This file is indexed.

/usr/share/pyshared/mrjob/job.py is in python-mrjob 0.3.3.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
# Copyright 2009-2012 Yelp and Contributors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""To create your own map reduce job, subclass :py:class:`MRJob`, create a
series of mappers and reducers, and override
:py:meth:`~mrjob.job.MRJob.steps`.

For example, a word counter::

    from mrjob.job import MRJob

    class MRWordCounter(MRJob):
        def get_words(self, key, line):
            for word in line.split():
                yield word, 1

        def sum_words(self, word, occurrences):
            yield word, sum(occurrences)

        def steps(self):
            return [self.mr(self.get_words, self.sum_words),]

    if __name__ == '__main__':
        MRWordCounter.run()

The two lines at the bottom are mandatory; this is what allows your class
to be run by Hadoop streaming.

This will take in a file with lines of whitespace separated words, and
output a file with tab-separated lines like: ``"stars"\t5``.

For one-step jobs, you can also just redefine
:py:meth:`~mrjob.job.MRJob.mapper` and :py:meth:`~mrjob.job.MRJob.reducer`::

    from mrjob.job import MRJob

    class MRWordCounter(MRJob):
        def mapper(self, key, line):
            for word in line.split():
                yield word, 1

        def reducer(self, word, occurrences):
            yield word, sum(occurrences)

    if __name__ == '__main__':
        MRWordCounter.run()

To test the job locally, just run:

``python your_mr_job_sub_class.py < log_file_or_whatever > output``

The script will automatically invoke itself to run the various steps,
using :py:class:`~mrjob.local.LocalMRJobRunner`.

You can also run individual steps::

    # test 1st step mapper:
    python your_mr_job_sub_class.py --mapper
    # test 2nd step reducer (--step-num=1 because step numbers are 0-indexed):
    python your_mr_job_sub_class.py --reducer --step-num=1

By default, we read from stdin, but you can also specify one or more
input files. It automatically decompresses .gz and .bz2 files::

    python your_mr_job_sub_class.py log_01.gz log_02.bz2 log_03

You can run on Amazon Elastic MapReduce by specifying ``-r emr`` or
on your own Hadoop cluster by specifying ``-r hadoop``:

``python your_mr_job_sub_class.py -r emr``

Use :py:meth:`~mrjob.job.MRJob.make_runner` to run an
:py:class:`~mrjob.job.MRJob` from another script::

    from __future__ import with_statement  # only needed on Python 2.5

    mr_job = MRWordCounter(args=['-r', 'emr'])
    with mr_job.make_runner() as runner:
        runner.run()
        for line in runner.stream_output():
            key, value = mr_job.parse_output_line(line)
            ...  # do something with the parsed output

See :py:mod:`mrjob.examples` for more examples.
"""
# don't add imports here that aren't part of the standard Python library,
# since MRJobs need to run in Amazon's generic EMR environment
from __future__ import with_statement

import inspect
import itertools
import logging
from optparse import Option
from optparse import OptionParser
from optparse import OptionGroup
from optparse import OptionError
import sys
import time

try:
    from cStringIO import StringIO
    StringIO  # quiet "redefinition of unused ..." warning from pyflakes
except ImportError:
    from StringIO import StringIO

# don't use relative imports, to allow this script to be invoked as __main__
from mrjob.conf import combine_dicts
from mrjob.parse import parse_port_range_list
from mrjob.parse import parse_mr_job_stderr
from mrjob.parse import parse_key_value_list
from mrjob.protocol import DEFAULT_PROTOCOL
from mrjob.protocol import JSONProtocol
from mrjob.protocol import PROTOCOL_DICT
from mrjob.protocol import RawValueProtocol
from mrjob.runner import CLEANUP_CHOICES
from mrjob.util import log_to_null
from mrjob.util import log_to_stream
from mrjob.util import parse_and_save_options
from mrjob.util import read_input


log = logging.getLogger('mrjob.job')


# all the parameters you can specify when definining a job step
_JOB_STEP_PARAMS = (
    'combiner',
    'combiner_init',
    'combiner_final',
    'mapper',
    'mapper_init',
    'mapper_final',
    'reducer',
    'reducer_init',
    'reducer_final',
)


# used by mr() below, to fake no mapper
def _IDENTITY_MAPPER(key, value):
    yield key, value


# sentinel value; used when running MRJob as a script
_READ_ARGS_FROM_SYS_ARGV = '_READ_ARGS_FROM_SYS_ARGV'


# The former custom option class has been removed and this stub will disappear
# permanently in mrjob 0.4.
MRJobOptions = Option


class UsageError(Exception):
    pass


class MRJob(object):
    """The base class for all MapReduce jobs. See :py:meth:`__init__`
    for details."""

    #: :py:class:`optparse.Option` subclass to use with the
    #: :py:class:`optparse.OptionParser` instance.
    OPTION_CLASS = Option

    def __init__(self, args=None):
        """Entry point for running your job from other Python code.

        You can pass in command-line arguments, and the job will act the same
        way it would if it were run from the command line. For example, to
        run your job on EMR::

            mr_job = MRYourJob(args=['-r', 'emr'])
            with mr_job.make_runner() as runner:
                ...

        Passing in ``None`` is the same as passing in ``[]`` (if you want
        to parse args from ``sys.argv``, call :py:meth:`MRJob.run`).

        For a full list of command-line arguments, run:
        ``python -m mrjob.job --help``
        """
        # make sure we respect the $TZ (time zone) environment variable
        if hasattr(time, 'tzset'):
            time.tzset()

        self._passthrough_options = []
        self._file_options = []

        usage = "usage: %prog [options] [input files]"
        self.option_parser = OptionParser(usage=usage,
                                          option_class=self.OPTION_CLASS)
        self.configure_options()

        # don't pass None to parse_args unless we're actually running
        # the MRJob script
        if args is _READ_ARGS_FROM_SYS_ARGV:
            self._cl_args = sys.argv[1:]
        else:
            # don't pass sys.argv to self.option_parser, and have it
            # raise an exception on error rather than printing to stderr
            # and exiting.
            self._cl_args = args or []

            def error(msg):
                raise ValueError(msg)

            self.option_parser.error = error

        self.load_options(self._cl_args)

        # Make it possible to redirect stdin, stdout, and stderr, for testing
        # See sandbox(), below.
        self.stdin = sys.stdin
        self.stdout = sys.stdout
        self.stderr = sys.stderr

    ### Defining one-step jobs ###

    def mapper(self, key, value):
        """Re-define this to define the mapper for a one-step job.

        Yields zero or more tuples of ``(out_key, out_value)``.

        :param key: A value parsed from input.
        :param value: A value parsed from input.

        If you don't re-define this, your job will have a mapper that simply
        yields ``(key, value)`` as-is.

        By default (if you don't mess with :ref:`job-protocols`):
         - ``key`` will be ``None``
         - ``value`` will be the raw input line, with newline stripped.
         - ``out_key`` and ``out_value`` must be JSON-encodable: numeric,
           unicode, boolean, ``None``, list, or dict whose keys are unicodes.
        """
        raise NotImplementedError

    def reducer(self, key, values):
        """Re-define this to define the reducer for a one-step job.

        Yields one or more tuples of ``(out_key, out_value)``

        :param key: A key which was yielded by the mapper
        :param value: A generator which yields all values yielded by the
                      mapper which correspond to ``key``.

        By default (if you don't mess with :ref:`job-protocols`):
         - ``out_key`` and ``out_value`` must be JSON-encodable.
         - ``key`` and ``value`` will have been decoded from JSON (so tuples
           will become lists).
        """
        raise NotImplementedError

    def combiner(self, key, values):
        """Re-define this to define the combiner for a one-step job.

        Yields one or more tuples of ``(out_key, out_value)``

        :param key: A key which was yielded by the mapper
        :param value: A generator which yields all values yielded by one mapper
                      task/node which correspond to ``key``.

        By default (if you don't mess with :ref:`job-protocols`):
         - ``out_key`` and ``out_value`` must be JSON-encodable.
         - ``key`` and ``value`` will have been decoded from JSON (so tuples
           will become lists).
        """
        raise NotImplementedError

    def mapper_init(self):
        """Re-define this to define an action to run before the mapper
        processes any input.

        One use for this function is to initialize mapper-specific helper
        structures.

        Yields one or more tuples of ``(out_key, out_value)``.

        By default, ``out_key`` and ``out_value`` must be JSON-encodable;
        re-define :py:attr:`INTERNAL_PROTOCOL` to change this.
        """
        raise NotImplementedError

    def mapper_final(self):
        """Re-define this to define an action to run after the mapper reaches
        the end of input.

        One way to use this is to store a total in an instance variable, and
        output it after reading all input data. See :py:mod:`mrjob.examples`
        for an example.

        Yields one or more tuples of ``(out_key, out_value)``.

        By default, ``out_key`` and ``out_value`` must be JSON-encodable;
        re-define :py:attr:`INTERNAL_PROTOCOL` to change this.
        """
        raise NotImplementedError

    def reducer_init(self):
        """Re-define this to define an action to run before the reducer
        processes any input.

        One use for this function is to initialize reducer-specific helper
        structures.

        Yields one or more tuples of ``(out_key, out_value)``.

        By default, ``out_key`` and ``out_value`` must be JSON-encodable;
        re-define :py:attr:`INTERNAL_PROTOCOL` to change this.
        """
        raise NotImplementedError

    def reducer_final(self):
        """Re-define this to define an action to run after the reducer reaches
        the end of input.

        Yields one or more tuples of ``(out_key, out_value)``.

        By default, ``out_key`` and ``out_value`` must be JSON-encodable;
        re-define :py:attr:`INTERNAL_PROTOCOL` to change this.
        """
        raise NotImplementedError

    def combiner_init(self):
        """Re-define this to define an action to run before the combiner
        processes any input.

        One use for this function is to initialize combiner-specific helper
        structures.

        Yields one or more tuples of ``(out_key, out_value)``.

        By default, ``out_key`` and ``out_value`` must be JSON-encodable;
        re-define :py:attr:`INTERNAL_PROTOCOL` to change this.
        """
        raise NotImplementedError

    def combiner_final(self):
        """Re-define this to define an action to run after the combiner reaches
        the end of input.

        Yields one or more tuples of ``(out_key, out_value)``.

        By default, ``out_key`` and ``out_value`` must be JSON-encodable;
        re-define :py:attr:`INTERNAL_PROTOCOL` to change this.
        """
        raise NotImplementedError

    ### Defining multi-step jobs ###

    def steps(self):
        """Re-define this to make a multi-step job.

        If you don't re-define this, we'll automatically create a one-step
        job using any of :py:meth:`mapper`, :py:meth:`mapper_init`,
        :py:meth:`mapper_final`, :py:meth:`reducer_init`,
        :py:meth:`reducer_final`, and :py:meth:`reducer` that you've
        re-defined. For example::

            def steps(self):
                return [self.mr(mapper=self.transform_input,
                                reducer=self.consolidate_1),
                        self.mr(reducer_init=self.log_mapper_init,
                                reducer=self.consolidate_2)]

        :return: a list of steps constructed with :py:meth:`mr`
        """
        # Use mapper(), reducer() etc. only if they've been re-defined
        kwargs = dict((func_name, getattr(self, func_name))
                      for func_name in _JOB_STEP_PARAMS
                      if (getattr(self, func_name).im_func is not
                          getattr(MRJob, func_name).im_func))

        return [self.mr(**kwargs)]

    @classmethod
    def mr(cls, mapper=None, reducer=None, _mapper_final=None, **kwargs):
        """Define a step (mapper, reducer, and/or any combination of
        mapper_init, reducer_final, etc.) for your job.

        Used by :py:meth:`steps`. (Don't re-define this, just call it!)

        Accepts the following keyword arguments. For convenience, you may
        specify *mapper* and *reducer* as positional arguments as well.

        :param mapper: function with same function signature as
                       :py:meth:`mapper`, or ``None`` for an identity mapper.
        :param reducer: function with same function signature as
                        :py:meth:`reducer`, or ``None`` for no reducer.
        :param combiner: function with same function signature as
                         :py:meth:`combiner`, or ``None`` for no combiner.
        :param mapper_init: function with same function signature as
                            :py:meth:`mapper_init`, or ``None`` for no initial
                            mapper action.
        :param mapper_final: function with same function signature as
                             :py:meth:`mapper_final`, or ``None`` for no final
                             mapper action.
        :param reducer_init: function with same function signature as
                             :py:meth:`reducer_init`, or ``None`` for no
                             initial reducer action.
        :param reducer_final: function with same function signature as
                              :py:meth:`reducer_final`, or ``None`` for no
                              final reducer action.
        :param combiner_init: function with same function signature as
                              :py:meth:`combiner_init`, or ``None`` for no
                              initial combiner action.
        :param combiner_final: function with same function signature as
                               :py:meth:`combiner_final`, or ``None`` for no
                               final combiner action.

        Please consider the way we represent steps to be opaque, and expect
        it to change in future versions of ``mrjob``.
        """
        # limit which keyword args can be specified
        bad_kwargs = sorted(set(kwargs) - set(_JOB_STEP_PARAMS))
        if bad_kwargs:
            raise TypeError(
                'mr() got an unexpected keyword argument %r' % bad_kwargs[0])

        # handle incorrect usage of positional args. This was wrong in mrjob
        # v0.2 as well, but we didn't issue a warning.
        if _mapper_final is not None:
            if 'mapper_final' in kwargs:
                raise TypeError("mr() got multiple values for keyword argument"
                                " 'mapper_final'")
            else:
                log.warn(
                    'mapper_final should be specified as a keyword argument to'
                    ' mr(), not a positional argument. This will be required'
                    ' in mrjob 0.4.')
                kwargs['mapper_final'] = _mapper_final

        step = dict((f, None) for f in _JOB_STEP_PARAMS)
        step['mapper'] = mapper
        step['reducer'] = reducer
        step.update(kwargs)

        if not any(step.itervalues()):
            raise Exception("Step has no mappers and no reducers")

        # Hadoop streaming requires a mapper, so patch in _IDENTITY_MAPPER
        step['mapper'] = step['mapper'] or _IDENTITY_MAPPER

        return step

    def increment_counter(self, group, counter, amount=1):
        """Increment a counter in Hadoop streaming by printing to stderr.

        :type group: str
        :param group: counter group
        :type counter: str
        :param counter: description of the counter
        :type amount: int
        :param amount: how much to increment the counter by

        Commas in ``counter`` or ``group`` will be automatically replaced
        with semicolons (commas confuse Hadoop streaming).
        """
        # don't allow people to pass in floats
        if not isinstance(amount, (int, long)):
            raise TypeError('amount must be an integer, not %r' % (amount,))

        # Extra commas screw up hadoop and there's no way to escape them. So
        # replace them with the next best thing: semicolons!
        #
        # cast to str() because sometimes people pass in exceptions or whatever
        #
        # The relevant Hadoop code is incrCounter(), here:
        # http://svn.apache.org/viewvc/hadoop/mapreduce/trunk/src/contrib/streaming/src/java/org/apache/hadoop/streaming/PipeMapRed.java?view=markup
        group = str(group).replace(',', ';')
        counter = str(counter).replace(',', ';')

        self.stderr.write('reporter:counter:%s,%s,%d\n' %
                          (group, counter, amount))
        self.stderr.flush()

    def set_status(self, msg):
        """Set the job status in hadoop streaming by printing to stderr.

        This is also a good way of doing a keepalive for a job that goes a
        long time between outputs; Hadoop streaming usually times out jobs
        that give no output for longer than 10 minutes.
        """
        self.stderr.write('reporter:status:%s\n' % (msg,))
        self.stderr.flush()

    ### Running the job ###

    @classmethod
    def run(cls):
        """Entry point for running job from the command-line.

        This is also the entry point when a mapper or reducer is run
        by Hadoop Streaming.

        Does one of:

        * Print step information (:option:`--steps`). See :py:meth:`show_steps`
        * Run a mapper (:option:`--mapper`). See :py:meth:`run_mapper`
        * Run a combiner (:option:`--combiner`). See :py:meth:`run_combiner`
        * Run a reducer (:option:`--reducer`). See :py:meth:`run_reducer`
        * Run the entire job. See :py:meth:`run_job`
        """
        # load options from the command line
        mr_job = cls(args=_READ_ARGS_FROM_SYS_ARGV)
        mr_job.execute()

    def execute(self):
        if self.options.show_steps:
            self.show_steps()

        elif self.options.run_mapper:
            self.run_mapper(self.options.step_num)

        elif self.options.run_combiner:
            self.run_combiner(self.options.step_num)

        elif self.options.run_reducer:
            self.run_reducer(self.options.step_num)

        else:
            self.run_job()

    def make_runner(self):
        """Make a runner based on command-line arguments, so we can
        launch this job on EMR, on Hadoop, or locally.

        :rtype: :py:class:`mrjob.runner.MRJobRunner`
        """
        bad_words = (
            '--steps', '--mapper', '--reducer', '--combiner', '--step-num')
        for w in bad_words:
            if w in sys.argv:
                raise UsageError("make_runner() was called with %s. This"
                                 " probably means you tried to use it from"
                                 " __main__, which doesn't work." % w)

        # have to import here so that we can still run the MRJob
        # without importing boto
        from mrjob.emr import EMRJobRunner
        from mrjob.hadoop import HadoopJobRunner
        from mrjob.local import LocalMRJobRunner
        from mrjob.inline import InlineMRJobRunner

        if self.options.runner == 'emr':
            return EMRJobRunner(**self.emr_job_runner_kwargs())

        elif self.options.runner == 'hadoop':
            return HadoopJobRunner(**self.hadoop_job_runner_kwargs())

        elif self.options.runner == 'inline':
            return InlineMRJobRunner(
                mrjob_cls=self.__class__, **self.inline_job_runner_kwargs())

        else:
            # run locally by default
            return LocalMRJobRunner(**self.local_job_runner_kwargs())

    @classmethod
    def set_up_logging(cls, quiet=False, verbose=False, stream=None):
        """Set up logging when running from the command line. This is also
        used by the various command-line utilities.

        :param bool quiet: If true, don't log. Overrides *verbose*.
        :param bool verbose: If true, set log level to ``DEBUG`` (default is
                             ``INFO``)
        :param bool stream: Stream to log to (default is ``sys.stderr``)

        This will also set up a null log handler for boto, so we don't get
        warnings if boto tries to log about throttling and whatnot.
        """
        if quiet:
            log_to_null(name='mrjob')
        else:
            log_to_stream(name='mrjob', debug=verbose, stream=stream)

        log_to_null(name='boto')

    def run_job(self):
        """Run the all steps of the job, logging errors (and debugging output
        if :option:`--verbose` is specified) to STDERR and streaming the
        output to STDOUT.

        Called from :py:meth:`run`. You'd probably only want to call this
        directly from automated tests.
        """
        self.set_up_logging(quiet=self.options.quiet,
                            verbose=self.options.verbose,
                            stream=self.stderr)

        with self.make_runner() as runner:
            runner.run()

            if not self.options.no_output:
                for line in runner.stream_output():
                    self.stdout.write(line)
                self.stdout.flush()

    def run_mapper(self, step_num=0):
        """Run the mapper and final mapper action for the given step.

        :type step_num: int
        :param step_num: which step to run (0-indexed)

        If we encounter a line that can't be decoded by our input protocol,
        or a tuple that can't be encoded by our output protocol, we'll
        increment a counter rather than raising an exception. If
        --strict-protocols is set, then an exception is raised

        Called from :py:meth:`run`. You'd probably only want to call this
        directly from automated tests.
        """
        steps = self.steps()
        if not 0 <= step_num < len(steps):
            raise ValueError('Out-of-range step: %d' % step_num)
        step = steps[step_num]
        mapper = step['mapper']
        mapper_init = step['mapper_init']
        mapper_final = step['mapper_final']

        # pick input and output protocol
        read_lines, write_line = self._wrap_protocols(step_num, 'M')

        if mapper_init:
            for out_key, out_value in mapper_init() or ():
                write_line(out_key, out_value)

        # run the mapper on each line
        for key, value in read_lines():
            for out_key, out_value in mapper(key, value) or ():
                write_line(out_key, out_value)

        if mapper_final:
            for out_key, out_value in mapper_final() or ():
                write_line(out_key, out_value)

    def run_reducer(self, step_num=0):
        """Run the reducer for the given step.

        :type step_num: int
        :param step_num: which step to run (0-indexed)

        If we encounter a line that can't be decoded by our input protocol,
        or a tuple that can't be encoded by our output protocol, we'll
        increment a counter rather than raising an exception. If
        --strict-protocols is set, then an exception is raised

        Called from :py:meth:`run`. You'd probably only want to call this
        directly from automated tests.
        """
        steps = self.steps()
        if not 0 <= step_num < len(steps):
            raise ValueError('Out-of-range step: %d' % step_num)
        step = steps[step_num]
        reducer = step['reducer']
        reducer_init = step['reducer_init']
        reducer_final = step['reducer_final']
        if reducer is None:
            raise ValueError('No reducer in step %d' % step_num)

        # pick input and output protocol
        read_lines, write_line = self._wrap_protocols(step_num, 'R')

        if reducer_init:
            for out_key, out_value in reducer_init() or ():
                write_line(out_key, out_value)

        # group all values of the same key together, and pass to the reducer
        #
        # be careful to use generators for everything, to allow for
        # very large groupings of values
        for key, kv_pairs in itertools.groupby(read_lines(),
                                               key=lambda(k, v): k):
            values = (v for k, v in kv_pairs)
            for out_key, out_value in reducer(key, values) or ():
                write_line(out_key, out_value)

        if reducer_final:
            for out_key, out_value in reducer_final() or ():
                write_line(out_key, out_value)

    def run_combiner(self, step_num=0):
        """Run the combiner for the given step.

        :type step_num: int
        :param step_num: which step to run (0-indexed)

        If we encounter a line that can't be decoded by our input protocol,
        or a tuple that can't be encoded by our output protocol, we'll
        increment a counter rather than raising an exception. If
        --strict-protocols is set, then an exception is raised

        Called from :py:meth:`run`. You'd probably only want to call this
        directly from automated tests.
        """
        steps = self.steps()
        if not 0 <= step_num < len(steps):
            raise ValueError('Out-of-range step: %d' % step_num)
        step = steps[step_num]
        combiner = step['combiner']
        combiner_init = step['combiner_init']
        combiner_final = step['combiner_final']
        if combiner is None:
            raise ValueError('No combiner in step %d' % step_num)

        # pick input and output protocol
        read_lines, write_line = self._wrap_protocols(step_num, 'C')

        if combiner_init:
            for out_key, out_value in combiner_init() or ():
                write_line(out_key, out_value)

        # group all values of the same key together, and pass to the combiner
        #
        # be careful to use generators for everything, to allow for
        # very large groupings of values
        for key, kv_pairs in itertools.groupby(read_lines(),
                                               key=lambda(k, v): k):
            values = (v for k, v in kv_pairs)
            for out_key, out_value in combiner(key, values) or ():
                write_line(out_key, out_value)

        if combiner_final:
            for out_key, out_value in combiner_final() or ():
                write_line(out_key, out_value)

    def show_steps(self):
        """Print information about how many steps there are, and whether
        they contain a mapper or reducer. Job runners (see :doc:`runners`)
        use this to determine how Hadoop should call this script.

        Called from :py:meth:`run`. You'd probably only want to call this
        directly from automated tests.

        We currently output something like ``MR M R``, but expect this to
        change!
        """
        print >> self.stdout, ' '.join(self._steps_desc())

    def _steps_desc(self):
        res = []
        for step_num, step in enumerate(self.steps()):
            mapper_funcs = ('mapper_init', 'mapper_final')
            reducer_funcs = ('reducer', 'reducer_init', 'reducer_final')
            combiner_funcs = ('combiner', 'combiner_init', 'combiner_final')

            has_explicit_mapper = (step['mapper'] != _IDENTITY_MAPPER or
                                   any(step[k] for k in mapper_funcs))
            has_explicit_reducer = any(step[k] for k in reducer_funcs)
            has_explicit_combiner = any(step[k] for k in combiner_funcs)

            func_strs = []

            # Print a mapper if:
            # - The user specifies one
            # - Different input and output protocols are used (infer from
            #   step number)
            # - We don't have anything else to print (excluding combiners)
            if has_explicit_mapper \
               or step_num == 0 \
               or not has_explicit_reducer:
                func_strs.append('M')

            if has_explicit_combiner:
                func_strs.append('C')

            if has_explicit_reducer:
                func_strs.append('R')

            res.append(''.join(func_strs))
        return res

    @classmethod
    def mr_job_script(cls):
        """Path of this script. This returns the file containing
        this class."""
        return inspect.getsourcefile(cls)

    ### Other useful utilities ###

    def _read_input(self):
        """Read from stdin, or one more files, or directories.
        Yield one line at time.

        - Resolve globs (``foo_*.gz``).
        - Decompress ``.gz`` and ``.bz2`` files.
        - If path is ``-``, read from STDIN.
        - Recursively read all files in a directory
        """
        paths = self.args or ['-']
        for path in paths:
            for line in read_input(path, stdin=self.stdin):
                yield line

    def _wrap_protocols(self, step_num, step_type):
        """Pick the protocol classes to use for reading and writing
        for the given step, and wrap them so that bad input and output
        trigger a counter rather than an exception unless --strict-protocols
        is set.

        Returns a tuple of read_lines, write_line
        read_lines() is a function that reads lines from input, decodes them,
            and yields key, value pairs
        write_line() is a function that takes key and value as args, encodes
            them, and writes a line to output.

        Args:
        step_num -- which step to run (e.g. 0)
        step_type -- 'M' for mapper, 'C' for combiner, 'R' for reducer
        """
        read, write = self.pick_protocols(step_num, step_type)

        def read_lines():
            for line in self._read_input():
                try:
                    key, value = read(line.rstrip('\r\n'))
                    yield key, value
                except Exception, e:
                    if self.options.strict_protocols:
                        raise
                    else:
                        self.increment_counter('Undecodable input',
                                                e.__class__.__name__)

        def write_line(key, value):
            try:
                print >> self.stdout, write(key, value)
            except Exception, e:
                if self.options.strict_protocols:
                    raise
                else:
                    self.increment_counter('Unencodable output',
                                            e.__class__.__name__)

        return read_lines, write_line

    def pick_protocols(self, step_num, step_type):
        """Pick the protocol classes to use for reading and writing
        for the given step.

        :type step_num: int
        :param step_num: which step to run (e.g. ``0`` for the first step)
        :type step_type: str
        :param step_type: ``'M'`` for mapper, ``'C'`` for combiner, ``'R'``
                          for reducer
        :return: (read_function, write_function)

        By default, we use one protocol for reading input, one
        internal protocol for communication between steps, and one
        protocol for final output (which is usually the same as the
        internal protocol). Protocols can be controlled by setting
        :py:attr:`INPUT_PROTOCOL`, :py:attr:`INTERNAL_PROTOCOL`, and
        :py:attr:`OUTPUT_PROTOCOL`.

        Re-define this if you need fine control over which protocols
        are used by which steps.
        """
        steps_desc = self._steps_desc()

        # pick input protocol

        if step_num == 0 and step_type == steps_desc[0][0]:
            read = self.input_protocol().read
        else:
            read = self.internal_protocol().read

        if step_num == len(steps_desc) - 1 and step_type == steps_desc[-1][-1]:
            write = self.output_protocol().write
        else:
            write = self.internal_protocol().write

        return read, write

    ### Command-line arguments ###

    def configure_options(self):
        """Define arguments for this script. Called from :py:meth:`__init__()`.

        Run ``python -m mrjob.job.MRJob --help`` to see all options.

        Re-define to define custom command-line arguments::

            def configure_options(self):
                super(MRYourJob, self).configure_options

                self.add_passthrough_option(...)
                self.add_file_option(...)
                ...
        """
        # To describe the steps
        self.option_parser.add_option(
            '--steps', dest='show_steps', action='store_true', default=False,
            help='show the steps of mappers and reducers')

        # To run mappers or reducers
        self.mux_opt_group = OptionGroup(
            self.option_parser, 'Running specific parts of the job')
        self.option_parser.add_option_group(self.mux_opt_group)

        self.mux_opt_group.add_option(
            '--mapper', dest='run_mapper', action='store_true', default=False,
            help='run a mapper')

        self.mux_opt_group.add_option(
            '--combiner', dest='run_combiner', action='store_true',
            default=False, help='run a combiner')

        self.mux_opt_group.add_option(
            '--reducer', dest='run_reducer', action='store_true',
            default=False, help='run a reducer')

        self.mux_opt_group.add_option(
            '--step-num', dest='step_num', type='int', default=0,
            help='which step to execute (default is 0)')

        # protocol stuff
        protocol_choices = sorted(self.protocols())
        self.proto_opt_group = OptionGroup(
            self.option_parser, 'Protocols')
        self.option_parser.add_option_group(self.proto_opt_group)

        self.add_passthrough_option(
            '--input-protocol', dest='input_protocol',
            opt_group=self.proto_opt_group,
            default=None, choices=protocol_choices,
            help=('DEPRECATED: protocol to read input with (default:'
                  ' raw_value)'))

        self.add_passthrough_option(
            '--output-protocol', dest='output_protocol',
            opt_group=self.proto_opt_group,
            default=self.DEFAULT_OUTPUT_PROTOCOL,
            choices=protocol_choices,
             help='DEPRECATED: protocol for final output (default: %s)' % (
            'same as --protocol' if self.DEFAULT_OUTPUT_PROTOCOL is None
            else '%default'))

        self.add_passthrough_option(
            '-p', '--protocol', dest='protocol',
            opt_group=self.proto_opt_group,
            default=None, choices=protocol_choices,
            help=('DEPRECATED: output protocol for mappers/reducers. Choices:'
                  ' %s (default: json)' % ', '.join(protocol_choices)))

        self.add_passthrough_option(
            '--strict-protocols', dest='strict_protocols', default=None,
            opt_group=self.proto_opt_group,
            action='store_true', help='If something violates an input/output '
            'protocol then raise an exception')

        # options for running the entire job
        self.runner_opt_group = OptionGroup(
            self.option_parser, 'Running the entire job')
        self.option_parser.add_option_group(self.runner_opt_group)

        self.runner_opt_group.add_option(
            '--archive', dest='upload_archives', action='append',
            default=[],
            help=('Unpack archive in the working directory of this script. You'
                  ' can use --archive multiple times.'))

        self.runner_opt_group.add_option(
            '--bootstrap-mrjob', dest='bootstrap_mrjob', action='store_true',
            default=None,
            help=("Automatically tar up the mrjob library and install it when"
                  " we run the mrjob. This is the default. Use"
                  " --no-bootstrap-mrjob if you've already installed mrjob on"
                  " your Hadoop cluster."))

        self.runner_opt_group.add_option(
            '-c', '--conf-path', dest='conf_path', default=None,
            help='Path to alternate mrjob.conf file to read from')

        self.runner_opt_group.add_option(
            '--cleanup', dest='cleanup', default=None,
            help=('Comma-separated list of which directories to delete when'
                  ' a job succeeds, e.g. SCRATCH,LOGS. Choices:'
                  ' %s (default: ALL)' % ', '.join(CLEANUP_CHOICES)))

        self.runner_opt_group.add_option(
            '--cleanup-on-failure', dest='cleanup_on_failure', default=None,
            help=('Comma-separated list of which directories to delete when'
                  ' a job fails, e.g. SCRATCH,LOGS. Choices:'
                  ' %s (default: NONE)' % ', '.join(CLEANUP_CHOICES)))

        self.runner_opt_group.add_option(
            '--cmdenv', dest='cmdenv', default=[], action='append',
            help='set an environment variable for your job inside Hadoop '
            'streaming. Must take the form KEY=VALUE. You can use --cmdenv '
            'multiple times.')

        self.runner_opt_group.add_option(
            '--file', dest='upload_files', action='append',
            default=[],
            help=('Copy file to the working directory of this script. You can'
                  ' use --file multiple times.'))

        self.runner_opt_group.add_option(
            '--no-bootstrap-mrjob', dest='bootstrap_mrjob',
            action='store_false', default=None,
            help=("Don't automatically tar up the mrjob library and install it"
                  " when we run this job. Use this if you've already installed"
                  " mrjob on your Hadoop cluster."))

        self.runner_opt_group.add_option(
            '--no-conf', dest='conf_path', action='store_false', default=None,
            help="Don't load mrjob.conf even if it's available")

        self.runner_opt_group.add_option(
            '--no-output', dest='no_output',
            default=None, action='store_true',
            help="Don't stream output after job completion")

        self.runner_opt_group.add_option(
            '-o', '--output-dir', dest='output_dir', default=None,
            help='Where to put final job output. This must be an s3:// URL ' +
            'for EMR, an HDFS path for Hadoop, and a system path for local,' +
            'and must be empty')

        self.runner_opt_group.add_option(
            '--partitioner', dest='partitioner', default=None,
            help=('Hadoop partitioner class to use to determine how mapper'
                  ' output should be sorted and distributed to reducers. For'
                  ' example: org.apache.hadoop.mapred.lib.HashPartitioner'))

        self.runner_opt_group.add_option(
            '--python-archive', dest='python_archives', default=[],
            action='append',
            help=('Archive to unpack and add to the PYTHONPATH of the mr_job'
                  ' script when it runs. You can use --python-archives'
                  ' multiple times.'))

        self.runner_opt_group.add_option(
            '--python-bin', dest='python_bin', default=None,
            help=("Name/path of alternate python binary for mappers/reducers."
                  " You can include arguments, e.g. --python-bin 'python -v'"))

        self.runner_opt_group.add_option(
            '-q', '--quiet', dest='quiet', default=None,
            action='store_true',
            help="Don't print anything to stderr")

        self.runner_opt_group.add_option(
            '-r', '--runner', dest='runner', default='local',
            choices=('local', 'hadoop', 'emr', 'inline'),
            help=('Where to run the job: local to run locally, hadoop to run'
                  ' on your Hadoop cluster, emr to run on Amazon'
                  ' ElasticMapReduce, and inline for local debugging. Default'
                  ' is local.'))

        self.runner_opt_group.add_option(
            '--setup-cmd', dest='setup_cmds', action='append',
            default=[],
            help=('A command to run before each mapper/reducer step in the'
                  ' shell (e.g. "cd my-src-tree; make") specified as a string.'
                  ' You can use --setup-cmd more than once. Use mrjob.conf to'
                  ' specify arguments as a list to be run directly.'))

        self.runner_opt_group.add_option(
            '--setup-script', dest='setup_scripts', action='append',
            default=[],
            help=('Path to file to be copied into the local working directory'
                  ' and then run. You can use --setup-script more than once.'
                  ' These are run after setup_cmds.'))

        self.runner_opt_group.add_option(
            '--steps-python-bin', dest='steps_python_bin', default=None,
            help='Name/path of alternate python binary to use to query the '
            'job about its steps, if different from the current Python '
            'interpreter. Rarely needed.')

        self.runner_opt_group.add_option(
            '-v', '--verbose', dest='verbose', default=None,
            action='store_true',
            help='print more messages to stderr')

        self.hadoop_opts_opt_group = OptionGroup(
            self.option_parser,
            'Configuring or emulating Hadoop (these apply when you set -r'
            ' hadoop, -r emr, or -r local)')
        self.option_parser.add_option_group(self.hadoop_opts_opt_group)

        self.hadoop_opts_opt_group.add_option(
            '--hadoop-version', dest='hadoop_version', default=None,
            help=('Version of Hadoop to specify to EMR or to emulate for -r'
                  ' local. Default is 0.20.'))

        # for more info about jobconf:
        # http://hadoop.apache.org/mapreduce/docs/current/mapred-default.html
        self.hadoop_opts_opt_group.add_option(
            '--jobconf', dest='jobconf', default=[], action='append',
            help=('-jobconf arg to pass through to hadoop streaming; should'
                  ' take the form KEY=VALUE. You can use --jobconf multiple'
                  ' times.'))

        # options common to Hadoop and EMR
        self.hadoop_emr_opt_group = OptionGroup(
            self.option_parser,
            'Running on Hadoop or EMR (these apply when you set -r hadoop or'
            ' -r emr)')
        self.option_parser.add_option_group(self.hadoop_emr_opt_group)

        self.hadoop_emr_opt_group.add_option(
            '--hadoop-arg', dest='hadoop_extra_args', default=[],
            action='append', help='Argument of any type to pass to hadoop '
            'streaming. You can use --hadoop-arg multiple times.')

        self.hadoop_emr_opt_group.add_option(
            '--hadoop-input-format', dest='hadoop_input_format', default=None,
            help=('DEPRECATED: the hadoop InputFormat class used by the first'
                  ' step of your job to read data. Custom formats must be'
                  ' included in your hadoop streaming jar (see'
                  ' --hadoop-streaming-jar). Current best practice is to'
                  ' redefine HADOOP_INPUT_FORMAT or hadoop_input_format()'
                  ' in your job.'))

        self.hadoop_emr_opt_group.add_option(
            '--hadoop-output-format', dest='hadoop_output_format',
            default=None,
            help=('DEPRECATED: the hadoop OutputFormat class used by the first'
                  ' step of your job to read data. Custom formats must be'
                  ' included in your hadoop streaming jar (see'
                  ' --hadoop-streaming-jar). Current best practice is to'
                  ' redefine HADOOP_OUTPUT_FORMAT or hadoop_output_format()'
                  ' in your job.'))

        self.hadoop_emr_opt_group.add_option(
            '--hadoop-streaming-jar', dest='hadoop_streaming_jar',
            default=None,
            help='Path of your hadoop streaming jar (locally, or on S3/HDFS)')

        self.hadoop_emr_opt_group.add_option(
            '--label', dest='label', default=None,
            help='custom prefix for job name, to help us identify the job')

        self.hadoop_emr_opt_group.add_option(
            '--owner', dest='owner', default=None,
            help='custom username to use, to help us identify who ran the job')

        # options for running the job on Hadoop
        self.hadoop_opt_group = OptionGroup(
            self.option_parser,
            'Running on Hadoop (these apply when you set -r hadoop)')
        self.option_parser.add_option_group(self.hadoop_opt_group)

        self.hadoop_opt_group.add_option(
            '--hadoop-bin', dest='hadoop_bin', default=None,
            help='hadoop binary. Defaults to $HADOOP_HOME/bin/hadoop')

        self.hadoop_opt_group.add_option(
            '--hdfs-scratch-dir', dest='hdfs_scratch_dir',
            default=None,
            help='Scratch space on HDFS (default is tmp/)')

        # options for running the job on EMR
        self.emr_opt_group = OptionGroup(
            self.option_parser,
            'Running on Amazon Elastic MapReduce (these apply when you set -r'
            ' emr)')
        self.option_parser.add_option_group(self.emr_opt_group)

        self.emr_opt_group.add_option(
            '--additional-emr-info', dest='additional_emr_info', default=None,
            help='A JSON string for selecting additional features on EMR')

        self.emr_opt_group.add_option(
            '--ami-version', dest='ami_version', default=None,
            help=(
                'AMI Version to use (currently 1.0, 2.0, or latest).'))

        self.emr_opt_group.add_option(
            '--aws-availability-zone', dest='aws_availability_zone',
            default=None,
            help='Availability zone to run the job flow on')

        self.emr_opt_group.add_option(
            '--aws-region', dest='aws_region', default=None,
            help='Region to connect to S3 and EMR on (e.g. us-west-1).')

        self.emr_opt_group.add_option(
            '--bootstrap-action', dest='bootstrap_actions', action='append',
            default=[],
            help=('Raw bootstrap action scripts to run before any of the other'
                  ' bootstrap steps. You can use --bootstrap-action more than'
                  ' once. Local scripts will be automatically uploaded to S3.'
                  ' To add arguments, just use quotes: "foo.sh arg1 arg2"'))

        self.emr_opt_group.add_option(
            '--bootstrap-cmd', dest='bootstrap_cmds', action='append',
            default=[],
            help=('Commands to run on the master node to set up libraries,'
                  ' etc. You can use --bootstrap-cmd more than once. Use'
                  ' mrjob.conf to specify arguments as a list to be run'
                  ' directly.'))

        self.emr_opt_group.add_option(
            '--bootstrap-file', dest='bootstrap_files', action='append',
            default=[],
            help=('File to upload to the master node before running'
                  ' bootstrap_cmds (for example, debian packages). These will'
                  ' be made public on S3 due to a limitation of the bootstrap'
                  ' feature. You can use --bootstrap-file more than once.'))

        self.emr_opt_group.add_option(
            '--bootstrap-python-package', dest='bootstrap_python_packages',
            action='append', default=[],
            help=('Path to a Python module to install on EMR. These should be'
                  ' standard python module tarballs where you can cd into a'
                  ' subdirectory and run ``sudo python setup.py install``. You'
                  ' can use --bootstrap-python-package more than once.'))

        self.emr_opt_group.add_option(
            '--bootstrap-script', dest='bootstrap_scripts', action='append',
            default=[],
            help=('Script to upload and then run on the master node (a'
                  ' combination of bootstrap_cmds and bootstrap_files). These'
                  ' are run after the command from bootstrap_cmds. You can use'
                  ' --bootstrap-script more than once.'))

        self.emr_opt_group.add_option(
            '--check-emr-status-every', dest='check_emr_status_every',
            default=None, type='int',
            help='How often (in seconds) to check status of your EMR job')

        self.emr_opt_group.add_option(
            '--ec2-instance-type', dest='ec2_instance_type', default=None,
            help=('Type of EC2 instance(s) to launch (e.g. m1.small,'
                  ' c1.xlarge, m2.xlarge). See'
                  ' http://aws.amazon.com/ec2/instance-types/ for the full'
                  ' list.'))

        self.emr_opt_group.add_option(
            '--ec2-key-pair', dest='ec2_key_pair', default=None,
            help='Name of the SSH key pair you set up for EMR')

        self.emr_opt_group.add_option(
            '--ec2-key-pair-file', dest='ec2_key_pair_file', default=None,
            help='Path to file containing SSH key for EMR')

        # EMR instance types
        self.emr_opt_group.add_option(
            '--ec2-core-instance-type', '--ec2-slave-instance-type',
            dest='ec2_core_instance_type', default=None,
            help='Type of EC2 instance for core (or "slave") nodes only')

        self.emr_opt_group.add_option(
            '--ec2-master-instance-type', dest='ec2_master_instance_type',
            default=None,
            help='Type of EC2 instance for master node only')

        self.emr_opt_group.add_option(
            '--ec2-task-instance-type', dest='ec2_task_instance_type',
            default=None,
            help='Type of EC2 instance for task nodes only')

        # EMR instance bid prices
        self.emr_opt_group.add_option(
            '--ec2-core-instance-bid-price',
            dest='ec2_core_instance_bid_price', default=None,
            help=(
                'Bid price to specify for core (or "slave") nodes when'
                ' setting them up as EC2 spot instances (you probably only'
                ' want to set a bid price for task instances).')
            )

        self.emr_opt_group.add_option(
            '--ec2-master-instance-bid-price',
            dest='ec2_master_instance_bid_price', default=None,
            help=(
                'Bid price to specify for the master node when setting it up '
                'as an EC2 spot instance (you probably only want to set '
                'a bid price for task instances).')
            )

        self.emr_opt_group.add_option(
            '--ec2-task-instance-bid-price',
            dest='ec2_task_instance_bid_price', default=None,
            help=(
                'Bid price to specify for task nodes when '
                'setting them up as EC2 spot instances.')
            )

        self.emr_opt_group.add_option(
            '--emr-endpoint', dest='emr_endpoint', default=None,
            help=('Optional host to connect to when communicating with S3'
                  ' (e.g. us-west-1.elasticmapreduce.amazonaws.com). Default'
                  ' is to infer this from aws_region.'))

        self.emr_opt_group.add_option(
            '--emr-job-flow-id', dest='emr_job_flow_id', default=None,
            help='ID of an existing EMR job flow to use')

        self.emr_opt_group.add_option(
            '--enable-emr-debugging', dest='enable_emr_debugging',
            default=None, action='store_true',
            help='Enable storage of Hadoop logs in SimpleDB')

        self.emr_opt_group.add_option(
            '--disable-emr-debugging', dest='enable_emr_debugging',
            action='store_false',
            help='Enable storage of Hadoop logs in SimpleDB')

        self.emr_opt_group.add_option(
            '--hadoop-streaming-jar-on-emr',
            dest='hadoop_streaming_jar_on_emr', default=None,
            help=('Local path of the hadoop streaming jar on the EMR node.'
                  ' Rarely necessary.'))

        self.emr_opt_group.add_option(
            '--no-pool-emr-job-flows', dest='pool_emr_job_flows',
            action='store_false',
            help="Don't try to run our job on a pooled job flow.")

        self.emr_opt_group.add_option(
            '--num-ec2-instances', dest='num_ec2_instances', default=None,
            type='int',
            help='Total number of EC2 instances to launch ')

        # NB: EMR instance counts are only applicable for slave/core and
        # task, since a master count > 1 causes the EMR API to return the
        # ValidationError "A master instance group must specify a single
        # instance".
        self.emr_opt_group.add_option(
            '--num-ec2-core-instances', dest='num_ec2_core_instances',
            default=None, type='int',
            help=('Number of EC2 instances to start as core (or "slave") '
                  'nodes. Incompatible with --num-ec2-instances.'))

        self.emr_opt_group.add_option(
            '--num-ec2-task-instances', dest='num_ec2_task_instances',
            default=None, type='int',
            help=('Number of EC2 instances to start as task '
                  'nodes. Incompatible with --num-ec2-instances.'))

        self.emr_opt_group.add_option(
            '--pool-emr-job-flows', dest='pool_emr_job_flows',
            action='store_true',
            help='Add to an existing job flow or create a new one that does'
                 ' not terminate when the job completes. Overrides other job'
                 ' flow-related options including EC2 instance configuration.'
                 ' Joins pool "default" if emr_job_flow_pool_name is not'
                 ' specified. WARNING: do not run this without'
                 ' mrjob.tools.emr.terminate_idle_job_flows in your crontab;'
                 ' job flows left idle can quickly become expensive!')

        self.emr_opt_group.add_option(
            '--pool-name', dest='emr_job_flow_pool_name', action='store',
            default=None,
            help=('Specify a pool name to join. Set to "default" if not'
                  ' specified.'))

        self.emr_opt_group.add_option(
            '--s3-endpoint', dest='s3_endpoint', default=None,
            help=('Host to connect to when communicating with S3 (e.g.'
                  ' s3-us-west-1.amazonaws.com). Default is to infer this from'
                  ' region (see --aws-region).'))

        self.emr_opt_group.add_option(
            '--s3-log-uri', dest='s3_log_uri', default=None,
            help='URI on S3 to write logs into')

        self.emr_opt_group.add_option(
            '--s3-scratch-uri', dest='s3_scratch_uri', default=None,
            help='URI on S3 to use as our temp directory.')

        self.emr_opt_group.add_option(
            '--s3-sync-wait-time', dest='s3_sync_wait_time', default=None,
            type='float',
            help=('How long to wait for S3 to reach eventual consistency. This'
                  ' is typically less than a second (zero in us-west) but the'
                  ' default is 5.0 to be safe.'))

        self.emr_opt_group.add_option(
            '--ssh-bin', dest='ssh_bin', default=None,
            help=("Name/path of ssh binary. Arguments are allowed (e.g."
                  " --ssh-bin 'ssh -v')"))

        self.emr_opt_group.add_option(
            '--ssh-bind-ports', dest='ssh_bind_ports', default=None,
            help=('A list of port ranges that are safe to listen on, delimited'
                  ' by colons and commas, with syntax like'
                  ' 2000[:2001][,2003,2005:2008,etc].'
                  ' Defaults to 40001:40840.'))

        self.emr_opt_group.add_option(
            '--ssh-tunnel-is-closed', dest='ssh_tunnel_is_open',
            default=None, action='store_false',
            help='Make ssh tunnel accessible from localhost only')

        self.emr_opt_group.add_option(
            '--ssh-tunnel-is-open', dest='ssh_tunnel_is_open',
            default=None, action='store_true',
            help=('Make ssh tunnel accessible from remote hosts (not just'
                  ' localhost).'))

        self.emr_opt_group.add_option(
            '--ssh-tunnel-to-job-tracker', dest='ssh_tunnel_to_job_tracker',
            default=None, action='store_true',
            help='Open up an SSH tunnel to the Hadoop job tracker')

    def all_option_groups(self):
        return (self.option_parser, self.mux_opt_group,
                self.proto_opt_group, self.runner_opt_group,
                self.hadoop_emr_opt_group, self.emr_opt_group,
                self.hadoop_opts_opt_group)

    def add_passthrough_option(self, *args, **kwargs):
        """Function to create options which both the job runner
        and the job itself respect (we use this for protocols, for example).

        Use it like you would use :py:func:`optparse.OptionParser.add_option`::

            def configure_options(self):
                super(MRYourJob, self).configure_options()
                self.add_passthrough_option(
                    '--max-ngram-size', type='int', default=4, help='...')

        Specify an *opt_group* keyword argument to add the option to that
        :py:class:`OptionGroup` rather than the top-level
        :py:class:`OptionParser`.

        If you want to pass files through to the mapper/reducer, use
        :py:meth:`add_file_option` instead.
        """
        if 'opt_group' in kwargs:
            pass_opt = kwargs.pop('opt_group').add_option(*args, **kwargs)
        else:
            pass_opt = self.option_parser.add_option(*args, **kwargs)

        self._passthrough_options.append(pass_opt)

    def add_file_option(self, *args, **kwargs):
        """Add a command-line option that sends an external file
        (e.g. a SQLite DB) to Hadoop::

             def configure_options(self):
                super(MRYourJob, self).configure_options()
                self.add_file_option('--scoring-db', help=...)

        This does the right thing: the file will be uploaded to the working
        dir of the script on Hadoop, and the script will be passed the same
        option, but with the local name of the file in the script's working
        directory.

        We suggest against sending Berkeley DBs to your job, as
        Berkeley DB is not forwards-compatible (so a Berkeley DB that you
        construct on your computer may not be readable from within
        Hadoop). Use SQLite databases instead. If all you need is an on-disk
        hash table, try out the :py:mod:`sqlite3dbm` module.
        """
        pass_opt = self.option_parser.add_option(*args, **kwargs)

        if not pass_opt.type == 'string':
            raise OptionError(
                'passthrough file options must take strings' % pass_opt.type)

        if not pass_opt.action in ('store', 'append'):
            raise OptionError("passthrough file options must use the options"
                              " 'store' or 'append'")

        self._file_options.append(pass_opt)

    def load_options(self, args):
        """Load command-line options into ``self.options``.

        Called from :py:meth:`__init__()` after :py:meth:`configure_options`.

        :type args: list of str
        :param args: a list of command line arguments. ``None`` will be
                     treated the same as ``[]``.

        Re-define if you want to post-process command-line arguments::

            def load_options(self, args):
                super(MRYourJob, self).load_options(args)

                self.stop_words = self.options.stop_words.split(',')
                ...
        """
        self.options, self.args = self.option_parser.parse_args(args)

        # parse custom options here to avoid setting a custom Option subclass
        # and confusing users

        if self.options.ssh_bind_ports:
            try:
                ports = parse_port_range_list(self.options.ssh_bind_ports)
            except ValueError, e:
                self.option_parser.error('invalid port range list "%s": \n%s' %
                                         (self.options.ssh_bind_ports,
                                          e.args[0]))
            self.options.ssh_bind_ports = ports

        cmdenv_err = 'cmdenv argument "%s" is not of the form KEY=VALUE'
        self.options.cmdenv = parse_key_value_list(self.options.cmdenv,
                                                   cmdenv_err,
                                                   self.option_parser.error)

        jobconf_err = 'jobconf argument "%s" is not of the form KEY=VALUE'
        self.options.jobconf = parse_key_value_list(self.options.jobconf,
                                                    jobconf_err,
                                                    self.option_parser.error)

        def parse_commas(cleanup_str):
            cleanup_error = ('cleanup option %s is not one of '
                             + ', '.join(CLEANUP_CHOICES))
            new_cleanup_options = []
            for choice in cleanup_str.split(','):
                if choice in CLEANUP_CHOICES:
                    new_cleanup_options.append(choice)
                else:
                    self.option_parser.error(cleanup_error % choice)
            if ('NONE' in new_cleanup_options and
                len(set(new_cleanup_options)) > 1):
                self.option_parser.error(
                    'Cannot clean up both nothing and something!')
            return new_cleanup_options

        if self.options.cleanup is not None:
            self.options.cleanup = parse_commas(self.options.cleanup)
        if self.options.cleanup_on_failure is not None:
            self.options.cleanup_on_failure = parse_commas(
                self.options.cleanup_on_failure)

        # DEPRECATED protocol stuff

        ignore_switches = (
            self.INPUT_PROTOCOL != RawValueProtocol or
            self.INTERNAL_PROTOCOL != JSONProtocol or
            self.OUTPUT_PROTOCOL != JSONProtocol or
            any(
                (getattr(self, func_name).im_func is not
                 getattr(MRJob, func_name).im_func)
                for func_name in (
                    'input_protocol',
                    'internal_protocol',
                    'output_protocol',
                )
            )
        )

        warn_deprecated = False

        if self.options.protocol is None:
            self.options.protocol = self.DEFAULT_PROTOCOL
            if self.DEFAULT_PROTOCOL != 'json':
                warn_deprecated = True
        else:
            warn_deprecated = True

        if self.options.input_protocol is None:
            self.options.input_protocol = self.DEFAULT_INPUT_PROTOCOL
            if self.DEFAULT_INPUT_PROTOCOL != 'raw_value':
                warn_deprecated = True
        else:
            warn_deprecated = True

        # output_protocol defaults to protocol
        if self.options.output_protocol is None:
            self.options.output_protocol = self.options.protocol
        else:
            warn_deprecated = True

        if warn_deprecated:
            if ignore_switches:
                log.warn('You have specified custom behavior in both'
                         ' deprecated and non-deprecated ways.'
                         ' The custom non-deprecated behavior will override'
                         ' the deprecated behavior in all cases, including'
                         ' command line switches.')
                self.options.input_protocol = None
                self.options.protocol = None
                self.options.output_protocol = None
            else:
                log.warn('Setting protocols via --input-protocol, --protocol,'
                         ' --output-protocol, DEFAULT_INPUT_PROTOCOL,'
                         ' DEFAULT_PROTOCOL, and DEFAULT_OUTPUT_PROTOCOL is'
                         ' deprecated as of mrjob 0.3 and will no longer be'
                         ' supported in mrjob 0.4.')

    def is_mapper_or_reducer(self):
        """True if this is a mapper/reducer.

        This is mostly useful inside :py:meth:`load_options`, to disable
        loading options when we aren't running inside Hadoop Streaming.
        """
        return self.options.run_mapper \
                or self.options.run_combiner \
                or self.options.run_reducer

    def job_runner_kwargs(self):
        """Keyword arguments used to create runners when
        :py:meth:`make_runner` is called.

        :return: map from arg name to value

        Re-define this if you want finer control of runner initialization.

        You might find :py:meth:`mrjob.conf.combine_dicts` useful if you
        want to add or change lots of keyword arguments.
        """
        return {
            'bootstrap_mrjob': self.options.bootstrap_mrjob,
            'cleanup': self.options.cleanup,
            'cleanup_on_failure': self.options.cleanup_on_failure,
            'cmdenv': self.options.cmdenv,
            'conf_path': self.options.conf_path,
            'extra_args': self.generate_passthrough_arguments(),
            'file_upload_args': self.generate_file_upload_args(),
            'hadoop_extra_args': self.options.hadoop_extra_args,
            'hadoop_input_format': self.hadoop_input_format(),
            'hadoop_output_format': self.hadoop_output_format(),
            'hadoop_streaming_jar': self.options.hadoop_streaming_jar,
            'hadoop_version': self.options.hadoop_version,
            'input_paths': self.args,
            'jobconf': self.jobconf(),
            'mr_job_script': self.mr_job_script(),
            'label': self.options.label,
            'output_dir': self.options.output_dir,
            'owner': self.options.owner,
            'partitioner': self.partitioner(),
            'python_archives': self.options.python_archives,
            'python_bin': self.options.python_bin,
            'setup_cmds': self.options.setup_cmds,
            'setup_scripts': self.options.setup_scripts,
            'stdin': self.stdin,
            'steps_python_bin': self.options.steps_python_bin,
            'upload_archives': self.options.upload_archives,
            'upload_files': self.options.upload_files,
        }

    def inline_job_runner_kwargs(self):
        """Keyword arguments to create create runners when
        :py:meth:`make_runner` is called, when we run a job locally
        (``-r inline``).

        :return: map from arg name to value

        Re-define this if you want finer control when running jobs locally.
        """
        return self.job_runner_kwargs()

    def local_job_runner_kwargs(self):
        """Keyword arguments to create create runners when
        :py:meth:`make_runner` is called, when we run a job locally
        (``-r local``).

        :return: map from arg name to value

        Re-define this if you want finer control when running jobs locally.
        """
        return self.job_runner_kwargs()

    def emr_job_runner_kwargs(self):
        """Keyword arguments to create create runners when
        :py:meth:`make_runner` is called, when we run a job on EMR
        (``-r emr``).

        :return: map from arg name to value

        Re-define this if you want finer control when running jobs on EMR.
        """
        return combine_dicts(
            self.job_runner_kwargs(),
            self._get_kwargs_from_opt_group(self.emr_opt_group))

    def hadoop_job_runner_kwargs(self):
        """Keyword arguments to create create runners when
        :py:meth:`make_runner` is called, when we run a job on EMR
        (``-r hadoop``).

        :return: map from arg name to value

        Re-define this if you want finer control when running jobs on hadoop.
        """
        return combine_dicts(
            self.job_runner_kwargs(),
            self._get_kwargs_from_opt_group(self.hadoop_opt_group))

    def _get_kwargs_from_opt_group(self, opt_group):
        """Helper function that returns a dictionary of the values of options
        in the given options group (this works because the options and the
        keyword args we want to set have identical names).
        """
        keys = set(opt.dest for opt in opt_group.option_list)
        return dict((key, getattr(self.options, key)) for key in keys)

    def generate_passthrough_arguments(self):
        """Returns a list of arguments to pass to subprocesses, either on
        hadoop or executed via subprocess.

        These are passed to :py:meth:`mrjob.runner.MRJobRunner.__init__`
        as *extra_args*.
        """
        arg_map = parse_and_save_options(self.option_parser, self._cl_args)
        output_args = []

        passthrough_dests = sorted(set(option.dest for option \
                                       in self._passthrough_options))
        for option_dest in passthrough_dests:
            output_args.extend(arg_map.get(option_dest, []))

        return output_args

    def generate_file_upload_args(self):
        """Figure out file upload args to pass through to the job runner.

        Instead of generating a list of args, we're generating a list
        of tuples of ``('--argname', path)``

        These are passed to :py:meth:`mrjob.runner.MRJobRunner.__init__`
        as ``file_upload_args``.
        """
        file_upload_args = []

        master_option_dict = self.options.__dict__

        for opt in self._file_options:
            opt_prefix = opt.get_opt_string()
            opt_value = master_option_dict[opt.dest]

            if opt_value:
                paths = opt_value if opt.action == 'append' else [opt_value]
                for path in paths:
                    file_upload_args.append((opt_prefix, path))

        return file_upload_args

    ### protocols ###

    def input_protocol(self):
        """Instance of the protocol to use to convert input lines to Python
        objects. Default behavior is to return an instance of
        :py:attr:`INPUT_PROTOCOL`.
        """
        if (self.options.input_protocol is not None and
            self.INPUT_PROTOCOL == RawValueProtocol):
            # deprecated
            protocol_name = self.options.input_protocol
            return self.protocols()[protocol_name]()
        else:
            # non-deprecated
            return self.INPUT_PROTOCOL()

    def internal_protocol(self):
        """Instance of the protocol to use to communicate between steps.
        Default behavior is to return an instance of
        :py:attr:`INTERNAL_PROTOCOL`.
        """
        if (self.options.protocol is not None and
            self.INTERNAL_PROTOCOL == JSONProtocol):
            # deprecated
            protocol_name = self.options.protocol
            return self.protocols()[protocol_name]
        else:
            # non-deprecated
            return self.INTERNAL_PROTOCOL()

    def output_protocol(self):
        """Instance of the protocol to use to convert Python objects to output
        lines. Default behavior is to return an instance of
        :py:attr:`OUTPUT_PROTOCOL`.
        """
        if (self.options.output_protocol is not None and
            self.OUTPUT_PROTOCOL == JSONProtocol):
            # deprecated
            return self.protocols()[self.options.output_protocol]
        else:
            # non-deprecated
            return self.OUTPUT_PROTOCOL()

    @classmethod
    def protocols(cls):
        """Deprecated in favor of :py:attr:`INPUT_PROTOCOL`,
        :py:attr:`OUTPUT_PROTOCOL`, and :py:attr:`INTERNAL_PROTOCOL`.

        Mapping from protocol name to the protocol class to use
        for parsing job input and writing job output. We give protocols names
        so that we can easily choose them from the command line.

        This returns :py:data:`mrjob.protocol.PROTOCOL_DICT` by default.

        To add a custom protocol, define a subclass of
        :py:class:`mrjob.protocol.HadoopStreamingProtocol`, and
        re-define this method::

            @classmethod
            def protocols(cls):
                protocol_dict = super(MRYourJob, cls).protocols()
                protocol_dict['rot13'] = Rot13Protocol
                return protocol_dict

            DEFAULT_PROTOCOL = 'rot13'
        """
        return PROTOCOL_DICT.copy()  # copy to stop monkey-patching

    #: Protocol for reading input to the first mapper in your job.
    #: Default: :py:class:`RawValueProtocol`.
    #:
    #: For example you know your input data were in JSON format, you could
    #: set::
    #:
    #:     INPUT_PROTOCOL = JsonValueProtocol
    #:
    #: in your class, and your initial mapper would receive decoded JSONs
    #: rather than strings.
    #:
    #: See :py:data:`mrjob.protocol` for the full list of protocols.
    INPUT_PROTOCOL = RawValueProtocol

    #: Protocol for communication between steps and final output.
    #: Default: :py:class:`JSONProtocol`.
    #:
    #: For example if your step output weren't JSON-encodable, you could set::
    #:
    #:     INTERNAL_PROTOCOL = PickleProtocol
    #:
    #: and step output would be encoded as string-escaped pickles.
    #:
    #: See :py:data:`mrjob.protocol` for the full list of protocols.
    INTERNAL_PROTOCOL = JSONProtocol

    #: Protocol to use for writing output. Default: :py:class:`JSONProtocol`.
    #:
    #: For example, if you wanted the final output in repr, you could set::
    #:
    #:     OUTPUT_PROTOCOL = ReprProtocol
    #:
    #: See :py:data:`mrjob.protocol` for the full list of protocols.
    OUTPUT_PROTOCOL = JSONProtocol

    #: .. deprecated:: 0.3.0
    #:
    #: Default protocol for reading input to the first mapper in your job
    #: specified by a string.
    #:
    #: Overridden by any changes to :py:attr:`.INPUT_PROTOCOL`.
    #:
    #: See :py:data:`mrjob.protocol.PROTOCOL_DICT` for the full list of
    #: protocol strings. Can be overridden by :option:`--input-protocol`.
    DEFAULT_INPUT_PROTOCOL = 'raw_value'

    #: .. deprecated:: 0.3.0
    #:
    #: Default protocol for communication between steps and final output
    #: specified by a string.
    #:
    #: Overridden by any changes to :py:attr:`.INTERNAL_PROTOCOL`.
    #:
    #: See :py:data:`mrjob.protocol.PROTOCOL_DICT` for the full list of
    #: protocol strings. Can be overridden by :option:`--protocol`.
    DEFAULT_PROTOCOL = DEFAULT_PROTOCOL  # i.e. the one from mrjob.protocols

    #: .. deprecated:: 0.3.0
    #:
    #: Overridden by any changes to :py:attr:`.OUTPUT_PROTOCOL`. If
    #: :py:attr:`.OUTPUT_PROTOCOL` is not set, defaults to
    #: :py:attr:`.DEFAULT_PROTOCOL`.
    #:
    #: See :py:data:`mrjob.protocol.PROTOCOL_DICT` for the full list of
    #: protocol strings. Can be overridden by the :option:`--output-protocol`.
    DEFAULT_OUTPUT_PROTOCOL = None

    def parse_output_line(self, line):
        """
        Parse a line from the final output of this MRJob into
        ``(key, value)``. Used extensively in tests like this::

            runner.run()
            for line in runner.stream_output():
                key, value = mr_job.parse_output_line(line)
        """
        return self.output_protocol().read(line)

    ### Hadoop Input/Output Formats ###

    #: Optional name of an optional Hadoop ``InputFormat`` class, e.g.
    #: ``'org.apache.hadoop.mapred.lib.NLineInputFormat'``.
    #:
    #: Passed to Hadoop with the *first* step of this job with the
    #: ``-inputformat`` option.
    HADOOP_INPUT_FORMAT = None

    def hadoop_input_format(self):
        """Optional Hadoop ``InputFormat`` class to parse input for
        the first step of the job.

        Normally, setting :py:attr:`HADOOP_INPUT_FORMAT` is sufficient;
        redefining this method is only for when you want to get fancy.
        """
        if self.options.hadoop_input_format:
            log.warn('--hadoop-input-format is deprecated as of mrjob 0.3 and'
                     ' will no longer be supported in mrjob 0.4. Redefine'
                     ' HADOOP_INPUT_FORMAT or hadoop_input_format() instead.')
            return self.options.hadoop_input_format
        else:
            return self.HADOOP_INPUT_FORMAT

    #: Optional name of an optional Hadoop ``OutputFormat`` class, e.g.
    #: ``'org.apache.hadoop.mapred.FileOutputFormat'``.
    #:
    #: Passed to Hadoop with the *last* step of this job with the
    #: ``-outputformat`` option.
    HADOOP_OUTPUT_FORMAT = None

    def hadoop_output_format(self):
        """Optional Hadoop ``OutputFormat`` class to write output for
        the last step of the job.

        Normally, setting :py:attr:`HADOOP_OUTPUT_FORMAT` is sufficient;
        redefining this method is only for when you want to get fancy.
        """
        if self.options.hadoop_output_format:
            log.warn('--hadoop-output-format is deprecated as of mrjob 0.3 and'
                     ' will no longer be supported in mrjob 0.4. Redefine '
                     ' HADOOP_OUTPUT_FORMAT or hadoop_output_format() instead.'
                     )
            return self.options.hadoop_output_format
        else:
            return self.HADOOP_OUTPUT_FORMAT

    ### Partitioning ###

    #: Optional Hadoop partitioner class to use to determine how mapper
    #: output should be sorted and distributed to reducers. For example:
    #: ``'org.apache.hadoop.mapred.lib.HashPartitioner'``.
    PARTITIONER = None

    def partitioner(self):
        """Optional Hadoop partitioner class to use to determine how mapper
        output should be sorted and distributed to reducers.

        By default, returns whatever is passed to :option:`--partitioner`,
        of if that option isn't used, :py:attr:`PARTITIONER`.

        You probably don't need to re-define this; it's just here for
        completeness.
        """
        return self.options.partitioner or self.PARTITIONER

    ### Jobconf ###

    #: Optional jobconf arguments we should always pass to Hadoop. This
    #: is a map from property name to value. e.g.:
    #:
    #: ``{'stream.num.map.output.key.fields': '4'}``
    #:
    #: It's recommended that you only use this to hard-code things that
    #: affect the semantics of your job, and leave performance tweaks to
    #: the command line or whatever you use to launch your job.
    JOBCONF = {}

    def jobconf(self):
        """``-jobconf`` args to pass to hadoop streaming. This should be a map
        from property name to value.

        By default, this combines :option:`jobconf` options from the command
        lines with :py:attr:`JOBCONF`, with command line arguments taking
        precedence.

        If you want to re-define this, it's strongly recommended that do
        something like this, so as not to inadvertently disable
        :option:`jobconf`::

            def jobconf(self):
                orig_jobconf = super(MyMRJobClass, self).jobconf()
                custom_jobconf = ...

                return mrjob.conf.combine_dicts(orig_jobconf, custom_jobconf)
        """
        return combine_dicts(self.JOBCONF, self.options.jobconf)

    ### Testing ###

    def sandbox(self, stdin=None, stdout=None, stderr=None):
        """Redirect stdin, stdout, and stderr for automated testing.

        You can set stdin, stdout, and stderr to file objects. By
        default, they'll be set to empty ``StringIO`` objects.
        You can then access the job's file handles through ``self.stdin``,
        ``self.stdout``, and ``self.stderr``. See :ref:`testing` for more
        information about testing.

        You may call sandbox multiple times (this will essentially clear
        the file handles).

        ``stdin`` is empty by default. You can set it to anything that yields
        lines::

            mr_job.sandbox(stdin=StringIO('some_data\\n'))

        or, equivalently::

            mr_job.sandbox(stdin=['some_data\\n'])

        For convenience, this sandbox() returns self, so you can do::

            mr_job = MRJobClassToTest().sandbox()

        Simple testing example::

            mr_job = MRYourJob.sandbox()
            assert_equal(list(mr_job.reducer('foo', ['bar', 'baz'])), [...])

        More complex testing example::

            from StringIO import StringIO

            mr_job = MRYourJob(args=[...])

            fake_input = '"foo"\\t"bar"\\n"foo"\\t"baz"\\n'
            mr_job.sandbox(stdin=StringIO(fake_input))

            mr_job.run_reducer(link_num=0)
            assert_equal(mr_job.parse_output(), ...)
            assert_equal(mr_job.parse_counters(), ...)
        """
        self.stdin = stdin or StringIO()
        self.stdout = stdout or StringIO()
        self.stderr = stderr or StringIO()

        return self

    def parse_counters(self, counters=None):
        """Convenience method for reading counters. This only works
        in sandbox mode. This does not clear ``self.stderr``.

        :return: a map from counter group to counter name to amount.

        To read everything from ``self.stderr`` (including status messages)
        use :py:meth:`mrjob.parse.parse_mr_job_stderr`.

        When writing unit tests, you may find :py:meth:`MRJobRunner.counters()
        <mrjob.runner.MRJobRunner.counters()>` more useful.
        """
        if self.stderr == sys.stderr:
            raise AssertionError('You must call sandbox() first;'
                                 ' parse_counters() is for testing only.')

        stderr_results = parse_mr_job_stderr(self.stderr.getvalue(), counters)
        return stderr_results['counters']

    def parse_output(self, protocol=None):
        """Convenience method for parsing output from any mapper or reducer,
        all at once.

        This helps you test individual mappers and reducers by calling
        run_mapper() or run_reducer(). For example::

            mr_job.sandbox(stdin=your_input)
            mr_job.run_mapper(step_num=0)
            output = mrjob.parse_output()

        :type protocol: str
        :param protocol: A protocol instance to use (e.g. JSONProtocol()),
                         Also accepts protocol names (e.g. ``'json'``), but
                         this is deprecated.

        This only works in sandbox mode. This does not clear ``self.stdout``.
        """
        if self.stdout == sys.stdout:
            raise AssertionError('You must call sandbox() first;'
                                 ' parse_output() is for testing only.')

        if protocol is None:
            protocol = JSONProtocol()
        elif isinstance(protocol, basestring):
            protocol = self.protocols()[protocol]

        lines = StringIO(self.stdout.getvalue())
        return [protocol.read(line) for line in lines]


if __name__ == '__main__':
    MRJob.run()