This file is indexed.

/usr/share/pyshared/mlpy/_dlda.py is in python-mlpy 2.2.0~dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
## This file is part of MLPY.
## Diagonal Linear Discriminant Analysis.

## This is an implementation of Diagonal Linear Discriminant Analysis described in:
## 'Block Diagonal Linear Discriminant Analysis With Sequential Embedded Feature Selection'
## Roger Pique'-Regi'
    
## This code is written by Roberto Visintainer, <visintainer@fbk.eu>
## (C) 2008 Fondazione Bruno Kessler - Via Santa Croce 77, 38100 Trento, ITALY.

## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.

## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.

## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

__all__ = ['Dlda']

from numpy import *
from numpy.linalg import inv, LinAlgError

def wmw_auc(y, r):
    """
    Compute the AUC by using the Wilcoxon-Mann-Whitney formula.
    """
    
    if y.shape[0] != r.shape[0]:
        raise ValueError("y and r have different length")
    
    if unique(y).shape[0] > 2:
        raise ValueError("wmw_auc() works only for two-classes")
    
    
    idxp = where(y ==  1)[0]
    idxn = where(y == -1)[0]
    
    AUC = 0.0
    for p in idxp:
        for n in idxn:           
            if (r[p] - r[n]) > 0.0:
                AUC += 1.0
                
    return AUC / float(idxp.shape[0] * idxn.shape[0])
            
def mcc(y, p):
    """
    Compute the Matthews Correlation Coefficient (MCC).
    """

    if y.shape[0] != p.shape[0]:
        raise ValueError("y and p have different length")

    if unique(y).shape[0] > 2 or unique(p).shape[0] > 2:
        raise ValueError("mcc() works only for two-classes")

   
    tpdiff = (y[y == 1]  == p[y == 1])
    tndiff = (y[y == -1] == p[y == -1])
    fpdiff = (y[p == 1]  == p[p == 1])
    fndiff = (y[p == -1] == p[p == -1])

    tp = tpdiff[tpdiff == True] .shape[0]   
    tn = tndiff[tndiff == True] .shape[0]
    fp = fpdiff[fpdiff == False].shape[0]   
    fn = fndiff[fndiff == False].shape[0]

    den = sqrt((tp+fn)*(tp+fp)*(tn+fn)*(tn+fp))

    if den == 0.0:
        return 0.0

    num = ((tp*tn)-(fp*fn))
   
    return num / den



def dot3(a1, M, a2):
    """
    Compute a1 * M * a2T
    """
    
    a1M = dot(a1, M)
    res = inner(a1M, a2)
    return res
    

class Dlda:
    """
    Diagonal Linear Discriminant Analysis.

    Example:
    
    >>> from numpy import *
    >>> from mlpy import *
    >>> xtr = array([[1.1, 2.4, 3.1, 1.0],  # first sample
    ...              [1.2, 2.3, 3.0, 2.0],  # second sample
    ...              [1.3, 2.2, 3.5, 1.0],  # third sample
    ...              [1.4, 2.1, 3.2, 2.0]]) # fourth sample
    >>> ytr = array([1, -1, 1, -1])         # classes
    >>> mydlda = Dlda(nf = 2)                     # initialize dlda class
    >>> mydlda.compute(xtr, ytr)        # compute dlda
    1
    >>> mydlda.predict(xtr)             # predict dlda model on training data
    array([ 1, -1,  1, -1])
    >>> xts = array([4.0, 5.0, 6.0, 7.0])   # test point
    >>> mydlda.predict(xts)                 # predict dlda model on test point
    -1
    >>> mydlda.realpred                     # real-valued prediction
    -21.999999999999954
    >>> mydlda.weights(xtr, ytr)        # compute weights on training data
    array([  2.13162821e-14,   0.00000000e+00,   0.00000000e+00,   4.00000000e+00])
    """
   
    def __init__(self, nf = 0, tol = 10, overview = False, bal = False):
        """
        Initialize Dlda class.
        
        :Parameters:
          nf : int (1 <= nf >= #features)
            the number of the best features that you want to use in
            the model. If nf = 0 the system stops at a number of features
            corresponding to a peak of accuracy

          tol : int
            in case of nf = 0 it's the number of steps
            of classification to be calculated after the peak to avoid a
            local maximum

          overview : bool
            set True to print informations about the
            accuracy of the classifier at every step of the compute

          bal : bool
            set True if it's reasonable to consider the
            unbalancement of the test set similar to the one of the
            training set
        """

        if nf < 0:
            raise ValueError("nf value must be >= 1 or 0")
        
        self.__nf       = nf
        self.__tol      = tol       
        self.__computed = False
        self.__overview = overview
        self.__bal      = bal


    def __compute_d(self, j):
        """Compute the distance between the centroids of the
        distribution of the two classes of data.
        """
        
        a = self.__A[:]
        a.append(j)
        X = self.__x[:, a]
        medpos = mean(X[where (self.__y == 1)], axis = 0)
        medneg = mean(X[where (self.__y == -1)], axis = 0)
        d = (medpos - medneg)
        return d

        
    def __compute_sigma(self, j):
        """ Compute a metric in order to choose the 'best' features
        between the ones left from the previous passages.
        
        See Eq.7 Pg.3
        """ 
           
        Xa = self.__x[:, j]
        Xpos = Xa[where(self.__y==1), :][0]
        Xneg = Xa[where(self.__y==-1), :][0]
        sigma = sqrt(var(Xpos, axis = 0)) + sqrt(var(Xneg, axis = 0))
        return sigma


    def __compute_b(self):
        """ Compute of the parameter 'b' offset of the classification
        hyperplan.

        Adaptive offset (b) based on MCC value of the prediction is computed.
        """
        MAXMCC = -1
        BestB = 0
        RP = self.realpred = dot(self.__x[:, self.__A], self.__WA)
        
        L = zeros_like(RP)
        SRP = sort(RP)
        for i in range(len(SRP)-1):
            B = 0.5 * (SRP[i] + SRP[i+1])
            L[where(RP < B)] = -1
            L[where(RP >= B)] = 1
            MCC = mcc(self.__y,L)
            if MCC > MAXMCC:
                MAXMCC = MCC
                BestB = B
                
        self.__b = BestB
                  
    def __choose_model(self):
        """With a l.o.o. classification verify which model gives the
        best accuracy.
        """
            
        tmp = ones((self.__K.shape[0], self.__K.shape[1]), dtype = int8)
        tmp[:-1, :-1] = self.__Kmask
        tmp[-1, : - (len(self.__A) - self.__m_code)] = tmp[:-(len(self.__A) - self.__m_code), -1] = 0
        mask_sameblock = tmp.copy()
        tmp[-1, :-1] = tmp[:-1, -1] = 0
        mask_otherblock = tmp.copy()

        try:
            acc_ob, mcc_ob, auc_ob = self.__check_model(mask_otherblock)
            acc_sb, mcc_sb, auc_sb = self.__check_model(mask_sameblock)
        except:
            return 0
        
        if mcc_ob > mcc_sb:
            self.__Kmask = mask_otherblock
            self.__checkstop(mcc_ob)
            self.__m_code = len(self.__A) - 1
            if self.__overview == True:        
                print 'With', len(self.__A), 'features the accuracy on training data is:', \
                      acc_ob * 100, '%, the MCC value is', mcc_ob, "and auc =",auc_ob
                
        else:
            self.__Kmask = mask_sameblock
            self.__checkstop(mcc_sb)
            if self.__overview == True:        
                print 'With', len(self.__A), 'features the accuracy on training data is:', \
                      acc_sb * 100, '%, the MCC value is', mcc_sb, "and auc =",auc_sb

    
    def __check_model(self, mask):
        """Given the next best feature calculates which covariance
        matrix model is the best.
        
        See Table1 Pg.2
        """
        p_mcc = zeros(self.__x.shape[0])
        rp_auc = zeros(self.__x.shape[0])
        n_right = 0
        pred = 0
        xf = self.__x[:, self.__A]
        for i in range(self.__x.shape[0]):
            s = range(self.__x.shape[0])
            s.remove(i)
            xsf = xf[s,:]
            ys = self.__y[s]
            ytest = self.__y[i]
            try:
                K = cov(xsf.transpose(), bias = 1) * mask
            except:
                return 0
            
            medpos = mean(xsf[where(ys == 1), :][0], axis = 0)
            medneg = mean(xsf[where(ys == -1), :][0], axis = 0)
            d = medpos - medneg
            try: 
                w = dot(inv(K), d)
            except LinAlgError:
                w = dot(pinv(K), d)
            
            pred = dot(self.__x[i,self.__A], w) - self.__b    
            rp_auc[i] = pred
            
            if pred >= 0.0:
                p_mcc[i] = 1
            elif pred < 0.0:
                p_mcc[i] = -1
            
            if (pred >= 0 and ytest == 1) or (pred < 0 and ytest == -1):
                n_right += 1

        acc = n_right*1.0 / self.__x.shape[0]*1.0
        mcc_res = mcc(self.__y, p_mcc)
        auc_res = wmw_auc(self.__y, rp_auc)
        return acc, mcc_res, auc_res


    def __addfeat(self, BF):
        """Adds the chosen feature to the final list of features 'A'
        and deletes it from 'AC'. Update correlation matrix 'K',
        distance 'd' and weights 'WA'.
        """
        
        if self.__K == None:
            self.__K = array([[cov(self.__x[:,BF], bias = 1)]])
            self.__d = self.__compute_d(BF)
            try:
                self.__WA = dot(inv(self.__K), self.__d)
            except:
                self.__WA = dot(pinv(self.__K), self.__d)
        else:
            res = self.__compute_WA(BF)
            self.__WA = res[0]
            self.__K = res[2]
            self.__d = res[1]
            
        self.__A.append(BF)
        self.__AC.remove(BF)
        self.__compute_b()


    def __update_K(self, j):
        """Updates the correlation matrix starting from the one
        result of the previous step.
        """
        
        a = self.__A[:]
        a.append(j)
        X = self.__x[:, a]
        return cov(X.transpose(), bias = 1)


    def __compute_WA(self, j):
        """Compute the vector of weights at every step of the cycle
        (the number of weights increases with the number of features
        considered).
        
        See Eq.6 Pg.3
        """
        
        d = self.__compute_d(j)
        K = self.__update_K(j)
        ### NB: adding a new feature we don't have info about the mask so we use the whole cov matrik K
        try:
            WA = dot(inv(K),d)
        except:
            WA = dot(pinv(K),d)
        return [WA,d,K]


    def __compute_j(self, j):
        """
        Compute a metric in order to choose the 'best' features between
        the ones left from the previous passages
        See Eq.7 Pg.3
        """
        
        res_WA = self.__compute_WA(j)
        WA = res_WA[0]
        d_t = res_WA[1].transpose()
        K = res_WA[2]
        num = inner(d_t,WA)**2.0
        den = dot3(WA, K, WA)
        return (num / den)


    def __checkstop(self, M):
        """In case of 'auto stop mode' (nf = 0). Counts the number
        of steps in which the model doesn't exceeds the peak value,
        resets the peak value and count otherwise.
        """
        
        if M > (self.__peak + 1e-3): # Don't update under 1e-3 over the peak
            try:
                self.__WA_stored = dot(inv(self.__K*self.__Kmask),self.__d)
            except:
                self.__SingularMatrix = True
                return 0
            self.__b_stored = self.__b
            self.__A_stored = self.__A[:]
            self.__cont = 0
            self.__peak = M
            
        else:
            self.__cont += 1
    
        
    def __select_features(self):
        """In a cycle selects the best features and the best model to use.
        See Algorithm 1 Pg.3
        """

        if len(self.__A) == 0: # Check it's really the first step (for landscape)
            self.__b = 0
            Bestval = 0
            for j in self.__AC:
                dist = sum(abs(self.__compute_d(j))) ## Distance L2
                val = dist / self.__compute_sigma(j) * 1.0
            
                if val > Bestval:
                    Bestval = val
                    Bestfeat = j
                
            self.__addfeat(Bestfeat)
            
        # IF N OF FEATURES IS DEFINED
        if self.__nf > 0:
            while (len(self.__A) < self.__nf):

                bestval = None
                bestfeat = None
                for j in self.__AC:
                    res_j = self.__compute_j(j)
                    val_j = res_j
                    if val_j >= bestval:
                        bestval = val_j
                        bestfeat = j
                            
                if bestfeat == None:  # If all the features generate a singular matrix the compute returns 0
                    return 0
                else:
                    self.__addfeat(bestfeat)
                    self.__choose_model()
            try:
                self.__WA = dot(inv(self.__K*self.__Kmask),self.__d)
            except:
                self.__WA = dot(pinv(self.__K*self.__Kmask),self.__d)

            if self.__overview == True:
                print "Weights for ", self.__nf, "features: " ,self.__WA
                print 'This model is going to use', len(self.__A), 'features'

        # IF USE AUTOSTOP 
        if self.__nf == 0:
            while ((len(self.__AC) > 0) and (self.__cont < self.__tol)):
                bestval = None
                bestfeat = None
                for j in self.__AC:

                    res_j = self.__compute_j(j)
                    val_j = res_j
                    if val_j >= bestval:
                        bestval = val_j
                        bestfeat = j

                print bestfeat
                if bestfeat == None:  # If all the features generate a singular matrix the compute returns 0
                    return 0

                else:
                    self.__addfeat(bestfeat)
                    self.__choose_model()
            
            self.__WA = self.__WA_stored
            self.__b = self.__b_stored
            self.__A = self.__A_stored
            
            if self.__overview == True:
                print "Weights for ",len(self.__A),"features: ", self.__WA
                print 'This model is going to use', len(self.__A), 'features'

    def compute (self, x, y, mf = 0):
        """
        Compute Dlda model.

        :Parameters:  
          x : 2d ndarray float (samples x feats)
            training data
          y : 1d ndarray integer (-1 or 1)
            classes
          mf : int
            number of classification steps to be calculated
            more on a model already computed

        :Returns:
          1

        :Raises:
          LinAlgError
            if x is singular matrix
        """
        
        if (self.__nf == 0) or (self.__computed == False):
            mf = 0
        
        if mf == 0:
            self.__classes = unique(y)
            if self.__classes.shape[0] != 2:
                raise ValueError("DLDA works only for two-classes problems")

            if x.shape[1] < self.__nf:
                raise ValueError("nf value must be <= total number of features")

            cl0 = where(y   == self.__classes[0])[0]
            cl1 = where(y   == self.__classes[1])[0]             
            self.__ncl0     = cl0.shape[0]
            self.__ncl1     = cl1.shape[0]
            
            self.__piN      = self.__ncl0 * 1.0 / x.shape[0] * 1.0
            self.__piP      = self.__ncl1 * 1.0 / x.shape[0] * 1.0
            
            self.__AC       = range(x.shape[1])
            self.__x        = x
            self.__y        = y
            
            self.__b        = None
            self.__d        = None
            self.__K        = None
            self.__Kmask    = ones((1,1))
            self.__A        = []
            self.__m_code   = 0
            self.__WA       = None
            self.__peak     = 0
            self.__cont     = 0
            self.__WA_stored= None
            self.__b_stored = None
            self.__A_stored  = None
        else:
            self.__nf += mf
            
            
        self.__select_features()

        self.__computed = True
        
        return 1
        
    def predict (self, p):
        """
        Predict Dlda model on test point(s).

        :Parameters:
          p : 1d or 2d ndarray float (sample(s) x feats)
            test sample(s)

        :Returns:
          cl : integer or 1d numpy array integer
            class(es) predicted

        :Attributes:
          self.realpred : float or 1d numpy array float
            real valued prediction
        
        """
        if self.__computed == False:
            raise StandardError("Dlda model not computed yet")
        
        if p.ndim == 2:
            self.realpred = dot(p[:, self.__A], self.__WA) - self.__b
            pred = zeros(self.realpred.shape[0], dtype=int)
            pred[where(self.realpred > 0.0)] = 1
            pred[where(self.realpred < 0.0)] = -1
                
        elif p.ndim == 1:
            pred = 0.0
            self.realpred = dot(p[:, self.__A], self.__WA) - self.__b

            if self.realpred > 0.0:
                pred = 1

            elif self.realpred < 0.0:
                pred = -1

        return pred


    def weights (self, x, y):
        """
        Return feature weights.

        :Parameters:
          x : 2d ndarray float (samples x feats)
            training data
          y : 1d ndarray integer (-1 or 1)
            classes
        
        :Returns:
          fw :  1d ndarray float
            feature weights, they are going to be
            > 0 for the features chosen for the classification and = 0 for
            all the others
        """
    
        self.compute(x, y, 0)

        weights = zeros(x.shape[1])
        for i in range(len(self.__A)):
            weights[self.__A[i]] = self.__WA[i]

        if self.__overview:
            print "The positions of the best features are:", self.__A
        return abs(weights)