This file is indexed.

/usr/share/pyshared/mvpa/mappers/mask.py is in python-mvpa 0.4.8-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Data mapper which applies mask to the data"""

__docformat__ = 'restructuredtext'

import numpy as N

from mvpa.mappers.base import Mapper
from mvpa.base.dochelpers import enhancedDocString
from mvpa.misc.support import isInVolume

if __debug__:
    from mvpa.base import debug, warning
    from mvpa.misc.support import isSorted


class MaskMapper(Mapper):
    """Mapper which uses a binary mask to select "Features" """

    def __init__(self, mask, **kwargs):
        """Initialize MaskMapper

        :Parameters:
          mask : array
            an array in the original dataspace and its nonzero elements are
            used to define the features included in the dataset
        """
        Mapper.__init__(self, **kwargs)

        self.__mask = self.__maskdim = self.__masksize = \
                      self.__masknonzerosize = self.__forwardmap = \
                      self.__masknonzero = None # to make pylint happy
        self._initMask(mask)


    __doc__ = enhancedDocString('MaskMapper', locals(), Mapper)


    def __str__(self):
        return "MaskMapper: %d -> %d" \
            % (self.__masksize, self.__masknonzerosize)

    def __repr__(self):
        s = super(MaskMapper, self).__repr__()
        return s.replace("(", "(mask=%s," % self.__mask, 1)

# XXX
# XXX HAS TO TAKE CARE OF SUBCLASSES!!!
# XXX
#
#    def __deepcopy__(self, memo=None):
#        # XXX memo does not seem to be used
#        if memo is None:
#            memo = {}
#        from mvpa.support.copy import deepcopy
#        out = MaskMapper.__new__(MaskMapper)
#        Mapper.__init__(out)
#        out.__mask = self.__mask.copy()
#        out.__maskdim = self.__maskdim
#        out.__masksize = self.__masksize
#        out.__masknonzero = deepcopy(self.__masknonzero)
#        out.__masknonzerosize = self.__masknonzerosize
#        out.__forwardmap = self.__forwardmap.copy()
#
#        return out


    def _initMask(self, mask):
        """Initialize internal state with mask-derived information

        It is needed to initialize structures for the fast
        and reverse lookup to don't impose performance hit on any
        future operation
        """
        # NOTE: If any new class member are added here __deepcopy__() has to
        #       be adjusted accordingly!

        self.__mask = (mask != 0)
        self.__maskdim = len(mask.shape)
        self.__masksize = N.prod(mask.shape)

        # Following introduces space penalty but are needed
        # for efficient processing.
        # Store all coordinates for backward mapping
        self.__masknonzero = mask.nonzero()
        self.__masknonzerosize = len(self.__masknonzero[0])
        #from IPython.Shell import IPShellEmbed
        #ipshell = IPShellEmbed()
        #ipshell()
        #import pydb; pydb.debugger()
        # Store forward mapping (ie from coord into outId)
        # TODO to save space might take appropriate int type
        #     depending on masknonzerosize
        # it could be done with a dictionary, but since mask
        # might be relatively big, it is better to simply use
        # a chunk of RAM ;-)
        self.__forwardmap = N.zeros(mask.shape, dtype=N.int64)
        # under assumption that we +1 values in forwardmap so that
        # 0 can be used to signal outside of mask

        self.__forwardmap[self.__masknonzero] = \
            N.arange(self.__masknonzerosize)


    def forward(self, data):
        """Map data from the original dataspace into featurespace.
        """
        data = N.asanyarray(data)          # assure it is an array
        datadim = len(data.shape)
        datashape = data.shape[(-1)*self.__maskdim:]
        if not datashape == self.__mask.shape:
            raise ValueError, \
                  "The shape of data to be mapped %s " % `datashape` \
                  + " does not match the mapper's mask shape %s" \
                    % `self.__mask.shape`

        if self.__maskdim == datadim:
            # we had to select by __masknonzero if we didn't sort
            # Ids and wanted to preserve the order
            #return data[ self.__masknonzero ]
            return data[ self.__mask ]
        elif self.__maskdim+1 == datadim:
            # XXX XXX XXX below line should be accomodated also
            # to make use of self.__masknonzero instead of
            # plain mask if we want to preserve the (re)order
            return data[ :, self.__mask ]
        else:
            raise ValueError, \
                  "Shape of the to be mapped data, does not match the " \
                  "mapper mask. Only one (optional) additional dimension " \
                  "exceeding the mask shape is supported."


    def reverse(self, data):
        """Reverse map data from featurespace into the original dataspace.
        """
        data = N.asanyarray(data)
        datadim = len(data.shape)
        if not datadim in [1, 2]:
            raise ValueError, \
                  "Only 2d or 1d data can be reverse mapped. "\
                  "Got data of shape %s" % (data.shape,)

        if datadim == 1:
            # Verify that we are trying to reverse data of proper dimension.
            # In 1D case numpy would not complain and will broadcast
            # the values
            if __debug__ and  self.nfeatures != len(data):
                raise ValueError, \
                      "Cannot reverse map data with %d elements, whenever " \
                      "mask knows only %d" % (len(data), self.nfeatures)
            mapped = N.zeros(self.__mask.shape, dtype=data.dtype)
            mapped[self.__mask] = data
        elif datadim == 2:
            # Verify that we are trying to reverse data of proper dimension.
            # In 2D case numpy we should have matching # of features
            if __debug__ and  self.nfeatures != data.shape[1]:
                raise ValueError, \
                      "Cannot reverse map data of shape %s, whenever " \
                      "mask knows only %d features" \
                      % (data.shape, self.nfeatures)

            mapped = N.zeros(data.shape[:1] + self.__mask.shape,
                             dtype=data.dtype)
            mapped[:, self.__mask] = data

        return mapped


    def getInSize(self):
        """InShape is a shape of original mask"""
        return self.__masksize


    def getOutSize(self):
        """OutSize is a number of non-0 elements in the mask"""
        return self.__masknonzerosize


    def getMask(self, copy = True):
        """By default returns a copy of the current mask.

        If 'copy' is set to False a reference to the mask is returned instead.
        This shared mask must not be modified!
        """
        if copy:
            return self.__mask.copy()
        else:
            return self.__mask


    def getInId(self, outId):
        """Returns a features coordinate in the original data space
        for a given feature id.

        If this method is called with a list of feature ids it returns a
        2d-array where the first axis corresponds the dimensions in 'In'
        dataspace and along the second axis are the coordinates of the features
        on this dimension (like the output of NumPy.array.nonzero()).

        XXX it might become __get_item__ access method

        """
        # XXX Might be improved by storing also transpose of
        # __masknonzero
        return N.array([self.__masknonzero[i][outId]
                        for i in xrange(self.__maskdim)])


    def getInIds(self):
        """Returns a 2d array where each row contains the coordinate of the
        feature with the corresponding id.
        """
        return N.transpose(self.__masknonzero)


    def isValidInId(self, inId):
        mask = self.mask
        return (isInVolume(inId, mask.shape) and mask[tuple(inId)] != 0)


    def getOutId(self, coord):
        """Translate a feature mask coordinate into a feature ID.
        """
        # FIXME Since lists/arrays accept negative indexes to go from
        # the end -- we need to check coordinates explicitely. Otherwise
        # we would get warping effect
        try:
            tcoord = tuple(coord)
            if self.__mask[tcoord] == 0:
                raise ValueError, \
                      "The point %s didn't belong to the mask" % (`coord`)
            return self.__forwardmap[tcoord]
        except TypeError:
            raise ValueError, \
                  "Coordinates %s are of incorrect dimension. " % `coord` + \
                  "The mask has %d dimensions." % self.__maskdim
        except IndexError:
            raise ValueError, \
                  "Coordinates %s are out of mask boundary. " % `coord` + \
                  "The mask is of %s shape." % `self.__mask.shape`


    def selectOut(self, outIds):
        """Only listed outIds would remain.

        *Function assumes that outIds are sorted*. In __debug__ mode selectOut
        would check if obtained IDs are sorted and would warn the user if they
        are not.

        .. note::
          If you feel strongly that you need to remap features
          internally (ie to allow Ids with mixed order) please contact
          developers of mvpa to discuss your use case.

          The function used to accept a matrix-mask as the input but now
          it really has to be a list of IDs

        Feature/Bug:
         * Negative outIds would not raise exception - just would be
           treated 'from the tail'
        """
        if __debug__ and 'CHECK_SORTEDIDS' in debug.active:
            # per short conversation with Michael -- we should not
            # allow reordering since we saw no viable use case for
            # it. Thus -- warn user is outIds are not in sorted order
            # and no sorting was requested may be due to performance
            # considerations
            if not isSorted(outIds):
                warning("IDs for selectOut must be provided " +
                        "in sorted order, otherwise .forward() would fail"+
                        " on the data with multiple samples")

        # adjust mask and forwardmap
        discarded = N.array([ True ] * self.nfeatures)
        discarded[outIds] = False    # create a map of discarded Ids
        discardedin = tuple(self.getInId(discarded))
        self.__mask[discardedin] = False

        self.__masknonzerosize = len(outIds)
        self.__masknonzero = [ x[outIds] for x in self.__masknonzero ]

        # adjust/remap not discarded in forwardmap
        # since we merged _tent/maskmapper-init-noloop it is not necessary
        # to zero-out discarded entries since we anyway would check with mask
        # in getOutId(s)
        self.__forwardmap[self.__masknonzero] = \
            N.arange(self.__masknonzerosize)


    def discardOut(self, outIds):
        """Listed outIds would be discarded

        """

        # adjust mask and forwardmap
        discardedin = tuple(self.getInId(outIds))
        self.__mask[discardedin] = False
        # since we merged _tent/maskmapper-init-noloop it is not necessary
        # to zero-out discarded entries since we anyway would check with mask
        # in getOutId(s)
        # self.__forwardmap[discardedin] = 0

        self.__masknonzerosize -= len(outIds)
        self.__masknonzero = [ N.delete(x, outIds)
                               for x in self.__masknonzero ]

        # adjust/remap not discarded in forwardmap
        self.__forwardmap[self.__masknonzero] = \
                                              N.arange(self.__masknonzerosize)

        # OPT: we can adjust __forwardmap only for ids which are higher than
        # the smallest outId among discarded. Similar strategy could be done
        # for selectOut but such index has to be figured out first there
        #      ....


# comment out for now... introduce when needed
#    def getInEmpty(self):
#        """Returns empty instance of input object"""
#        raise NotImplementedError
#
#
#    def getOutEmpty(self):
#        """Returns empty instance of output object"""
#        raise NotImplementedError


    def convertOutIds2OutMask(self, outIds):
        """Returns a boolean mask with all features in `outIds` selected.

        :Parameters:
            outIds: list or 1d array
                To be selected features ids in out-space.

        :Returns:
            ndarray: dtype='bool'
                All selected features are set to True; False otherwise.
        """
        fmask = N.repeat(False, self.nfeatures)
        fmask[outIds] = True

        return fmask


    def convertOutIds2InMask(self, outIds):
        """Returns a boolean mask with all features in `ouIds` selected.

        This method works exactly like Mapper.convertOutIds2OutMask(), but the
        feature mask is finally (reverse) mapped into in-space.

        :Parameters:
            outIds: list or 1d array
                To be selected features ids in out-space.

        :Returns:
            ndarray: dtype='bool'
                All selected features are set to True; False otherwise.
        """
        return self.reverse(self.convertOutIds2OutMask(outIds))


    # Read-only props
    mask = property(fget=lambda self:self.getMask(False))


    # TODO Unify tuple/array conversion of coordinates. tuples are needed
    #      for easy reference, arrays are needed when doing computation on
    #      coordinates: for some reason numpy doesn't handle casting into
    #      array from tuples while performing arithm operations...