This file is indexed.

/usr/share/pyshared/mlpy/_hcluster.py is in python-mlpy 2.2.0~dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
## This code is written by Davide Albanese, <albanese@fbk.eu>.
## (C) 2009 Fondazione Bruno Kessler - Via Santa Croce 77, 38100 Trento, ITALY.

## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.

## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.

## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.


from numpy import *
import hccore

__all__ = ['HCluster']


class HCluster:
    """Hierarchical Cluster.
    """
   
    def __init__ (self, method = 'euclidean', link = 'complete'):
        """Initialize Hierarchical Cluster.

        :Parameters:
        
          method : string ('euclidean')
                   the distance measure to be used

          link : string ('single', 'complete', 'mcquitty', 'median')
                 the agglomeration method to be used

        Example:

        >>> import numpy as np
        >>> import mlpy
        >>> x = np.array([[ 1. ,  1.5],
        ...               [ 1.1,  1.8],
        ...               [ 2. ,  2.8],
        ...               [ 3.2,  3.1],
        ...               [ 3.4,  3.2]])
        >>> hc = mlpy.HCluster()
        >>> hc.compute(x)
        >>> hc.ia
        array([-4, -1, -3,  2])
        >>> hc.ib
        array([-5, -2,  1,  3])
        >>> hc.heights
        array([ 0.2236068 ,  0.31622776,  1.4560219 ,  2.94108844])
        >>> hc.cut(0.5)
        array([0, 0, 1, 2, 2])
        """

        self.METHODS = {
            'euclidean': 1,
            }
        
        self.LINKS = {
            'single': 1,
            'complete': 2,
            'mcquitty': 3,
            'median': 4,
            }
                
        
        self.method = method
        self.link = link

        self.__ia = None
        self.__ib = None
        self.__heights = None

        self.ia = None
        self.ib = None
        self.heights = None

        self.order = None

        self.computed = False


    def compute(self, x):
        """Compute Hierarchical Cluster.

        :Parameters:
          x : ndarray
              An 2-dimensional vector (sample x features).

        :Returns:
          self.ia : ndarray (1-dimensional vector)
                    merge
          self.ib : ndarray (1-dimensional vector)
                    merge

          self.heights : ndarray (1-dimensional vector)
                         a set of n-1 non-decreasing real values.
                         The clustering height: that is, the value of the
                         criterion associated with the clustering method
                         for the particular agglomeration.

        Element i of merge describes the merging of clusters at step i
        of the clustering. If an element j is negative, then observation
        -j was merged at this stage. If j is positive then the merge was
        with the cluster formed at the (earlier) stage j of the algorithm.
        Thus negative entries in merge indicate agglomerations of singletons,
        and positive entries indicate agglomerations of non-singletons.
        """

        if x.ndim != 2:
            raise ValueError("x must be 2D array")        

        self.__ia, self.__ib, self.__heights, self.order = \
                 hccore.compute(x.T, self.METHODS[self.method], self.LINKS[self.link])

        self.ia = self.__ia[:-1] 
        self.ib = self.__ib[:-1]
        self.heights = self.__heights[:-1]

        self.computed = True

    def cut(self, ht):
        """Cuts the tree into several groups by specifying the cut
        height.
        
        :Parameters:
          ht : float
               height where the tree should be cut
         
        :Returns:
          cl : ndarray (1-dimensional vector)
               group memberships. Groups are in 0, ..., N-1
        """

        if self.computed == False:
            raise ValueError("No hierarchical clustering computed")

        return hccore.cut(self.__ia, self.__ib, self.__heights, ht) - 1