This file is indexed.

/usr/share/pyshared/mlpy/_fssun.py is in python-mlpy 2.2.0~dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
## This file is part of mlpy.
## FSSun

## Yijun Sun, S. Todorovic, and S. Goodison.
## A Feature Selection Algorithm Capable of Handling Extremely Large
## Data Dimensionality. In Proc. 8th SIAM International Conference on
## Data Mining (SDM08), pp. 530-540, April 2008.
    
## This code is written by Davide Albanese, <albanese@fbk.eu>.
## (C) 2009 Fondazione Bruno Kessler - Via Santa Croce 77, 38100 Trento, ITALY.

## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.

## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.

## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

__all__ = ['SigmaErrorFS', 'FSSun']

import numpy as np


class SigmaErrorFS(Exception):
    """Sigma Error

    Sigma parameter is too small.
    """

    pass


def norm_w(x, w):
    """Compute sum_i( w[i] * |x[i]| ).
    """

    return (w * np.abs(x)).sum()


def norm(x, n):
    """Compute n-norm.
    """

    return (np.sum(np.abs(x)**n))**(1.0/n)


def kernel(d, sigma):
    """Exponential kernel.

    See page 532.
    """

    return np.exp(-d/sigma)  


def compute_M_H(y):
    """
    Compute sets M[n] = {i:1<=i<=N, y[i]!=y[n]}.
    Compute sets H[n] = {i:1<=i<=N, y[i]==y[n], i!=n}.
    """
    
    M, H = [], []
    for n in np.arange(y.shape[0]):
        Mn = np.where(y != y[n])[0].tolist()
        M.append(Mn)
        Hn = np.where(y == y[n])[0]
        Hn = Hn[Hn != n].tolist()
        H.append(Hn)
    return (M, H)
    

def compute_distance_kernel(x, w, sigma):
    """Compute matrix dk[i][j] = f(||x[i] - x[j]||_w).

    See step 3 in Figure 2 at page 534.
    """
    
    d = np.zeros((x.shape[0], x.shape[0]), dtype=np.float)
    for i in np.arange(x.shape[0]):
        for j in np.arange(i + 1, x.shape[0]):
            d[i][j] = norm_w(x[i]-x[j], w)
            d[j][i] = d[i][j]
    dk = kernel(d, sigma)
   
    return dk


def compute_prob(x, dist_k, i, n, indices):
    """
    See eqs. (2.4), (2.5) at page 532.
    """

    den = dist_k[n][indices].sum()    
    if den == 0.0:
        raise SigmaErrorFS("sigma (kernel parameter) too small")
    
    return dist_k[n][i] / den


def fun(z, v, lmbd):
    """See eq. (2.8) at page 533.    
    """

    tmp = 0.0
    for n in np.arange(z.shape[0]):
        tmp += np.log(1.0 + np.exp(-(v**2 * z[n]).sum()))

    return tmp + (lmbd * norm(v, 2)**2)
    

def grad_fun(z, v, lmbd):
    """See eq. (2.9) at page 533.
    """

    tmp = np.zeros(z.shape[1], dtype=np.float)
    for n in np.arange(z.shape[0]):
        t = np.exp(-(v**2 * z[n]).sum())
        tmp += t / (1.0 + t) * z[n]

    return (lmbd - tmp) * v


def update_w(w, z, lmbd, eps, alpha0, c, rho, debug):
    """
    See eq. 2.8, 2.9 at Page 533.

    Parameters:
     w: v^2 [1darray]
     z: z [2darray]
     lmbd: regularization parameter [float]
     eps: termination tolerance for Steepest Descent [0 < eps << 1]
     alpha0: initial step length [usually 1.0] for line search
     c: costant [0 < c < 1/2] for line search
     rho: alpha coefficient [0 < rho < 1] for line search
    

    Steepest Descent Method
    -----------------------

    Di Wenyu Sun,Ya-xiang Yuan.
    Optimization theory and methods: nonlinear programming. Page 120.
    
    Backtracking Line Search
    ------------------------
    
    J. Nocedal, S. J. Wright. Numerical Optimization.
    Page 41, 42 [Procedure 3.1].
    """

    v = np.sqrt(w)

    # Steepest (Gradient) Descent Method  
    
    delta = grad_fun(z, v, lmbd)       
    while True:
        
        fa = c * np.inner(-delta, delta)
        fun(z, v, lmbd)
        
        # Backtracking Line Search
        alpha = alpha0
        
        while not fun(z, v-(alpha*delta), lmbd) <= (fun(z, v, lmbd) + (alpha * fa)):
            alpha *= rho
     
        v_new = v - (alpha * delta)               
        delta = grad_fun(z, v_new, lmbd)

        n = norm(delta, 2)
        
        if debug:
            print "Steepest (Gradient) Descent: val: %s (eps: %s)" % (n, eps)
        
        if n <= eps:
            break
        
        v = v_new.copy()
        
    return v_new**2
    

def compute_w(x, y, w, M, H, sigma, lmbd, eps, alpha0, c, rho, debug):
    """
    See Step 3, 4, 5 and 6 in Figure 2 at page 534.
    """
    
    z = np.empty((x.shape[0], x.shape[1]), dtype=np.float)
    dist_k = compute_distance_kernel(x, w, sigma)
    for n in np.arange(x.shape[0]):        
        m_n = np.zeros(x.shape[1], dtype=np.float)
        h_n = np.zeros(x.shape[1], dtype=np.float)
        for i in M[n]:
            a_in = compute_prob(x, dist_k, i, n, M[n])
            m_in = np.abs(x[n] - x[i])
            m_n += a_in * m_in
        for i in H[n]:
            b_in = compute_prob(x, dist_k, i, n, H[n])
            h_in = np.abs(x[n] - x[i])
            h_n += b_in * h_in        
        z[n] = m_n - h_n
        
    return update_w(w, z, lmbd, eps, alpha0, c, rho, debug)


def compute_fssun(x, y, T, sigma, theta, lmbd, eps, alpha0, c, rho, debug):
    """
    Figure 2 at page 534.
    """

    w_old = np.ones(x.shape[1])
    M, H = compute_M_H(y)
    
    for t in range(T):
        w = compute_w(x, y, w_old, M, H, sigma, lmbd, eps, alpha0, c, rho, debug=debug) 
        stp = norm(w - w_old, 2)

        if debug:
            print "New w: stp: %s (theta: %s)" % (stp, theta) 
        
        if stp < theta:
            break
        w_old = w
        
    return (w, t + 1)


class FSSun:
    """Sun Algorithm for feature weighting/selection
    """
   
    def __init__(self, T=1000, sigma=1.0, theta=0.001, lmbd=1.0, eps=0.001,
                 alpha0=1.0, c=0.01, rho=0.5, debug=False):
        """
        Initialize the FSSun class

        :Parameters:
          T : int (> 0)
            max loops
          sigma : float (> 0.0)
            kernel width
          theta : float (> 0.0)
            convergence parameter
          lmbd : float
            regularization parameter
          eps : float (0 < eps << 1)
            termination tolerance for steepest descent method
          alpha0 : float (> 0.0)
            initial step length (usually 1.0) for line search
          c : float (0 < c < 1/2)
            costant for line search
          rho : flaot (0 < rho < 1)
            alpha coefficient for line search
        """

        if T <= 0:
            raise ValueError("T (max loops) must be > 0")
        if sigma <= 0.0:
            raise ValueError("sigma (kernel parameter) must be > 0.0")
        if theta <= 0.0:
            raise ValueError("theta (convergence parameter) must be > 0.0")
         
        self.__T = T
        self.__sigma = sigma
        self.__theta = theta
        self.__lmbd = lmbd
        self.__eps = eps
        self.__alpha0 = alpha0
        self.__c = c
        self.__rho = rho
        self.__debug = debug
        
        self.loops = None

    def weights(self, x, y):
        """
        Compute the feature weights

        :Parameters:
          x : 2d ndarray float (samples x feats)
            training data
          y : 1d ndarray integer (-1 or 1)
            classes

        :Returns:     
          fw : 1d ndarray float
            feature weights

        :Attributes:
          FSSun.loops : int
            number of loops

        :Raises:
          ValueError
            if classes are not -1 or 1
          SigmaError
            if sigma parameter is too small
        """
        
        if np.unique(y).shape[0] != 2:
            raise ValueError("FSSun algorithm works only for two-classes problems")

        w, self.loops = compute_fssun(x, y, self.__T, self.__sigma, self.__theta, self.__lmbd,
                                      self.__eps, self.__alpha0, self.__c, self.__rho, debug=self.__debug)
        return w