/usr/share/pyshared/mvpa/datasets/splitters.py is in python-mvpa 0.4.8-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Collection of dataset splitters.
Module Description
==================
Splitters are destined to split the provided dataset varous ways to
simplify cross-validation analysis, implement boosting of the
estimates, or sample null-space via permutation testing.
Most of the splitters at the moment split 2-ways -- conventionally
first part is used for training, and 2nd part for testing by
`CrossValidatedTransferError` and `SplitClassifier`.
Brief Description of Available Splitters
========================================
* `NoneSplitter` - just return full dataset as the desired part (training/testing)
* `OddEvenSplitter` - 2 splits: (odd samples,even samples) and (even, odd)
* `HalfSplitter` - 2 splits: (first half, second half) and (second, first)
* `NFoldSplitter` - splits for N-Fold cross validation.
Module Organization
===================
.. packagetree::
:style: UML
"""
__docformat__ = 'restructuredtext'
import operator
import numpy as N
import mvpa.misc.support as support
from mvpa.base.dochelpers import enhancedDocString
from mvpa.datasets.miscfx import coarsenChunks
if __debug__:
from mvpa.base import debug
class Splitter(object):
"""Base class of dataset splitters.
Each splitter should be initialized with all its necessary parameters. The
final splitting is done running the splitter object on a certain Dataset
via __call__(). This method has to be implemented like a generator, i.e. it
has to return every possible split with a yield() call.
Each split has to be returned as a sequence of Datasets. The properties
of the splitted dataset may vary between implementations. It is possible
to declare a sequence element as 'None'.
Please note, that even if there is only one Dataset returned it has to be
an element in a sequence and not just the Dataset object!
"""
_STRATEGIES = ('first', 'random', 'equidistant')
_NPERLABEL_STR = ['equal', 'all']
def __init__(self,
nperlabel='all',
nrunspersplit=1,
permute=False,
count=None,
strategy='equidistant',
discard_boundary=None,
attr='chunks',
reverse=False):
"""Initialize splitter base.
:Parameters:
nperlabel : int or str (or list of them) or float
Number of dataset samples per label to be included in each
split. If given as a float, it must be in [0,1] range and would
mean the ratio of selected samples per each label.
Two special strings are recognized: 'all' uses all available
samples (default) and 'equal' uses the maximum number of samples
the can be provided by all of the classes. This value might be
provided as a sequence whos length matches the number of datasets
per split and indicates the configuration for the respective dataset
in each split.
nrunspersplit: int
Number of times samples for each split are chosen. This
is mostly useful if a subset of the available samples
is used in each split and the subset is randomly
selected for each run (see the `nperlabel` argument).
permute : bool
If set to `True`, the labels of each generated dataset
will be permuted on a per-chunk basis.
count : None or int
Desired number of splits to be output. It is limited by the
number of splits possible for a given splitter
(e.g. `OddEvenSplitter` can have only up to 2 splits). If None,
all splits are output (default).
strategy : str
If `count` is not None, possible strategies are possible:
first
First `count` splits are chosen
random
Random (without replacement) `count` splits are chosen
equidistant
Splits which are equidistant from each other
discard_boundary : None or int or sequence of int
If not `None`, how many samples on the boundaries between
parts of the split to discard in the training part.
If int, then discarded in all parts. If a sequence, numbers
to discard are given per part of the split.
E.g. if splitter splits only into (training, testing)
parts, then `discard_boundary`=(2,0) would instruct to discard
2 samples from training which are on the boundary with testing.
attr : str
Sample attribute used to determine splits.
reverse : bool
If True, the order of datasets in the split is reversed, e.g.
instead of (training, testing), (training, testing) will be spit
out
"""
# pylint happyness block
self.__nperlabel = None
self.__runspersplit = nrunspersplit
self.__permute = permute
self.__splitattr = attr
self._reverse = reverse
self.discard_boundary = discard_boundary
# we don't check it, thus no reason to make it private.
# someone might find it useful to change post creation
# TODO utilize such (or similar) policy through out the code
self.count = count
"""Number (max) of splits to output on call"""
self._setStrategy(strategy)
# pattern sampling status vars
self.setNPerLabel(nperlabel)
__doc__ = enhancedDocString('Splitter', locals())
def _setStrategy(self, strategy):
"""Set strategy to select splits out from available
"""
strategy = strategy.lower()
if not strategy in self._STRATEGIES:
raise ValueError, "strategy is not known. Known are %s" \
% str(self._STRATEGIES)
self.__strategy = strategy
def setNPerLabel(self, value):
"""Set the number of samples per label in the split datasets.
'equal' sets sample size to highest possible number of samples that
can be provided by each class. 'all' uses all available samples
(default).
"""
if isinstance(value, basestring):
if not value in self._NPERLABEL_STR:
raise ValueError, "Unsupported value '%s' for nperlabel." \
" Supported ones are %s or float or int" % (value, self._NPERLABEL_STR)
self.__nperlabel = value
def _getSplitConfig(self, uniqueattr):
"""Each subclass has to implement this method. It gets a sequence with
the unique attribte ids of a dataset and has to return a list of lists
containing attribute ids to split into the second dataset.
"""
raise NotImplementedError
def __call__(self, dataset):
"""Splits the dataset.
This method behaves like a generator.
"""
# local bindings to methods to gain some speedup
ds_class = dataset.__class__
DS_permuteLabels = ds_class.permuteLabels
try:
DS_getNSamplesPerLabel = ds_class._getNSamplesPerAttr
except AttributeError:
# Some "not-real" datasets e.g. MetaDataset, might not
# have it
pass
DS_getRandomSamples = ds_class.getRandomSamples
# for each split
cfgs = self.splitcfg(dataset)
# Select just some splits if desired
count, Ncfgs = self.count, len(cfgs)
# further makes sense only iff count < Ncfgs,
# otherwise all strategies are equivalent
if count is not None and count < Ncfgs:
if count < 1:
# we can only wish a good luck
return
strategy = self.strategy
if strategy == 'first':
cfgs = cfgs[:count]
elif strategy in ['equidistant', 'random']:
if strategy == 'equidistant':
# figure out what step is needed to
# acommodate the `count` number
step = float(Ncfgs) / count
assert(step >= 1.0)
indexes = [int(round(step * i)) for i in xrange(count)]
elif strategy == 'random':
indexes = N.random.permutation(range(Ncfgs))[:count]
# doesn't matter much but lets keep them in the original
# order at least
indexes.sort()
else:
# who said that I am paranoid?
raise RuntimeError, "Really should not happen"
if __debug__:
debug("SPL", "For %s strategy selected %s splits "
"from %d total" % (strategy, indexes, Ncfgs))
cfgs = [cfgs[i] for i in indexes]
# update Ncfgs
Ncfgs = len(cfgs)
# Finally split the data
for isplit, split in enumerate(cfgs):
# determine sample sizes
if not operator.isSequenceType(self.__nperlabel) \
or isinstance(self.__nperlabel, str):
nperlabelsplit = [self.__nperlabel] * len(split)
else:
nperlabelsplit = self.__nperlabel
# get splitted datasets
split_ds = self.splitDataset(dataset, split)
# do multiple post-processing runs for this split
for run in xrange(self.__runspersplit):
# post-process all datasets
finalized_datasets = []
for ds, nperlabel in zip(split_ds, nperlabelsplit):
# Set flag of dataset either this was the last split
# ??? per our discussion this might be the best
# solution which would scale if we care about
# thread-safety etc
if ds is not None:
ds._dsattr['lastsplit'] = (isplit == Ncfgs-1)
# permute the labels
if self.__permute:
DS_permuteLabels(ds, True, perchunk=True)
# select subset of samples if requested
if nperlabel == 'all' or ds is None:
finalized_datasets.append(ds)
else:
# We need to select a subset of samples
# TODO: move all this logic within getRandomSamples
# go for maximum possible number of samples provided
# by each label in this dataset
if nperlabel == 'equal':
# determine the min number of samples per class
npl = N.array(DS_getNSamplesPerLabel(
ds, attrib='labels').values()).min()
elif isinstance(nperlabel, float) or (
operator.isSequenceType(nperlabel) and
len(nperlabel) > 0 and
isinstance(nperlabel[0], float)):
# determine number of samples per class and take
# a ratio
counts = N.array(DS_getNSamplesPerLabel(
ds, attrib='labels').values())
npl = (counts * nperlabel).round().astype(int)
else:
npl = nperlabel
# finally select the patterns
finalized_datasets.append(
DS_getRandomSamples(ds, npl))
if self._reverse:
yield finalized_datasets[::-1]
else:
yield finalized_datasets
def splitDataset(self, dataset, specs):
"""Split a dataset by separating the samples where the configured
sample attribute matches an element of `specs`.
:Parameters:
dataset : Dataset
This is this source dataset.
specs : sequence of sequences
Contains ids of a sample attribute that shall be split into the
another dataset.
:Returns: Tuple of splitted datasets.
"""
# collect the sample ids for each resulting dataset
filters = []
none_specs = 0
cum_filter = None
# Prepare discard_boundary
discard_boundary = self.discard_boundary
if isinstance(discard_boundary, int):
if discard_boundary != 0:
discard_boundary = (discard_boundary,) * len(specs)
else:
discard_boundary = None
splitattr_data = eval('dataset.' + self.__splitattr)
for spec in specs:
if spec is None:
filters.append(None)
none_specs += 1
else:
filter_ = N.array([ i in spec \
for i in splitattr_data])
filters.append(filter_)
if cum_filter is None:
cum_filter = filter_
else:
cum_filter = N.logical_and(cum_filter, filter_)
# need to turn possible Nones into proper ids sequences
if none_specs > 1:
raise ValueError, "Splitter cannot handle more than one `None` " \
"split definition."
for i, filter_ in enumerate(filters):
if filter_ is None:
filters[i] = N.logical_not(cum_filter)
# If it was told to discard samples on the boundary to the
# other parts of the split
if discard_boundary is not None:
ndiscard = discard_boundary[i]
if ndiscard != 0:
# XXX sloppy implementation for now. It still
# should not be the main reason for a slow-down of
# the whole analysis ;)
f, lenf = filters[i], len(filters[i])
f_pad = N.concatenate(([True]*ndiscard, f, [True]*ndiscard))
for d in xrange(2*ndiscard+1):
f = N.logical_and(f, f_pad[d:d+lenf])
filters[i] = f[:]
# split data: return None if no samples are left
# XXX: Maybe it should simply return an empty dataset instead, but
# keeping it this way for now, to maintain current behavior
split_datasets = []
# local bindings
dataset_selectSamples = dataset.selectSamples
for filter_ in filters:
if (filter_ == False).all():
split_datasets.append(None)
else:
split_datasets.append(dataset_selectSamples(filter_))
return split_datasets
def __str__(self):
"""String summary over the object
"""
return \
"SplitterConfig: nperlabel:%s runs-per-split:%d permute:%s" \
% (self.__nperlabel, self.__runspersplit, self.__permute)
def splitcfg(self, dataset):
"""Return splitcfg for a given dataset"""
return self._getSplitConfig(eval('dataset.unique' + self.__splitattr))
strategy = property(fget=lambda self:self.__strategy,
fset=_setStrategy)
class NoneSplitter(Splitter):
"""This is a dataset splitter that does **not** split. It simply returns
the full dataset that it is called with.
The passed dataset is returned as the second element of the 2-tuple.
The first element of that tuple will always be 'None'.
"""
_known_modes = ['first', 'second']
def __init__(self, mode='second', **kwargs):
"""Cheap init -- nothing special
:Parameters:
mode
Either 'first' or 'second' (default) -- which output dataset
would actually contain the samples
"""
Splitter.__init__(self, **(kwargs))
if not mode in NoneSplitter._known_modes:
raise ValueError, "Unknown mode %s for NoneSplitter" % mode
self.__mode = mode
__doc__ = enhancedDocString('NoneSplitter', locals(), Splitter)
def _getSplitConfig(self, uniqueattrs):
"""Return just one full split: no first or second dataset.
"""
if self.__mode == 'second':
return [([], None)]
else:
return [(None, [])]
def __str__(self):
"""String summary over the object
"""
return \
"NoneSplitter / " + Splitter.__str__(self)
class OddEvenSplitter(Splitter):
"""Split a dataset into odd and even values of the sample attribute.
The splitter yields to splits: first (odd, even) and second (even, odd).
"""
def __init__(self, usevalues=False, **kwargs):
"""Cheap init.
:Parameters:
usevalues: bool
If True the values of the attribute used for splitting will be
used to determine odd and even samples. If False odd and even
chunks are defined by the order of attribute values, i.e. first
unique attribute is odd, second is even, despite the
corresponding values might indicate the opposite (e.g. in case
of [2,3].
"""
Splitter.__init__(self, **(kwargs))
self.__usevalues = usevalues
__doc__ = enhancedDocString('OddEvenSplitter', locals(), Splitter)
def _getSplitConfig(self, uniqueattrs):
"""Huka chaka!
YOH: LOL XXX
"""
if self.__usevalues:
return [(None, uniqueattrs[(uniqueattrs % 2) == True]),
(None, uniqueattrs[(uniqueattrs % 2) == False])]
else:
return [(None, uniqueattrs[N.arange(len(uniqueattrs)) %2 == True]),
(None, uniqueattrs[N.arange(len(uniqueattrs)) %2 == False])]
def __str__(self):
"""String summary over the object
"""
return \
"OddEvenSplitter / " + Splitter.__str__(self)
class HalfSplitter(Splitter):
"""Split a dataset into two halves of the sample attribute.
The splitter yields to splits: first (1st half, 2nd half) and second
(2nd half, 1st half).
"""
def __init__(self, **kwargs):
"""Cheap init.
"""
Splitter.__init__(self, **(kwargs))
__doc__ = enhancedDocString('HalfSplitter', locals(), Splitter)
def _getSplitConfig(self, uniqueattrs):
"""Huka chaka!
"""
return [(None, uniqueattrs[:len(uniqueattrs)/2]),
(None, uniqueattrs[len(uniqueattrs)/2:])]
def __str__(self):
"""String summary over the object
"""
return \
"HalfSplitter / " + Splitter.__str__(self)
class NGroupSplitter(Splitter):
"""Split a dataset into N-groups of the sample attribute.
For example, NGroupSplitter(2) is the same as the HalfSplitter and
yields to splits: first (1st half, 2nd half) and second (2nd half,
1st half).
"""
def __init__(self, ngroups=4, **kwargs):
"""Initialize the N-group splitter.
:Parameters:
ngroups: int
Number of groups to split the attribute into.
kwargs
Additional parameters are passed to the `Splitter` base class.
"""
Splitter.__init__(self, **(kwargs))
self.__ngroups = ngroups
__doc__ = enhancedDocString('NGroupSplitter', locals(), Splitter)
def _getSplitConfig(self, uniqueattrs):
"""Huka chaka, wuka waka!
"""
# make sure there are more of attributes than desired groups
if len(uniqueattrs) < self.__ngroups:
raise ValueError, "Number of groups (%d) " % (self.__ngroups) + \
"must be less than " + \
"or equal to the number of unique attributes (%d)" % \
(len(uniqueattrs))
# use coarsenChunks to get the split indices
split_ind = coarsenChunks(uniqueattrs, nchunks=self.__ngroups)
split_ind = N.asarray(split_ind)
# loop and create splits
split_list = [(None, uniqueattrs[split_ind==i])
for i in range(self.__ngroups)]
return split_list
def __str__(self):
"""String summary over the object
"""
return \
"N-%d-GroupSplitter / " % self.__ngroup + Splitter.__str__(self)
class NFoldSplitter(Splitter):
"""Generic N-fold data splitter.
Provide folding splitting. Given a dataset with N chunks, with
cvtype=1 (which is default), it would generate N splits, where
each chunk sequentially is taken out (with replacement) for
cross-validation. Example, if there is 4 chunks, splits for
cvtype=1 are:
[[1, 2, 3], [0]]
[[0, 2, 3], [1]]
[[0, 1, 3], [2]]
[[0, 1, 2], [3]]
If cvtype>1, then all possible combinations of cvtype number of
chunks are taken out for testing, so for cvtype=2 in previous
example:
[[2, 3], [0, 1]]
[[1, 3], [0, 2]]
[[1, 2], [0, 3]]
[[0, 3], [1, 2]]
[[0, 2], [1, 3]]
[[0, 1], [2, 3]]
"""
def __init__(self,
cvtype = 1,
**kwargs):
"""Initialize the N-fold splitter.
:Parameters:
cvtype: int
Type of cross-validation: N-(cvtype)
kwargs
Additional parameters are passed to the `Splitter` base class.
"""
Splitter.__init__(self, **(kwargs))
# pylint happiness block
self.__cvtype = cvtype
__doc__ = enhancedDocString('NFoldSplitter', locals(), Splitter)
def __str__(self):
"""String summary over the object
"""
return \
"N-%d-FoldSplitter / " % self.__cvtype + Splitter.__str__(self)
def _getSplitConfig(self, uniqueattrs):
"""Returns proper split configuration for N-M fold split.
"""
return [(None, i) for i in \
support.getUniqueLengthNCombinations(uniqueattrs,
self.__cvtype)]
class CustomSplitter(Splitter):
"""Split a dataset using an arbitrary custom rule.
The splitter is configured by passing a custom spitting rule (`splitrule`)
to its constructor. Such a rule is basically a sequence of split
definitions. Every single element in this sequence results in excatly one
split generated by the Splitter. Each element is another sequence for
sequences of sample ids for each dataset that shall be generated in the
split.
Example:
* Generate two splits. In the first split the *second* dataset
contains all samples with sample attributes corresponding to
either 0, 1 or 2. The *first* dataset of the first split contains
all samples which are not split into the second dataset.
The second split yields three datasets. The first with all samples
corresponding to sample attributes 1 and 2, the second dataset
contains only samples with attrbiute 3 and the last dataset
contains the samples with attribute 5 and 6.
CustomSplitter([(None, [0, 1, 2]), ([1,2], [3], [5, 6])])
"""
def __init__(self, splitrule, **kwargs):
"""Cheap init.
"""
Splitter.__init__(self, **(kwargs))
self.__splitrule = splitrule
__doc__ = enhancedDocString('CustomSplitter', locals(), Splitter)
def _getSplitConfig(self, uniqueattrs):
"""Huka chaka!
"""
return self.__splitrule
def __str__(self):
"""String summary over the object
"""
return "CustomSplitter / " + Splitter.__str__(self)
|