/usr/share/pyshared/mvpa/clfs/lars.py is in python-mvpa 0.4.8-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Least angle regression (LARS) classifier."""
__docformat__ = 'restructuredtext'
# system imports
import numpy as N
import mvpa.base.externals as externals
# do conditional to be able to build module reference
if externals.exists('rpy', raiseException=True) and \
externals.exists('lars', raiseException=True):
import rpy
rpy.r.library('lars')
# local imports
from mvpa.clfs.base import Classifier, FailedToTrainError
from mvpa.measures.base import Sensitivity
from mvpa.base import warning
if __debug__:
from mvpa.base import debug
known_models = ('lasso', 'stepwise', 'lar', 'forward.stagewise')
class LARS(Classifier):
"""Least angle regression (LARS) `Classifier`.
LARS is the model selection algorithm from:
Bradley Efron, Trevor Hastie, Iain Johnstone and Robert
Tibshirani, Least Angle Regression Annals of Statistics (with
discussion) (2004) 32(2), 407-499. A new method for variable
subset selection, with the lasso and 'epsilon' forward stagewise
methods as special cases.
Similar to SMLR, it performs a feature selection while performing
classification, but instead of starting with all features, it
starts with none and adds them in, which is similar to boosting.
This classifier behaves more like a ridge regression in that it
returns prediction values and it treats the training labels as
continuous.
In the true nature of the PyMVPA framework, this algorithm is
actually implemented in R by Trevor Hastie and wrapped via RPy.
To make use of LARS, you must have R and RPy installed as well as
the LARS contributed package. You can install the R and RPy with
the following command on Debian-based machines:
sudo aptitude install python-rpy python-rpy-doc r-base-dev
You can then install the LARS package by running R as root and
calling:
install.packages()
"""
# XXX from yoh: it is linear, isn't it?
_clf_internals = [ 'lars', 'regression', 'linear', 'has_sensitivity',
'does_feature_selection',
]
def __init__(self, model_type="lasso", trace=False, normalize=True,
intercept=True, max_steps=None, use_Gram=False, **kwargs):
"""
Initialize LARS.
See the help in R for further details on the following parameters:
:Parameters:
model_type : string
Type of LARS to run. Can be one of ('lasso', 'lar',
'forward.stagewise', 'stepwise').
trace : boolean
Whether to print progress in R as it works.
normalize : boolean
Whether to normalize the L2 Norm.
intercept : boolean
Whether to add a non-penalized intercept to the model.
max_steps : None or int
If not None, specify the total number of iterations to run. Each
iteration adds a feature, but leaving it none will add until
convergence.
use_Gram : boolean
Whether to compute the Gram matrix (this should be false if you
have more features than samples.)
"""
# init base class first
Classifier.__init__(self, **kwargs)
if not model_type in known_models:
raise ValueError('Unknown model %s for LARS is specified. Known' %
model_type + 'are %s' % `known_models`)
# set up the params
self.__type = model_type
self.__normalize = normalize
self.__intercept = intercept
self.__trace = trace
self.__max_steps = max_steps
self.__use_Gram = use_Gram
# pylint friendly initializations
self.__lowest_Cp_step = None
self.__weights = None
"""The beta weights for each feature."""
self.__trained_model = None
"""The model object after training that will be used for
predictions."""
# It does not make sense to calculate a confusion matrix for a
# regression
# YOH: we do have summary statistics for regressions
#self.states.enable('training_confusion', False)
def __repr__(self):
"""String summary of the object
"""
return "LARS(type='%s', normalize=%s, intercept=%s, trace=%s, " \
"max_steps=%s, use_Gram=%s, regression=%s, " \
"enable_states=%s)" % \
(self.__type,
self.__normalize,
self.__intercept,
self.__trace,
self.__max_steps,
self.__use_Gram,
self.regression,
str(self.states.enabled))
def _train(self, data):
"""Train the classifier using `data` (`Dataset`).
"""
if self.__max_steps is None:
# train without specifying max_steps
trained_model = rpy.r.lars(data.samples,
data.labels[:,N.newaxis],
type=self.__type,
normalize=self.__normalize,
intercept=self.__intercept,
trace=self.__trace,
use_Gram=self.__use_Gram)
else:
# train with specifying max_steps
trained_model = rpy.r.lars(data.samples,
data.labels[:,N.newaxis],
type=self.__type,
normalize=self.__normalize,
intercept=self.__intercept,
trace=self.__trace,
use_Gram=self.__use_Gram,
max_steps=self.__max_steps)
# find the step with the lowest Cp (risk)
# it is often the last step if you set a max_steps
# must first convert dictionary to array
try:
Cp = trained_model['Cp']
if '0' in Cp:
# If there was any
Cp_vals = N.asarray([Cp[str(x)] for x in range(len(Cp))])
else:
Cp_vals = None
except TypeError, e:
raise FailedToTrainError, \
"Failed to train %s on %s. Got '%s' while trying to access " \
"trained model %s" % (self, data, e, trained_model)
if Cp_vals is None:
# if there were no any -- just choose 0th
lowest_Cp_step = 0
elif N.isnan(Cp_vals[0]):
# sometimes may come back nan, so just pick the last one
lowest_Cp_step = len(Cp_vals)-1
else:
# determine the lowest
lowest_Cp_step = Cp_vals.argmin()
self.__lowest_Cp_step = lowest_Cp_step
# set the weights to the lowest Cp step
self.__weights = trained_model['beta'][lowest_Cp_step, :]
self.__trained_model = trained_model # bind to an instance
# # set the weights to the final state
# self.__weights = self.__trained_model['beta'][-1,:]
def _predict(self, data):
"""
Predict the output for the provided data.
"""
# predict with the final state (i.e., the last step)
# predict with the lowest Cp step
try:
res = rpy.r.predict_lars(self.__trained_model,
data,
mode='step',
s=self.__lowest_Cp_step)
#s=self.__trained_model['beta'].shape[0])
fit = N.atleast_1d(res['fit'])
except rpy.RPyRException, e:
warning("Failed to obtain predictions using %s on %s."
"Re-raising exception." % (self, data))
raise
self.values = fit
return fit
def _getFeatureIds(self):
"""Return ids of the used features
"""
return N.where(N.abs(self.__weights)>0)[0]
def getSensitivityAnalyzer(self, **kwargs):
"""Returns a sensitivity analyzer for LARS."""
return LARSWeights(self, **kwargs)
weights = property(lambda self: self.__weights)
class LARSWeights(Sensitivity):
"""`SensitivityAnalyzer` that reports the weights LARS trained
on a given `Dataset`.
"""
_LEGAL_CLFS = [ LARS ]
def _call(self, dataset=None):
"""Extract weights from LARS classifier.
LARS always has weights available, so nothing has to be computed here.
"""
clf = self.clf
weights = clf.weights
if __debug__:
debug('LARS',
"Extracting weights for LARS - "+
"Result: min=%f max=%f" %\
(N.min(weights), N.max(weights)))
return weights
|