/deletion for
// the merge
if (prev_i->value == v)
prev_i->end++;
else
m_data[chunk].insert(i, run_type(rel_pos, v));
++m_dirty;
return;
}
} else {
if (i->end == 0) {
//// first run of length 1
i->value = v;
merge_runs_after(i, chunk);
return;
} else if (rel_pos == 0) {
//// at beginning of first run
m_data[chunk].insert(i, run_type(0, v));
++m_dirty;
return;
}
}
++m_dirty;
if (i->end == rel_pos) {
//// at end of run
i->end--;
// we do this value check here to avoid a creation/deletion for
// the merge
typename list_type::iterator next_i = next(i);
if (next_i != m_data[chunk].end())
if (next_i->value == v)
return;
m_data[chunk].insert(next_i, run_type(rel_pos, v));
return;
}
//// in middle of run
runsize_t old_end = i->end;
i->end = rel_pos - 1;
typename list_type::iterator next_i = next(i);
m_data[chunk].insert(next_i, run_type(rel_pos, v));
m_data[chunk].insert(next_i, run_type(old_end, i->value));
}
}
/*
This method merges runs that are touching and contain the same
value. This is necessary to keep the minimum number of runs in
the list.
*/
void merge_runs(typename list_type::iterator i, size_t chunk) {
if (i != m_data[chunk].begin()) {
typename list_type::iterator p = prev(i);
if (p->value == i->value) {
p->end = i->end;
m_data[chunk].erase(i);
i = p;
m_dirty++;
}
}
typename list_type::iterator n = next(i);
if (n != m_data[chunk].end()) {
if (n->value == i->value) {
i->end = n->end;
m_data[chunk].erase(n);
m_dirty++;
}
}
}
// /*
// These two methods do the same thing as merge_runs above, but
// in two separate steps. This allows other layers that know that
// there is no possibility of needing to merge in one particular
// direction to avoid the extra checking.
// */
void merge_runs_before(typename list_type::iterator i, size_t chunk) {
if (i != m_data[chunk].begin()) {
typename list_type::iterator p = prev(i);
if (p->value == i->value) {
p->end = i->end;
m_data[chunk].erase(i);
m_dirty++;
}
}
}
/*
see above.
*/
void merge_runs_after(typename list_type::iterator i, size_t chunk) {
typename list_type::iterator n = next(i);
if (n != m_data[chunk].end()) {
if (n->value == i->value) {
i->end = n->end;
m_data[chunk].erase(n);
m_dirty++;
}
}
}
public:
size_t m_size;
std::vector<list_type> m_data;
size_t m_dirty;
};
} // namespace RleDataDetail
/*
This is an RleVector with the additional interface necessary to allow
it to be used with a ImageView or ConnectedComponent object.
*/
template<class T>
class RleImageData : public RleDataDetail::RleVector<T>,
public ImageDataBase {
public:
using RleDataDetail::RleVector<T>::resize;
typedef T value_type;
typedef typename RleDataDetail::RleVector<T>::reference reference;
typedef typename RleDataDetail::RleVector<T>::pointer pointer;
typedef typename RleDataDetail::RleVector<T>::iterator iterator;
typedef typename RleDataDetail::RleVector<T>::const_iterator const_iterator;
RleImageData(const Size& size, const Point& offset)
: RleDataDetail::RleVector<T>((size.height() + 1) * (size.width() + 1)),
ImageDataBase(size, offset) {
}
RleImageData(const Size& size)
: RleDataDetail::RleVector<T>((size.height() + 1) * (size.width() + 1)),
ImageDataBase(size) {
}
RleImageData(const Dim& dim, const Point& offset)
: RleDataDetail::RleVector<T>(dim.nrows() * dim.ncols()),
ImageDataBase(dim, offset) {
}
RleImageData(const Dim& dim)
: RleDataDetail::RleVector<T>(dim.nrows() * dim.ncols()),
ImageDataBase(dim) {
}
/*
This is a little tricky and potentially expensive. The C++ standard
(according the www.sgi.com/tech/stl) does not garuntee that list.size()
is constant time - it can be O(N). So we may have to do an O(N) search
on a large number of lists. This also cannot be exact because we have
no way of determining the size of a list element (we don't know it's type).
We are going to assume that each list node has two pointers to Run (this
is what gcc does and any other sane implementation will do). This should
give us an idea of the size, but nothing exact.
*/
virtual size_t bytes() const {
size_t run_size = sizeof(RleDataDetail::Run<T>);
size_t run_ptr_size = sizeof(RleDataDetail::Run<T>*);
size_t num_runs = 0;
for (size_t i = 0; i < this->m_data.size(); ++i)
num_runs += this->m_data[i].size();
return num_runs * (run_size + run_ptr_size + run_ptr_size);
}
virtual double mbytes() const { return bytes() / 1048576.0; }
virtual void dimensions(size_t rows, size_t cols) {
m_stride = cols;
resize(rows * cols);
}
virtual void dim(const Dim& dim) {
m_stride = dim.ncols();
resize(dim.nrows() * dim.ncols());
}
virtual Dim dim() const {
size_t size = ((RleDataDetail::RleVector<T>*)(this))->m_size;
return Dim(m_stride, size / m_stride);
}
protected:
virtual void do_resize(size_t size) {
resize(size);
}
};
}
#endif
|