/usr/share/pyshared/mvpa/mappers/mask.py is in python-mvpa 0.4.8-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Data mapper which applies mask to the data"""
__docformat__ = 'restructuredtext'
import numpy as N
from mvpa.mappers.base import Mapper
from mvpa.base.dochelpers import enhancedDocString
from mvpa.misc.support import isInVolume
if __debug__:
from mvpa.base import debug, warning
from mvpa.misc.support import isSorted
class MaskMapper(Mapper):
"""Mapper which uses a binary mask to select "Features" """
def __init__(self, mask, **kwargs):
"""Initialize MaskMapper
:Parameters:
mask : array
an array in the original dataspace and its nonzero elements are
used to define the features included in the dataset
"""
Mapper.__init__(self, **kwargs)
self.__mask = self.__maskdim = self.__masksize = \
self.__masknonzerosize = self.__forwardmap = \
self.__masknonzero = None # to make pylint happy
self._initMask(mask)
__doc__ = enhancedDocString('MaskMapper', locals(), Mapper)
def __str__(self):
return "MaskMapper: %d -> %d" \
% (self.__masksize, self.__masknonzerosize)
def __repr__(self):
s = super(MaskMapper, self).__repr__()
return s.replace("(", "(mask=%s," % self.__mask, 1)
# XXX
# XXX HAS TO TAKE CARE OF SUBCLASSES!!!
# XXX
#
# def __deepcopy__(self, memo=None):
# # XXX memo does not seem to be used
# if memo is None:
# memo = {}
# from mvpa.support.copy import deepcopy
# out = MaskMapper.__new__(MaskMapper)
# Mapper.__init__(out)
# out.__mask = self.__mask.copy()
# out.__maskdim = self.__maskdim
# out.__masksize = self.__masksize
# out.__masknonzero = deepcopy(self.__masknonzero)
# out.__masknonzerosize = self.__masknonzerosize
# out.__forwardmap = self.__forwardmap.copy()
#
# return out
def _initMask(self, mask):
"""Initialize internal state with mask-derived information
It is needed to initialize structures for the fast
and reverse lookup to don't impose performance hit on any
future operation
"""
# NOTE: If any new class member are added here __deepcopy__() has to
# be adjusted accordingly!
self.__mask = (mask != 0)
self.__maskdim = len(mask.shape)
self.__masksize = N.prod(mask.shape)
# Following introduces space penalty but are needed
# for efficient processing.
# Store all coordinates for backward mapping
self.__masknonzero = mask.nonzero()
self.__masknonzerosize = len(self.__masknonzero[0])
#from IPython.Shell import IPShellEmbed
#ipshell = IPShellEmbed()
#ipshell()
#import pydb; pydb.debugger()
# Store forward mapping (ie from coord into outId)
# TODO to save space might take appropriate int type
# depending on masknonzerosize
# it could be done with a dictionary, but since mask
# might be relatively big, it is better to simply use
# a chunk of RAM ;-)
self.__forwardmap = N.zeros(mask.shape, dtype=N.int64)
# under assumption that we +1 values in forwardmap so that
# 0 can be used to signal outside of mask
self.__forwardmap[self.__masknonzero] = \
N.arange(self.__masknonzerosize)
def forward(self, data):
"""Map data from the original dataspace into featurespace.
"""
data = N.asanyarray(data) # assure it is an array
datadim = len(data.shape)
datashape = data.shape[(-1)*self.__maskdim:]
if not datashape == self.__mask.shape:
raise ValueError, \
"The shape of data to be mapped %s " % `datashape` \
+ " does not match the mapper's mask shape %s" \
% `self.__mask.shape`
if self.__maskdim == datadim:
# we had to select by __masknonzero if we didn't sort
# Ids and wanted to preserve the order
#return data[ self.__masknonzero ]
return data[ self.__mask ]
elif self.__maskdim+1 == datadim:
# XXX XXX XXX below line should be accomodated also
# to make use of self.__masknonzero instead of
# plain mask if we want to preserve the (re)order
return data[ :, self.__mask ]
else:
raise ValueError, \
"Shape of the to be mapped data, does not match the " \
"mapper mask. Only one (optional) additional dimension " \
"exceeding the mask shape is supported."
def reverse(self, data):
"""Reverse map data from featurespace into the original dataspace.
"""
data = N.asanyarray(data)
datadim = len(data.shape)
if not datadim in [1, 2]:
raise ValueError, \
"Only 2d or 1d data can be reverse mapped. "\
"Got data of shape %s" % (data.shape,)
if datadim == 1:
# Verify that we are trying to reverse data of proper dimension.
# In 1D case numpy would not complain and will broadcast
# the values
if __debug__ and self.nfeatures != len(data):
raise ValueError, \
"Cannot reverse map data with %d elements, whenever " \
"mask knows only %d" % (len(data), self.nfeatures)
mapped = N.zeros(self.__mask.shape, dtype=data.dtype)
mapped[self.__mask] = data
elif datadim == 2:
# Verify that we are trying to reverse data of proper dimension.
# In 2D case numpy we should have matching # of features
if __debug__ and self.nfeatures != data.shape[1]:
raise ValueError, \
"Cannot reverse map data of shape %s, whenever " \
"mask knows only %d features" \
% (data.shape, self.nfeatures)
mapped = N.zeros(data.shape[:1] + self.__mask.shape,
dtype=data.dtype)
mapped[:, self.__mask] = data
return mapped
def getInSize(self):
"""InShape is a shape of original mask"""
return self.__masksize
def getOutSize(self):
"""OutSize is a number of non-0 elements in the mask"""
return self.__masknonzerosize
def getMask(self, copy = True):
"""By default returns a copy of the current mask.
If 'copy' is set to False a reference to the mask is returned instead.
This shared mask must not be modified!
"""
if copy:
return self.__mask.copy()
else:
return self.__mask
def getInId(self, outId):
"""Returns a features coordinate in the original data space
for a given feature id.
If this method is called with a list of feature ids it returns a
2d-array where the first axis corresponds the dimensions in 'In'
dataspace and along the second axis are the coordinates of the features
on this dimension (like the output of NumPy.array.nonzero()).
XXX it might become __get_item__ access method
"""
# XXX Might be improved by storing also transpose of
# __masknonzero
return N.array([self.__masknonzero[i][outId]
for i in xrange(self.__maskdim)])
def getInIds(self):
"""Returns a 2d array where each row contains the coordinate of the
feature with the corresponding id.
"""
return N.transpose(self.__masknonzero)
def isValidInId(self, inId):
mask = self.mask
return (isInVolume(inId, mask.shape) and mask[tuple(inId)] != 0)
def getOutId(self, coord):
"""Translate a feature mask coordinate into a feature ID.
"""
# FIXME Since lists/arrays accept negative indexes to go from
# the end -- we need to check coordinates explicitely. Otherwise
# we would get warping effect
try:
tcoord = tuple(coord)
if self.__mask[tcoord] == 0:
raise ValueError, \
"The point %s didn't belong to the mask" % (`coord`)
return self.__forwardmap[tcoord]
except TypeError:
raise ValueError, \
"Coordinates %s are of incorrect dimension. " % `coord` + \
"The mask has %d dimensions." % self.__maskdim
except IndexError:
raise ValueError, \
"Coordinates %s are out of mask boundary. " % `coord` + \
"The mask is of %s shape." % `self.__mask.shape`
def selectOut(self, outIds):
"""Only listed outIds would remain.
*Function assumes that outIds are sorted*. In __debug__ mode selectOut
would check if obtained IDs are sorted and would warn the user if they
are not.
.. note::
If you feel strongly that you need to remap features
internally (ie to allow Ids with mixed order) please contact
developers of mvpa to discuss your use case.
The function used to accept a matrix-mask as the input but now
it really has to be a list of IDs
Feature/Bug:
* Negative outIds would not raise exception - just would be
treated 'from the tail'
"""
if __debug__ and 'CHECK_SORTEDIDS' in debug.active:
# per short conversation with Michael -- we should not
# allow reordering since we saw no viable use case for
# it. Thus -- warn user is outIds are not in sorted order
# and no sorting was requested may be due to performance
# considerations
if not isSorted(outIds):
warning("IDs for selectOut must be provided " +
"in sorted order, otherwise .forward() would fail"+
" on the data with multiple samples")
# adjust mask and forwardmap
discarded = N.array([ True ] * self.nfeatures)
discarded[outIds] = False # create a map of discarded Ids
discardedin = tuple(self.getInId(discarded))
self.__mask[discardedin] = False
self.__masknonzerosize = len(outIds)
self.__masknonzero = [ x[outIds] for x in self.__masknonzero ]
# adjust/remap not discarded in forwardmap
# since we merged _tent/maskmapper-init-noloop it is not necessary
# to zero-out discarded entries since we anyway would check with mask
# in getOutId(s)
self.__forwardmap[self.__masknonzero] = \
N.arange(self.__masknonzerosize)
def discardOut(self, outIds):
"""Listed outIds would be discarded
"""
# adjust mask and forwardmap
discardedin = tuple(self.getInId(outIds))
self.__mask[discardedin] = False
# since we merged _tent/maskmapper-init-noloop it is not necessary
# to zero-out discarded entries since we anyway would check with mask
# in getOutId(s)
# self.__forwardmap[discardedin] = 0
self.__masknonzerosize -= len(outIds)
self.__masknonzero = [ N.delete(x, outIds)
for x in self.__masknonzero ]
# adjust/remap not discarded in forwardmap
self.__forwardmap[self.__masknonzero] = \
N.arange(self.__masknonzerosize)
# OPT: we can adjust __forwardmap only for ids which are higher than
# the smallest outId among discarded. Similar strategy could be done
# for selectOut but such index has to be figured out first there
# ....
# comment out for now... introduce when needed
# def getInEmpty(self):
# """Returns empty instance of input object"""
# raise NotImplementedError
#
#
# def getOutEmpty(self):
# """Returns empty instance of output object"""
# raise NotImplementedError
def convertOutIds2OutMask(self, outIds):
"""Returns a boolean mask with all features in `outIds` selected.
:Parameters:
outIds: list or 1d array
To be selected features ids in out-space.
:Returns:
ndarray: dtype='bool'
All selected features are set to True; False otherwise.
"""
fmask = N.repeat(False, self.nfeatures)
fmask[outIds] = True
return fmask
def convertOutIds2InMask(self, outIds):
"""Returns a boolean mask with all features in `ouIds` selected.
This method works exactly like Mapper.convertOutIds2OutMask(), but the
feature mask is finally (reverse) mapped into in-space.
:Parameters:
outIds: list or 1d array
To be selected features ids in out-space.
:Returns:
ndarray: dtype='bool'
All selected features are set to True; False otherwise.
"""
return self.reverse(self.convertOutIds2OutMask(outIds))
# Read-only props
mask = property(fget=lambda self:self.getMask(False))
# TODO Unify tuple/array conversion of coordinates. tuples are needed
# for easy reference, arrays are needed when doing computation on
# coordinates: for some reason numpy doesn't handle casting into
# array from tuples while performing arithm operations...
|