/usr/share/pyshared/mvpa/featsel/base.py is in python-mvpa 0.4.8-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Feature selection base class and related stuff base classes and helpers."""
__docformat__ = 'restructuredtext'
from mvpa.featsel.helpers import FractionTailSelector
from mvpa.misc.state import StateVariable, ClassWithCollections
if __debug__:
from mvpa.base import debug
class FeatureSelection(ClassWithCollections):
"""Base class for any feature selection
Base class for Functors which implement feature selection on the
datasets.
"""
selected_ids = StateVariable(enabled=False)
def __init__(self, **kwargs):
# base init first
ClassWithCollections.__init__(self, **kwargs)
def __call__(self, dataset, testdataset=None):
"""Invocation of the feature selection
:Parameters:
dataset : Dataset
dataset used to select features
testdataset : Dataset
dataset the might be used to compute a stopping criterion
Returns a tuple with the dataset containing the selected features.
If present the tuple also contains the selected features of the
test dataset. Derived classes must provide interface to access other
relevant to the feature selection process information (e.g. mask,
elimination step (in RFE), etc)
"""
raise NotImplementedError
def untrain(self):
""" 'Untrain' feature selection
Necessary for full 'untraining' of the classifiers. By default
does nothing, needs to be overridden in corresponding feature
selections to pass to the sensitivities
"""
pass
class SensitivityBasedFeatureSelection(FeatureSelection):
"""Feature elimination.
A `FeaturewiseDatasetMeasure` is used to compute sensitivity maps given a certain
dataset. These sensitivity maps are in turn used to discard unimportant
features.
"""
sensitivity = StateVariable(enabled=False)
def __init__(self,
sensitivity_analyzer,
feature_selector=FractionTailSelector(0.05),
**kwargs
):
"""Initialize feature selection
:Parameters:
sensitivity_analyzer : FeaturewiseDatasetMeasure
sensitivity analyzer to come up with sensitivity
feature_selector : Functor
Given a sensitivity map it has to return the ids of those
features that should be kept.
"""
# base init first
FeatureSelection.__init__(self, **kwargs)
self.__sensitivity_analyzer = sensitivity_analyzer
"""Sensitivity analyzer to use once"""
self.__feature_selector = feature_selector
"""Functor which takes care about removing some features."""
def untrain(self):
if __debug__:
debug("FS_", "Untraining sensitivity-based FS: %s" % self)
self.__sensitivity_analyzer.untrain()
def __call__(self, dataset, testdataset=None):
"""Select the most important features
:Parameters:
dataset : Dataset
used to compute sensitivity maps
testdataset: Dataset
optional dataset to select features on
Returns a tuple of two new datasets with selected feature
subset of `dataset`.
"""
sensitivity = self.__sensitivity_analyzer(dataset)
"""Compute the sensitivity map."""
self.sensitivity = sensitivity
# Select features to preserve
selected_ids = self.__feature_selector(sensitivity)
if __debug__:
debug("FS_", "Sensitivity: %s Selected ids: %s" %
(sensitivity, selected_ids))
# Create a dataset only with selected features
wdataset = dataset.selectFeatures(selected_ids)
if not testdataset is None:
wtestdataset = testdataset.selectFeatures(selected_ids)
else:
wtestdataset = None
# Differ from the order in RFE when actually error reported is for
results = (wdataset, wtestdataset)
# WARNING: THIS MUST BE THE LAST THING TO DO ON selected_ids
selected_ids.sort()
self.selected_ids = selected_ids
# dataset with selected features is returned
return results
# make it accessible from outside
sensitivity_analyzer = property(fget=lambda self:self.__sensitivity_analyzer,
doc="Measure which was used to do selection")
class FeatureSelectionPipeline(FeatureSelection):
"""Feature elimination through the list of FeatureSelection's.
Given as list of FeatureSelections it applies them in turn.
"""
nfeatures = StateVariable(
doc="Number of features before each step in pipeline")
# TODO: may be we should also append resultant number of features?
def __init__(self,
feature_selections,
**kwargs
):
"""Initialize feature selection pipeline
:Parameters:
feature_selections : lisf of FeatureSelection
selections which to use. Order matters
"""
# base init first
FeatureSelection.__init__(self, **kwargs)
self.__feature_selections = feature_selections
"""Selectors to use in turn"""
def untrain(self):
if __debug__:
debug("FS_", "Untraining FS pipeline: %s" % self)
for fs in self.__feature_selections:
fs.untrain()
def __call__(self, dataset, testdataset=None, **kwargs):
"""Invocation of the feature selection
"""
wdataset = dataset
wtestdataset = testdataset
self.selected_ids = None
self.nfeatures = []
"""Number of features at each step (before running selection)"""
for fs in self.__feature_selections:
# enable selected_ids state if it was requested from this class
fs.states._changeTemporarily(
enable_states=["selected_ids"], other=self)
if self.states.isEnabled("nfeatures"):
self.nfeatures.append(wdataset.nfeatures)
if __debug__:
debug('FSPL', 'Invoking %s on (%s, %s)' %
(fs, wdataset, wtestdataset))
wdataset, wtestdataset = fs(wdataset, wtestdataset, **kwargs)
if self.states.isEnabled("selected_ids"):
if self.selected_ids == None:
self.selected_ids = fs.selected_ids
else:
self.selected_ids = self.selected_ids[fs.selected_ids]
fs.states._resetEnabledTemporarily()
return (wdataset, wtestdataset)
feature_selections = property(fget=lambda self:self.__feature_selections,
doc="List of `FeatureSelections`")
class CombinedFeatureSelection(FeatureSelection):
"""Meta feature selection utilizing several embedded selection methods.
Each embedded feature selection method is computed individually. Afterwards
all feature sets are combined by either taking the union or intersection of
all sets.
The individual feature sets of all embedded methods are optionally avialable
from the `selections_ids` state variable.
"""
selections_ids = StateVariable(
doc="List of feature id sets for each performed method.")
def __init__(self, feature_selections, combiner, **kwargs):
"""
:Parameters:
feature_selections: list
FeatureSelection instances to run. Order is not important.
combiner: 'union', 'intersection'
which method to be used to combine the feature selection set of
all computed methods.
"""
FeatureSelection.__init__(self, **kwargs)
self.__feature_selections = feature_selections
self.__combiner = combiner
def untrain(self):
if __debug__:
debug("FS_", "Untraining combined FS: %s" % self)
for fs in self.__feature_selections:
fs.untrain()
def __call__(self, dataset, testdataset=None):
"""Really run it.
"""
# to hold the union
selected_ids = None
# to hold the individuals
self.selections_ids = []
for fs in self.__feature_selections:
# we need the feature ids that were selection by each method,
# so enable them temporarily
fs.states._changeTemporarily(
enable_states=["selected_ids"], other=self)
# compute feature selection, but ignore return datasets
fs(dataset, testdataset)
# retrieve feature ids and determined union of all selections
if selected_ids == None:
selected_ids = set(fs.selected_ids)
else:
if self.__combiner == 'union':
selected_ids.update(fs.selected_ids)
elif self.__combiner == 'intersection':
selected_ids.intersection_update(fs.selected_ids)
else:
raise ValueError, "Unknown combiner '%s'" % self.__combiner
# store individual set in state
self.selections_ids.append(fs.selected_ids)
# restore states to previous settings
fs.states._resetEnabledTemporarily()
# finally apply feature set union selection to original datasets
selected_ids = sorted(list(selected_ids))
# take care of optional second dataset
td_sel = None
if not testdataset is None:
td_sel = testdataset.selectFeatures(self.selected_ids)
# and main dataset
d_sel = dataset.selectFeatures(selected_ids)
# finally store ids in state
self.selected_ids = selected_ids
return (d_sel, td_sel)
feature_selections = property(fget=lambda self:self.__feature_selections,
doc="List of `FeatureSelections`")
combiner = property(fget=lambda self:self.__combiner,
doc="Selection set combination method.")
|