This file is indexed.

/usr/share/pyshared/mlpy/_dtw.py is in python-mlpy 2.2.0~dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
## This code is written by Davide Albanese, <albanese@fbk.eu>
## (C) 2009 Fondazione Bruno Kessler - Via Santa Croce 77, 38100 Trento, ITALY.

## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.

## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.

## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

__all__ = ['Dtw']

import numpy as np
import dtwcore


def dtwc(x, y, derivative=False, startbc=True, steppattern='symmetric0',  wincond = "nowindow", r=0.0, onlydist=True):
    """Dynamic Time Warping.

    Input
    
      * *x* - [1D numpy array float / list] first time series
      * *y* - [1D numpy array float / list] second time series
      * *derivative* - [bool] Derivative DTW (DDTW).
      * *startbc* - [bool] (0, 0) boundary condition
      * *steppattern* - [string] step pattern ('symmetric', 'asymmetric', 'quasisymmetric')
      * *wincond* - [string] window condition ('nowindow', 'sakoechiba') 
      * *r* - [float] sakoe-chiba window length
      * *onlydist* - [bool] linear space-complexity implementation. Only the current and previous
        columns are kept in memory.
        
    Output

      * *d* - [float] normalized distance
      * *px* - [1D numpy array int] optimal warping path (for x time series) (for onlydist=False)
      * *py* - [1D numpy array int] optimal warping path (for y time series) (for onlydist=False)
      * *cost* - [2D numpy array float] cost matrix (for onlydist=False)
    """


    if steppattern == 'symmetric0':
        sp = 0
    elif steppattern == 'asymmetric0':
        sp = 1
    elif steppattern == 'quasisymmetric0':
        sp = 2
    else:
        raise ValueError('step pattern %s is not available' % steppattern)
    
    if wincond == 'nowindow':
        wc = 0
    elif wincond == 'sakoechiba':
        wc = 1
    else:
        raise ValueError('window condition %s is not available' % wincond)
    
        
    if derivative:
        xi = dtwcore.der(x)
        yi = dtwcore.der(y)
    else:
        xi = x
        yi = y

    return dtwcore.dtw(xi, yi, startbc=startbc, steppattern=sp, onlydist=onlydist, wincond=wc, r=r)


class Dtw:
    """
    Dynamic Time Warping.

    Example:

    >>> import numpy as np
    >>> import mlpy
    >>> x = np.array([1,1,2,2,3,3,4,4,4,4,3,3,2,2,1,1])
    >>> y = np.array([1,1,1,1,1,1,1,1,1,1,2,2,3,3,4,3,2,2,1,2,3,4])
    >>> mydtw = mlpy.Dtw(onlydist=False)
    >>> mydtw.compute(x, y)
    0.36842105263157893
    >>> mydtw.px
    array([ 0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  2,  3,  4,  5,  6,  7,  8,
            9, 10, 11, 12, 12, 12, 13, 14, 15], dtype=int32)
    >>> mydtw.py
    array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 14, 14,
           14, 15, 15, 16, 17, 18, 19, 20, 21], dtype=int32)
    """

    def __init__(self, derivative=False, startbc=True, steppattern='symmetric0', wincond="nowindow", r=0.0, onlydist=True):
        """
        :Parameters:
          derivative : bool
                     derivative DTW (DDTW)
          startbc : bool
                  forces x=0 and y=0 boundary condition
          steppattern : string ('symmetric', 'asymmetric', 'quasisymmetric')
                      step pattern
          wincond : string ('nowindow', 'sakoechiba') 
                  window condition
          r : float
            sakoe-chiba window length
          onlydist : bool
                   linear space-complexity implementation. Only the current
                   and previous columns are kept in memory.
        """

        
        self.derivative = derivative
        self.startbc = startbc
        self.steppattern = steppattern
        self.wincond = wincond
        self.r = r
        self.onlydist=onlydist

        self.px = None
        self.py = None
        self.cost = None


    def compute(self, x, y):
        """
        :Parameters:
          x : 1d ndarray or list
            first time series
          y : 1d ndarray or list
            second time series

        :Returns:
          d : float
            normalized distance

        :Attributes:
          Dtw.px : 1d ndarray int32
                 optimal warping path (for x time series) (if onlydist=False)
          Dtw.py : 1d ndarray int32
                 optimal warping path (for y time series) (if onlydist=False)
          Dtw.cost : 2dndarray float
                   cost matrix (if onlydist=False)          
        """


        res = dtwc(x=x, y=y, derivative=self.derivative, startbc=self.startbc, steppattern=self.steppattern,
                   wincond=self.wincond, r=self.r, onlydist=self.onlydist)

        if self.onlydist == True:
            return res

        else:
            self.px = res[1]
            self.py = res[2]
            self.cost = res[3]
            
            return res[0]