/usr/share/pyshared/mvpa2/clfs/base.py is in python-mvpa2 2.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Base class for all XXX learners: classifiers and regressions.
"""
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2.support.copy import deepcopy
import time
from mvpa2.base.types import is_datasetlike, accepts_dataset_as_samples
from mvpa2.measures.base import Measure
from mvpa2.base.learner import Learner, FailedToPredictError
from mvpa2.datasets.base import Dataset
from mvpa2.misc.support import idhash
from mvpa2.base.state import ConditionalAttribute
from mvpa2.base.param import Parameter
from mvpa2.misc.attrmap import AttributeMap
from mvpa2.base.dochelpers import _str
from mvpa2.clfs.transerror import ConfusionMatrix, RegressionStatistics
from mvpa2.base import warning
if __debug__:
from mvpa2.base import debug
__all__ = [ 'Classifier',
'accepts_dataset_as_samples', 'accepts_samples_as_dataset']
def accepts_samples_as_dataset(fx):
"""Decorator to wrap samples into a Dataset.
Little helper to allow methods to accept plain data whenever
dataset is generally required.
"""
def wrap_samples(obj, data, *args, **kwargs):
if is_datasetlike(data):
return fx(obj, data, *args, **kwargs)
else:
return fx(obj, Dataset(data), *args, **kwargs)
return wrap_samples
class Classifier(Learner):
"""Abstract classifier class to be inherited by all classifiers
"""
# Kept separate from doc to don't pollute help(clf), especially if
# we including help for the parent class
_DEV__doc__ = """
Required behavior:
For every classifier is has to be possible to be instantiated without
having to specify the training pattern.
Repeated calls to the train() method with different training data have to
result in a valid classifier, trained for the particular dataset.
It must be possible to specify all classifier parameters as keyword
arguments to the constructor.
Recommended behavior:
Derived classifiers should provide access to *estimates* -- i.e. that
information that is finally used to determine the predicted class label.
Michael: Maybe it works well if each classifier provides a 'estimates'
state member. This variable is a list as long as and in same order
as Dataset.uniquetargets (training data). Each item in the list
corresponds to the likelyhood of a sample to belong to the
respective class. However the semantics might differ between
classifiers, e.g. kNN would probably store distances to class-
neighbors, where PLR would store the raw function value of the
logistic function. So in the case of kNN low is predictive and for
PLR high is predictive. Don't know if there is the need to unify
that.
As the storage and/or computation of this information might be
demanding its collection should be switchable and off be default.
Nomenclature
* predictions : result of the last call to .predict()
* estimates : might be different from predictions if a classifier's predict()
makes a decision based on some internal value such as
probability or a distance.
"""
# Dict that contains the parameters of a classifier.
# This shall provide an interface to plug generic parameter optimizer
# on all classifiers (e.g. grid- or line-search optimizer)
# A dictionary is used because Michael thinks that access by name is nicer.
# Additionally Michael thinks ATM that additional information might be
# necessary in some situations (e.g. reasonably predefined parameter range,
# minimal iteration stepsize, ...), therefore the value to each key should
# also be a dict or we should use mvpa2.base.param.Parameter'...
trained_targets = ConditionalAttribute(enabled=True,
doc="Set of unique targets it has been trained on")
trained_nsamples = ConditionalAttribute(enabled=True,
doc="Number of samples it has been trained on")
trained_dataset = ConditionalAttribute(enabled=False,
doc="The dataset it has been trained on")
training_stats = ConditionalAttribute(enabled=False,
doc="Confusion matrix of learning performance")
predictions = ConditionalAttribute(enabled=True,
doc="Most recent set of predictions")
estimates = ConditionalAttribute(enabled=True,
doc="Internal classifier estimates the most recent " +
"predictions are based on")
predicting_time = ConditionalAttribute(enabled=True,
doc="Time (in seconds) which took classifier to predict")
__tags__ = []
"""Describes some specifics about the classifier -- is that it is
doing regression for instance...."""
# TODO: make it available only for actually retrainable classifiers
retrainable = Parameter(False, allowedtype='bool',
doc="""Either to enable retraining for 'retrainable' classifier.""",
index=1002)
def __init__(self, space=None, **kwargs):
# by default we want classifiers to use the 'targets' sample attribute
# for training/testing
if space is None:
space = 'targets'
Learner.__init__(self, space=space, **kwargs)
# XXX
# the place to map literal to numerical labels (and back)
# this needs to be in the base class, since some classifiers also
# have this nasty 'regression' mode, and the code in this class
# needs to deal with converting the regression output into discrete
# labels
# however, preferably the mapping should be kept in the respective
# low-level implementations that need it
self._attrmap = AttributeMap()
self.__trainednfeatures = None
"""Stores number of features for which classifier was trained.
If None -- it wasn't trained at all"""
self._set_retrainable(self.params.retrainable, force=True)
# deprecate
#self.__trainedidhash = None
#"""Stores id of the dataset on which it was trained to signal
#in trained() if it was trained already on the same dataset"""
@property
def __summary_class__(self):
if 'regression' in self.__tags__:
return RegressionStatistics
else:
return ConfusionMatrix
@property
def __is_regression__(self):
return 'regression' in self.__tags__
def __str__(self, *args, **kwargs):
if __debug__ and 'CLF_' in debug.active:
return "%s / %s" % (repr(self), super(Classifier, self).__str__())
else:
return _str(self, *args, **kwargs)
def _pretrain(self, dataset):
"""Functionality prior to training
"""
# So we reset all conditional attributes and may be free up some memory
# explicitly
params = self.params
if not params.retrainable:
self.untrain()
else:
# just reset the ca, do not untrain
self.ca.reset()
if not self.__changedData_isset:
self.__reset_changed_data()
_changedData = self._changedData
__idhashes = self.__idhashes
__invalidatedChangedData = self.__invalidatedChangedData
# if we don't know what was changed we need to figure
# them out
if __debug__:
debug('CLF_', "IDHashes are %s", (__idhashes,))
# Look at the data if any was changed
for key, data_ in (('traindata', dataset.samples),
('targets', dataset.sa[self.get_space()].value)):
_changedData[key] = self.__was_data_changed(key, data_)
# if those idhashes were invalidated by retraining
# we need to adjust _changedData accordingly
if __invalidatedChangedData.get(key, False):
if __debug__ and not _changedData[key]:
debug('CLF_', 'Found that idhash for %s was '
'invalidated by retraining', (key,))
_changedData[key] = True
# Look at the parameters
for col in self._paramscols:
changedParams = self._collections[col].which_set()
if len(changedParams):
_changedData[col] = changedParams
self.__invalidatedChangedData = {} # reset it on training
if __debug__:
debug('CLF_', "Obtained _changedData is %s",
(self._changedData,))
def _posttrain(self, dataset):
"""Functionality post training
For instance -- computing confusion matrix.
Parameters
----------
dataset : Dataset
Data which was used for training
"""
ca = self.ca
if ca.is_enabled('trained_targets'):
ca.trained_targets = dataset.sa[self.get_space()].unique
ca.trained_dataset = dataset
ca.trained_nsamples = dataset.nsamples
# needs to be assigned first since below we use predict
self.__trainednfeatures = dataset.nfeatures
if __debug__ and 'CHECK_TRAINED' in debug.active:
self.__trainedidhash = dataset.idhash
if self.ca.is_enabled('training_stats') and \
not self.ca.is_set('training_stats'):
# we should not store predictions for training data,
# it is confusing imho (yoh)
self.ca.change_temporarily(
disable_ca=["predictions"])
if self.params.retrainable:
# we would need to recheck if data is the same,
# XXX think if there is a way to make this all
# efficient. For now, probably, retrainable
# classifiers have no chance but not to use
# training_stats... sad
self.__changedData_isset = False
predictions = self.predict(dataset)
self.ca.reset_changed_temporarily()
self.ca.training_stats = self.__summary_class__(
targets=dataset.sa[self.get_space()].value,
predictions=predictions)
def summary(self):
"""Providing summary over the classifier"""
s = "Classifier %s" % self
ca = self.ca
ca_enabled = ca.enabled
if self.trained:
s += "\n trained"
if ca.is_set('training_time'):
s += ' in %.3g sec' % ca.training_time
s += ' on data with'
if ca.is_set('trained_targets'):
s += ' targets:%s' % list(ca.trained_targets)
nsamples, nchunks = None, None
if ca.is_set('trained_nsamples'):
nsamples = ca.trained_nsamples
if ca.is_set('trained_dataset'):
td = ca.trained_dataset
nsamples, nchunks = td.nsamples, len(td.sa['chunks'].unique)
if nsamples is not None:
s += ' #samples:%d' % nsamples
if nchunks is not None:
s += ' #chunks:%d' % nchunks
s += " #features:%d" % self.__trainednfeatures
if ca.is_set('training_stats'):
s += ", training error:%.3g" % ca.training_stats.error
else:
s += "\n not yet trained"
if len(ca_enabled):
s += "\n enabled ca:%s" % ', '.join([str(ca[x])
for x in ca_enabled])
return s
def clone(self):
"""Create full copy of the classifier.
It might require classifier to be untrained first due to
present SWIG bindings.
TODO: think about proper re-implementation, without enrollment of deepcopy
"""
if __debug__:
debug("CLF", "Cloning %s#%s", (self, id(self)))
try:
return deepcopy(self)
except:
self.untrain()
return deepcopy(self)
def _train(self, dataset):
"""Function to be actually overridden in derived classes
"""
raise NotImplementedError
def _prepredict(self, dataset):
"""Functionality prior prediction
"""
if not ('notrain2predict' in self.__tags__):
# check if classifier was trained if that is needed
if not self.trained:
raise ValueError, \
"Classifier %s wasn't yet trained, therefore can't " \
"predict" % self
nfeatures = dataset.nfeatures #data.shape[1]
# check if number of features is the same as in the data
# it was trained on
if nfeatures != self.__trainednfeatures:
raise ValueError, \
"Classifier %s was trained on data with %d features, " % \
(self, self.__trainednfeatures) + \
"thus can't predict for %d features" % nfeatures
if self.params.retrainable:
if not self.__changedData_isset:
self.__reset_changed_data()
_changedData = self._changedData
data = np.asanyarray(dataset.samples)
_changedData['testdata'] = \
self.__was_data_changed('testdata', data)
if __debug__:
debug('CLF_', "prepredict: Obtained _changedData is %s",
(_changedData,))
def _postpredict(self, dataset, result):
"""Functionality after prediction is computed
"""
self.ca.predictions = result
if self.params.retrainable:
self.__changedData_isset = False
def _predict(self, dataset):
"""Actual prediction
"""
raise NotImplementedError
@accepts_samples_as_dataset
def predict(self, dataset):
"""Predict classifier on data
Shouldn't be overridden in subclasses unless explicitly needed
to do so. Also subclasses trying to call super class's predict
should call _predict if within _predict instead of predict()
since otherwise it would loop
"""
## ??? yoh: changed to asany from as without exhaustive check
data = np.asanyarray(dataset.samples)
if __debug__:
# Verify that we have no NaN/Inf's which we do not "support" ATM
if not np.all(np.isfinite(data)):
raise ValueError(
"Some input data for predict is not finite (NaN or Inf)")
debug("CLF", "Predicting classifier %s on ds %s",
(self, dataset))
# remember the time when started computing predictions
t0 = time.time()
ca = self.ca
# to assure that those are reset (could be set due to testing
# post-training)
ca.reset(['estimates', 'predictions'])
self._prepredict(dataset)
if self.__trainednfeatures > 0 \
or 'notrain2predict' in self.__tags__:
result = self._predict(dataset)
else:
warning("Trying to predict using classifier trained on no features")
if __debug__:
debug("CLF",
"No features were present for training, prediction is " \
"bogus")
result = [None]*data.shape[0]
ca.predicting_time = time.time() - t0
# with labels mapping in-place, we also need to go back to the
# literal labels
if self._attrmap:
try:
result = self._attrmap.to_literal(result)
except KeyError, e:
raise FailedToPredictError, \
"Failed to convert predictions from numeric into " \
"literals: %s" % e
self._postpredict(dataset, result)
return result
def _call(self, ds):
# get the predictions
# call with full dataset, since we might need it further down in
# the stream, e.g. for caching...
pred = self.predict(ds)
tattr = self.get_space()
# return the predictions and the targets in a dataset
return Dataset(pred, sa={tattr: ds.sa[tattr]})
# XXX deprecate ???
##REF: Name was automagically refactored
def is_trained(self, dataset=None):
"""Either classifier was already trained.
MUST BE USED WITH CARE IF EVER"""
if dataset is None:
# simply return if it was trained on anything
return not self.__trainednfeatures is None
else:
res = (self.__trainednfeatures == dataset.nfeatures)
if __debug__ and 'CHECK_TRAINED' in debug.active:
res2 = (self.__trainedidhash == dataset.idhash)
if res2 != res:
raise RuntimeError, \
"is_trained is weak and shouldn't be relied upon. " \
"Got result %b although comparing of idhash says %b" \
% (res, res2)
return res
@property
def trained(self):
"""Either classifier was already trained"""
return self.is_trained()
def _untrain(self):
"""Reset trained state"""
# any previous apping is obsolete now
self._attrmap.clear()
self.__trainednfeatures = None
# probably not needed... retrainable shouldn't be fully untrained
# or should be???
#if self.params.retrainable:
# # ??? don't duplicate the code ;-)
# self.__idhashes = {'traindata': None, 'targets': None,
# 'testdata': None, 'testtraindata': None}
# no need to do this, as the Leaner class is doing it anyway
#super(Classifier, self).reset()
##REF: Name was automagically refactored
def get_sensitivity_analyzer(self, **kwargs):
"""Factory method to return an appropriate sensitivity analyzer for
the respective classifier."""
raise NotImplementedError
#
# Methods which are needed for retrainable classifiers
#
##REF: Name was automagically refactored
def _set_retrainable(self, value, force=False):
"""Assign value of retrainable parameter
If retrainable flag is to be changed, classifier has to be
untrained. Also internal attributes such as _changedData,
__changedData_isset, and __idhashes should be initialized if
it becomes retrainable
"""
pretrainable = self.params['retrainable']
if (force or value != pretrainable.value) \
and 'retrainable' in self.__tags__:
if __debug__:
debug("CLF_", "Setting retrainable to %s" % value)
if 'meta' in self.__tags__:
warning("Retrainability is not yet crafted/tested for "
"meta classifiers. Unpredictable behavior might occur")
# assure that we don't drag anything behind
if self.trained:
self.untrain()
ca = self.ca
if not value and ca.has_key('retrained'):
ca.pop('retrained')
ca.pop('repredicted')
if value:
if not 'retrainable' in self.__tags__:
warning("Setting of flag retrainable for %s has no effect"
" since classifier has no such capability. It would"
" just lead to resources consumption and slowdown"
% self)
ca['retrained'] = ConditionalAttribute(enabled=True,
doc="Either retrainable classifier was retrained")
ca['repredicted'] = ConditionalAttribute(enabled=True,
doc="Either retrainable classifier was repredicted")
pretrainable.value = value
# if retrainable we need to keep track of things
if value:
self.__idhashes = {'traindata': None, 'targets': None,
'testdata': None} #, 'testtraindata': None}
if __debug__ and 'CHECK_RETRAIN' in debug.active:
# ??? it is not clear though if idhash is faster than
# simple comparison of (dataset != __traineddataset).any(),
# but if we like to get rid of __traineddataset then we
# should use idhash anyways
self.__trained = self.__idhashes.copy() # just same Nones
self.__reset_changed_data()
self.__invalidatedChangedData = {}
elif 'retrainable' in self.__tags__:
#self.__reset_changed_data()
self.__changedData_isset = False
self._changedData = None
self.__idhashes = None
if __debug__ and 'CHECK_RETRAIN' in debug.active:
self.__trained = None
##REF: Name was automagically refactored
def __reset_changed_data(self):
"""For retrainable classifier we keep track of what was changed
This function resets that dictionary
"""
if __debug__:
debug('CLF_',
'Retrainable: resetting flags on either data was changed')
keys = self.__idhashes.keys() + self._paramscols
# we might like to just reinit estimates to False???
#_changedData = self._changedData
#if isinstance(_changedData, dict):
# for key in _changedData.keys():
# _changedData[key] = False
self._changedData = dict(zip(keys, [False]*len(keys)))
self.__changedData_isset = False
##REF: Name was automagically refactored
def __was_data_changed(self, key, entry, update=True):
"""Check if given entry was changed from what known prior.
If so -- store only the ones needed for retrainable beastie
"""
idhash_ = idhash(entry)
__idhashes = self.__idhashes
changed = __idhashes[key] != idhash_
if __debug__ and 'CHECK_RETRAIN' in debug.active:
__trained = self.__trained
changed2 = entry != __trained[key]
if isinstance(changed2, np.ndarray):
changed2 = changed2.any()
if changed != changed2 and not changed:
raise RuntimeError, \
'idhash found to be weak for %s. Though hashid %s!=%s %s, '\
'estimates %s!=%s %s' % \
(key, idhash_, __idhashes[key], changed,
entry, __trained[key], changed2)
if update:
__trained[key] = entry
if __debug__ and changed:
debug('CLF_', "Changed %s from %s to %s.%s",
(key, __idhashes[key], idhash_,
('','updated')[int(update)]))
if update:
__idhashes[key] = idhash_
return changed
# def __updateHashIds(self, key, data):
# """Is twofold operation: updates hashid if was said that it changed.
#
# or if it wasn't said that data changed, but CHECK_RETRAIN and it found
# to be changed -- raise Exception
# """
#
# check_retrain = __debug__ and 'CHECK_RETRAIN' in debug.active
# chd = self._changedData
#
# # we need to updated idhashes
# if chd[key] or check_retrain:
# keychanged = self.__was_data_changed(key, data)
# if check_retrain and keychanged and not chd[key]:
# raise RuntimeError, \
# "Data %s found changed although wasn't " \
# "labeled as such" % key
#
# Additional API which is specific only for retrainable classifiers.
# For now it would just puke if asked from not retrainable one.
#
# Might come useful and efficient for statistics testing, so if just
# labels of dataset changed, then
# self.retrain(dataset, labels=True)
# would cause efficient retraining (no kernels recomputed etc)
# and subsequent self.repredict(data) should be also quite fase ;-)
def retrain(self, dataset, **kwargs):
"""Helper to avoid check if data was changed actually changed
Useful if just some aspects of classifier were changed since
its previous training. For instance if dataset wasn't changed
but only classifier parameters, then kernel matrix does not
have to be computed.
Words of caution: classifier must be previously trained,
results always should first be compared to the results on not
'retrainable' classifier (without calling retrain). Some
additional checks are enabled if debug id 'CHECK_RETRAIN' is
enabled, to guard against obvious mistakes.
Parameters
----------
kwargs
that is what _changedData gets updated with. So, smth like
`(params=['C'], targets=True)` if parameter C and targets
got changed
"""
# Note that it also demolishes anything for repredicting,
# which should be ok in most of the cases
if __debug__:
if not self.params.retrainable:
raise RuntimeError, \
"Do not use re(train,predict) on non-retrainable %s" % \
self
if kwargs.has_key('params') or kwargs.has_key('kernel_params'):
raise ValueError, \
"Retraining for changed params not working yet"
self.__reset_changed_data()
# local bindings
chd = self._changedData
ichd = self.__invalidatedChangedData
chd.update(kwargs)
# mark for future 'train()' items which are explicitely
# mentioned as changed
for key, value in kwargs.iteritems():
if value:
ichd[key] = True
self.__changedData_isset = True
# To check if we are not fooled
if __debug__ and 'CHECK_RETRAIN' in debug.active:
for key, data_ in (('traindata', dataset.samples),
('targets', dataset.sa[self.get_space()].value)):
# so it wasn't told to be invalid
if not chd[key] and not ichd.get(key, False):
if self.__was_data_changed(key, data_, update=False):
raise RuntimeError, \
"Data %s found changed although wasn't " \
"labeled as such" % key
# TODO: parameters of classifiers... for now there is explicit
# 'forbidance' above
# Below check should be superseeded by check above, thus never occur.
# remove later on ???
if __debug__ and 'CHECK_RETRAIN' in debug.active and self.trained \
and not self._changedData['traindata'] \
and self.__trained['traindata'].shape != dataset.samples.shape:
raise ValueError, "In retrain got dataset with %s size, " \
"whenever previousely was trained on %s size" \
% (dataset.samples.shape, self.__trained['traindata'].shape)
self.train(dataset)
@accepts_samples_as_dataset
def repredict(self, dataset, **kwargs):
"""Helper to avoid check if data was changed actually changed
Useful if classifier was (re)trained but with the same data
(so just parameters were changed), so that it could be
repredicted easily (on the same data as before) without
recomputing for instance train/test kernel matrix. Should be
used with caution and always compared to the results on not
'retrainable' classifier. Some additional checks are enabled
if debug id 'CHECK_RETRAIN' is enabled, to guard against
obvious mistakes.
Parameters
----------
dataset
dataset which is conventionally given to predict
kwargs
that is what _changedData gets updated with. So, smth like
`(params=['C'], targets=True)` if parameter C and targets
got changed
"""
if len(kwargs)>0:
raise RuntimeError, \
"repredict for now should be used without params since " \
"it makes little sense to repredict if anything got changed"
if __debug__ and not self.params.retrainable:
raise RuntimeError, \
"Do not use retrain/repredict on non-retrainable classifiers"
self.__reset_changed_data()
chd = self._changedData
chd.update(**kwargs)
self.__changedData_isset = True
# check if we are attempted to perform on the same data
if __debug__ and 'CHECK_RETRAIN' in debug.active:
for key, data_ in (('testdata', dataset.samples),):
# so it wasn't told to be invalid
#if not chd[key]:# and not ichd.get(key, False):
if self.__was_data_changed(key, data_, update=False):
raise RuntimeError, \
"Data %s found changed although wasn't " \
"labeled as such" % key
# Should be superseded by above
# remove in future???
if __debug__ and 'CHECK_RETRAIN' in debug.active \
and not self._changedData['testdata'] \
and self.__trained['testdata'].shape != dataset.samples.shape:
raise ValueError, "In repredict got dataset with %s size, " \
"whenever previously was trained on %s size" \
% (dataset.samples.shape, self.__trained['testdata'].shape)
return self.predict(dataset)
# TODO: callback into retrainable parameter
#retrainable = property(fget=_getRetrainable, fset=_set_retrainable,
# doc="Specifies either classifier should be retrainable")
|