This file is indexed.

/usr/share/pyshared/mlpy/_svm.py is in python-mlpy 2.2.0~dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
## This file is part of mlpy.
## Support Vector Machines (SVM) based on SVM
## C-libraries developed by Stefano Merler.

## For feature weights see:
## C. Furlanello, M. Serafini, S. Merler, and G. Jurman.
## Advances in Neural Network Research: IJCNN 2003.
## An accelerated procedure for recursive feature ranking
## on microarray data.
## Elsevier, 2003.
    
## This code is written by Davide Albanese, <albanese@fbk.eu>.
## (C) 2007 Fondazione Bruno Kessler - Via Santa Croce 77, 38100 Trento, ITALY.

## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.

## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.

## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

__all__ = ['Svm']

from numpy import *
import svmcore


## def KernelGaussian (x1, x2, kp):
##     """
##     Gaussian kernel
##     K(x1,x2,kp) = exp^(-(||x1-x2||)^2 / kp)
##     """
    
##     sub = x1 - x2
##     norm = (sum(abs(sub)**2))**(0.5)
##     return exp(-norm**2 / kp)

## def MatrixKernelGaussian(x, kp):
##     """
##     Create the matrix K
##     K[i, j] = KernelGaussian(x[i], x[j], kp)
##     """
    
##     K = empty((x.shape[0], x.shape[0]))
##     for i in xrange(x.shape[0]):
##         for j in xrange(i, x.shape[0]):
##             K[i,j] = KernelGaussian(x[i], x[j], kp)
##             K[j,i] = K[i,j]          
##     return K


def err(y, p):
    """
    Compute the Error.

    error = (fp + fn) / ts

    Input
    
      * *y* - classes    (two classes) [1D numpy array integer]
      * *p* - prediction (two classes) [1D numpy array integer]

    Output
    
      * error
    """

    if y.shape[0] != p.shape[0]:
        raise ValueError("y and p have different length")

    if unique(y).shape[0] > 2 or unique(p).shape[0] > 2:
        raise ValueError("err() works only for two-classes")

    diff = (y == p)
    return diff[diff == False].shape[0] / float(y.shape[0])


def MatrixKernelGaussian(X, kp):
    """
    Create the matrix K
    """
    
    j1 = ones((X.shape[0], 1))
    diagK1 = array([sum(X**2, 1)])
    K1 = dot(X, X.T)
    Q = (2 * K1 - diagK1 * j1.T - j1 * diagK1.T) / kp

    return exp(Q)

 
def MatrixKernelTversky(X, alpha_tversky, beta_tversky):
    """
    Create the matrix K
    """
    K = empty((X.shape[0],X.shape[0]))
    for i in range(X.shape[0]):
        for j in range(X.shape[0]):
            
            s11 = dot(X[i], X[i])
            s12 = dot(X[i], X[j])
            s22 = dot(X[j], X[j])
            
            K[i,j] = s12/(alpha_tversky * s11 + beta_tversky * s22 + (1.0 - alpha_tversky - beta_tversky) * s12)
            
    return K


def computeZ(K, y):
  """
  Compute the matrix Z[i,j] = y[i]*y[j]*K[i,j]

  See Maria Serafini Thesis, p. 29.
  """
  
  Z = empty((y.shape[0], y.shape[0]))     
  for i in xrange(y.shape[0]):
      for j in xrange(y.shape[0]):
          Z[i, j] = y[i] * y[j] * K[i, j]
  return Z


def computeZ_k(Z, k, x, kp):
  """
  Compute Z_k[i, j] = Z[i, j] * exp((x[i, k]-x[j, k])**2 / kp)

  See Maria Serafini Thesis, p. 30.
  """
  
  Z_k = empty_like(Z)  
  for i in xrange(Z.shape[0]):
      for j in xrange(Z.shape[0]):
          e = exp((x[i, k]-x[j, k])**2 / kp)
          if abs(e) == inf:
              raise StandardError("kp is too small or the data is not standardized")
          Z_k[i, j] = Z[i, j] * e
  return Z_k


def computeZ_tversky(Z, k, x, alpha_tversky, beta_tversky):
  """
  Compute Z_k[i, j] = Z[i, j] * tversky(x[i, k],x[j, k],alpha_tversky,beta_tversky)

  See Maria Serafini Thesis, p. 30.
  """
  
  Z_k = empty_like(Z)  
  for i in xrange(Z.shape[0]):
      for j in xrange(Z.shape[0]):
          s11 = x[i,k]*x[i,k]
          s12 = x[i,k]*x[j,k]
          s22 = x[j,k]*x[j,k]
          e =  s12/(alpha_tversky * s11 + beta_tversky * s22 + (1.0 - alpha_tversky - beta_tversky) * s12)
          if abs(e) == inf:
              raise StandardError("Tversky weights problem")
          Z_k[i, j] = Z[i, j] * e

  return Z_k


class Svm:
    """
    Support Vector Machines (SVM).

    :Example:
    
    >>> import numpy as np
    >>> import mlpy
    >>> xtr = np.array([[1.0, 2.0, 3.0, 1.0],  # first sample
    ...                 [1.0, 2.0, 3.0, 2.0],  # second sample
    ...                 [1.0, 2.0, 3.0, 1.0]]) # third sample
    >>> ytr = np.array([1, -1, 1])             # classes
    >>> mysvm = mlpy.Svm()                     # initialize Svm class
    >>> mysvm.compute(xtr, ytr)                # compute SVM
    1
    >>> mysvm.predict(xtr)                     # predict SVM model on training data
    array([ 1, -1,  1])
    >>> xts = np.array([4.0, 5.0, 6.0, 7.0])   # test point
    >>> mysvm.predict(xts)                     # predict SVM model on test point
    -1
    >>> mysvm.realpred                         # real-valued prediction
    -5.5
    >>> mysvm.weights(xtr, ytr)                # compute weights on training data
    array([ 0.,  0.,  0.,  1.])
    """
    
    def __init__(self, kernel = 'linear', kp = 0.1, C = 1.0, tol = 0.001,
                 eps = 0.001, maxloops = 1000, cost = 0.0, alpha_tversky = 1.0,
                 beta_tversky = 1.0, opt_offset=True):
        """
        Initialize the Svm class
        
        :Parameters:
        
          kernel : string ['linear', 'gaussian', 'polynomial', 'tr', 'tversky']
            kernel
          kp : float
            kernel parameter (two sigma squared) for gaussian and polynomial kernel
          C : float
            regularization parameter
          tol : float
            tolerance for testing KKT conditions
          eps : float
            convergence parameter
          maxloops : integer
            maximum number of optimization loops
          cost : float [-1.0, ..., 1.0]
            for cost-sensitive classification
          alpha_tversky : float
            positive multiplicative parameter for the norm of the first vector
          beta_tversky : float
            positive multiplicative parameter for the norm of the second vector
          opt_offset : bool
            compute the optimal offset
        """

        SVM_KERNELS = {'linear': 1,
                       'gaussian': 2,
                       'polynomial': 3,
                       'tversky': 4,
                       'tr': 5}
        
        self.__kernel   = SVM_KERNELS[kernel]
        self.__kp       = kp
        self.__C        = C
        self.__tol      = tol
        self.__eps      = eps
        self.__maxloops = maxloops
        self.__cost     = cost
        self.__alpha_tversky = alpha_tversky
        self.__beta_tversky = beta_tversky
        self.__opt_offset = opt_offset

        self.__x    = None
        self.__y    = None
        self.__w    = None
        self.__a    = None
        self.__b    = None
        self.__bopt = None
        self.__conv = None # svm convergence
        self.realpred = None

        self.__computed = False

        # For 'terminated ramps' (tr) only
        self.__sf_w  = None
        self.__sf_b  = None
        self.__sf_i  = None
        self.__sf_j  = None
        self.__nsf   = None
        self.__svm_x = None
        ################################     


    def compute(self, x, y):
        """Compute SVM model

        :Parameters:
          x : 2d ndarray float (samples x feats)
            training data
          y : 1d ndarray integer (-1 or 1)
            classes

        :Returns:     
          conv : integer
            svm convergence (0: false, 1: true)
        """

        classes = unique(y)
        if classes.shape[0] != 2:
            raise ValueError("Svm works only for two-classes problems")
     
        # Store x and y
        self.__x = x.copy()
        self.__y = y.copy()
       
        # Kernel 'tr'
        if self.__kernel == 5: 
            res = svmcore.computesvmtr(self.__x, self.__y, self.__C, self.__tol,
                                       self.__eps, self.__maxloops, self.__cost)
            self.__w        = res[0]
            self.__a        = res[1]
            self.__b        = res[2]
            self.__conv     = res[3]
            self.__sf_w     = res[4]
            self.__sf_b     = res[5]
            self.__sf_i     = res[6]
            self.__sf_j     = res[7]
            self.__svm_x    = res[8]
            self.__nsf      = self.__sf_w.shape[0]
            self.__computed = True
            
        # Kernel 'linear', 'gaussian', 'polynomial', 'tversky'
        else:
            res = svmcore.computesvm(self.__x, self.__y, self.__kernel, self.__kp, self.__C,
                                     self.__tol, self.__eps, self.__maxloops, self.__cost,
                                     self.__alpha_tversky, self.__beta_tversky)
            
            self.__w = res[0]
            self.__a = res[1]
            self.__b = res[2]
            self.__conv = res[3]
            self.__computed = True

        

        # Optimal offset
        self.__bopt = self.__b
        if self.__opt_offset:
            merr = inf
            self.predict(x)
            rp = sort(self.realpred)
            bs = rp[:-1] + (diff(rp) / 2.0)
            p = empty(x.shape[0], dtype=int)
            for b in bs:
                p[self.realpred >= b] = 1
                p[self.realpred < b] = -1
                e = err(y, p)
                if (e < merr):
                    merr = e
                    self.__bopt = self.__b + b

            self.realpred = None
       

        # Return convergence
        return self.__conv

    
    def predict(self, p):
        """
        Predict svm model on a test point(s)

        :Parameters:
          p : 1d or 2d ndarray float (samples x feats)
             test point(s)training dataInput
        
        :Returns:     
          cl : integer or 1d ndarray integer
            class(es) predicted

        :Attributes:
          Svm.realpred : float or 1d ndarray float
            real valued prediction
        """
        
        if self.__computed == False:
            raise StandardError("No SVM model computed")

        # Kernel 'tr'
        if self.__kernel == 5:
            if p.ndim == 1:
                self.realpred = svmcore.predictsvmtr(self.__x, self.__y, p, self.__w, self.__bopt,
                                                     self.__sf_w, self.__sf_b, self.__sf_i, self.__sf_j)
            elif p.ndim == 2:
                self.realpred = empty(p.shape[0], dtype = float)
                for i in range(p.shape[0]):
                    self.realpred[i] = svmcore.predictsvmtr(self.__x, self.__y, p[i], self.__w, self.__bopt,
                                                            self.__sf_w, self.__sf_b, self.__sf_i, self.__sf_j)
        # Kernel 'linear', 'gaussian', 'polynomial'
        else:
            if p.ndim == 1:
                self.realpred = svmcore.predictsvm(self.__x, self.__y, p, self.__w, self.__a,
                                                   self.__bopt, self.__kp, self.__kernel,
                                                   self.__alpha_tversky, self.__beta_tversky)
            elif p.ndim == 2:
                self.realpred = empty(p.shape[0], dtype = float)
                for i in range(p.shape[0]):
                    self.realpred[i] = svmcore.predictsvm(self.__x, self.__y, p[i], self.__w, self.__a,
                                                          self.__bopt, self.__kp, self.__kernel,
                                                          self.__alpha_tversky, self.__beta_tversky)            
        # Return prediction
        if p.ndim == 1:
            pred = 0
            if self.realpred > 0.0:
                pred = 1
            elif self.realpred < 0.0:
                pred = -1

        if p.ndim == 2:
            pred = zeros(p.shape[0], dtype = int)
            pred[where(self.realpred > 0.0)[0]] = 1
            pred[where(self.realpred < 0.0)[0]] = -1
                   
        return pred


    def weights(self, x, y):
        """
        Return feature weights

        :Parameters:
          x : 2d ndarray float (samples x feats)
            training data
          y : 1d ndarray integer (-1 or 1)
            classes

        :Returns:     
          fw : 1d ndarray float
            feature weights
        """

        self.compute(x, y)

        # Linear case
        if self.__kernel == 1:
            return self.__w**2

        # Gaussian and polynomial case
        elif self.__kernel in [2,3]:
            K = MatrixKernelGaussian(self.__x, self.__kp)
            Z = computeZ(K, self.__y)          
            # Compute dJ[i] = 0.5*a*Z*aT - 0.5*a*Z*(-i)*aT
            a = self.__a
            aT = self.__a.reshape(-1,1)
            dJ1 = 0.5 * dot(dot(a, Z), aT)
            dJ2 = empty(self.__x.shape[1])
            for i in range(self.__x.shape[1]):
                Z_i = computeZ_k(Z, i, self.__x, self.__kp) # Compute Z_i                
                dJ2[i] = 0.5 * dot(dot(a, Z_i), aT)
            return dJ1 - dJ2


        #Tversky case
        elif self.__kernel == 4:
            K = MatrixKernelTversky(self.__x, self.__alpha_tversky, self.__beta_tversky)
            Z = computeZ(K, self.__y)
            a = self.__a
            aT = self.__a.reshape(-1,1)
            dJ1 = 0.5 * dot(dot(a, Z), aT)
            dJ2 = empty(self.__x.shape[1])
            
            for i in range(self.__x.shape[1]):
                Z_i = computeZ_tversky(Z, i, self.__x, self.__alpha_tversky, self.__beta_tversky) # Compute Z_i                
                dJ2[i] = 0.5 * dot(dot(a, Z_i), aT)
            return dJ2 - dJ1
            
        # Tr case
        elif self.__kernel == 5:

            w      = empty((self.__nsf, x.shape[1]))
            norm_w = zeros((self.__nsf,))
            a      = zeros((self.__nsf,))
            h      = zeros((x.shape[1],))
                       
            for t in range(self.__nsf):
                it = self.__sf_i[t]
                jt = self.__sf_j[t]

                w[t] = abs(self.__sf_w[t] * (self.__y[it] * self.__x[it] + self.__y[jt] * self.__x[jt]))
                norm_w[t] = abs(w[t]).sum()

                for i in range(x.shape[0]):
                    a[t] += self.__y[i] * self.__a[i] * self.__svm_x[i][t]

            for j in range(x.shape[1]):
                for t in range(self.__nsf):
                    h[j] += abs(a[t]) * w[t][j] / norm_w[t]

            return h