/usr/share/pyshared/mvpa2/clfs/distance.py is in python-mvpa2 2.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Distance functions to be used in kernels and elsewhere
"""
__docformat__ = 'restructuredtext'
# TODO: Make all distance functions accept 2D matrices samples x features
# and compute the distance matrix between all samples. They would
# need to be capable of dealing with unequal number of rows!
# If we would have that, we could make use of them in kNN.
import numpy as np
from mvpa2.base import externals
if __debug__:
from mvpa2.base import debug, warning
def cartesian_distance(a, b):
"""Return Cartesian distance between a and b
"""
return np.linalg.norm(a-b)
def absmin_distance(a, b):
"""Returns dinstance max(\|a-b\|)
XXX There must be better name!
XXX Actually, why is it absmin not absmax?
Useful to select a whole cube of a given "radius"
"""
return max(abs(a-b))
def manhatten_distance(a, b):
"""Return Manhatten distance between a and b
"""
return sum(abs(a-b))
def mahalanobis_distance(x, y=None, w=None):
"""Calculate Mahalanobis distance of the pairs of points.
Parameters
----------
`x`
first list of points. Rows are samples, columns are
features.
`y`
second list of points (optional)
`w` : np.ndarray
optional inverse covariance matrix between the points. It is
computed if not given
Inverse covariance matrix can be calculated with the following
w = np.linalg.solve(np.cov(x.T), np.identity(x.shape[1]))
or
w = np.linalg.inv(np.cov(x.T))
"""
# see if pairwise between two matrices or just within a single matrix
if y is None:
# pairwise distances of single matrix
# calculate the inverse correlation matrix if necessary
if w is None:
w = np.linalg.inv(np.cov(x.T))
# get some shapes of the data
mx, nx = x.shape
#mw, nw = w.shape
# allocate for the matrix to fill
d = np.zeros((mx, mx), dtype=np.float32)
for i in range(mx-1):
# get the current row to compare
xi = x[i, :]
# replicate the row
xi = xi[np.newaxis, :].repeat(mx-i-1, axis=0)
# take the distance between all the matrices
dc = x[i+1:mx, :] - xi
# scale the distance by the correlation
d[i+1:mx, i] = np.real(np.sum((np.inner(dc, w) * np.conj(dc)), 1))
# fill the other direction of the matrix
d[i, i+1:mx] = d[i+1:mx, i].T
else:
# is between two matrixes
# calculate the inverse correlation matrix if necessary
if w is None:
# calculate over all points
w = np.linalg.inv(np.cov(np.concatenate((x, y)).T))
# get some shapes of the data
mx, nx = x.shape
my, ny = y.shape
# allocate for the matrix to fill
d = np.zeros((mx, my), dtype=np.float32)
# loop over shorter of two dimensions
if mx <= my:
# loop over the x patterns
for i in range(mx):
# get the current row to compare
xi = x[i, :]
# replicate the row
xi = xi[np.newaxis, :].repeat(my, axis=0)
# take the distance between all the matrices
dc = xi - y
# scale the distance by the correlation
d[i, :] = np.real(np.sum((np.inner(dc, w) * np.conj(dc)), 1))
else:
# loop over the y patterns
for j in range(my):
# get the current row to compare
yj = y[j, :]
# replicate the row
yj = yj[np.newaxis, :].repeat(mx, axis=0)
# take the distance between all the matrices
dc = x - yj
# scale the distance by the correlation
d[:, j] = np.real(np.sum((np.inner(dc, w) * np.conj(dc)), 1))
# return the dist
return np.sqrt(d)
def squared_euclidean_distance(data1, data2=None, weight=None):
"""Compute weighted euclidean distance matrix between two datasets.
Parameters
----------
data1 : np.ndarray
first dataset
data2 : np.ndarray
second dataset. If None, compute the euclidean distance between
the first dataset versus itself.
(Defaults to None)
weight : np.ndarray
vector of weights, each one associated to each dimension of the
dataset (Defaults to None)
"""
if __debug__:
# check if both datasets are floating point
if not np.issubdtype(data1.dtype, 'f') \
or (data2 is not None and not np.issubdtype(data2.dtype, 'f')):
warning('Computing euclidean distance on integer data ' \
'is not supported.')
# removed for efficiency (see below)
#if weight is None:
# weight = np.ones(data1.shape[1], 'd') # unitary weight
# In the following you can find faster implementations of this
# basic code:
#
# squared_euclidean_distance_matrix = \
# np.zeros((data1.shape[0], data2.shape[0]), 'd')
# for i in range(size1):
# for j in range(size2):
# squared_euclidean_distance_matrix[i, j] = \
# ((data1[i, :]-data2[j, :])**2*weight).sum()
# pass
# pass
# Fast computation of distance matrix in Python+NumPy,
# adapted from Bill Baxter's post on [numpy-discussion].
# Basically: (x-y)**2*w = x*w*x - 2*x*w*y + y*y*w
# based on value of weight and data2 we might save on computation
# and resources
if weight is None:
data1w = data1
if data2 is None:
data2, data2w = data1, data1w
else:
data2w = data2
else:
data1w = data1 * weight
if data2 is None:
data2, data2w = data1, data1w
else:
data2w = data2 * weight
squared_euclidean_distance_matrix = \
(data1w * data1).sum(1)[:, None] \
-2 * np.dot(data1w, data2.T) \
+ (data2 * data2w).sum(1)
# correction to some possible numerical instabilities:
less0 = squared_euclidean_distance_matrix < 0
if __debug__ and 'CHECK_STABILITY' in debug.active:
less0num = np.sum(less0)
if less0num > 0:
norm0 = np.linalg.norm(squared_euclidean_distance_matrix[less0])
totalnorm = np.linalg.norm(squared_euclidean_distance_matrix)
if totalnorm != 0 and norm0 / totalnorm > 1e-8:
warning("Found %d elements out of %d unstable (<0) in " \
"computation of squared_euclidean_distance_matrix. " \
"Their norm is %s when total norm is %s" % \
(less0num, np.sum(less0.shape), norm0, totalnorm))
squared_euclidean_distance_matrix[less0] = 0
return squared_euclidean_distance_matrix
def one_minus_correlation(X, Y):
"""Return one minus the correlation matrix between the rows of two matrices.
This functions computes a matrix of correlations between all pairs of
rows of two matrices. Unlike NumPy's corrcoef() this function will only
considers pairs across matrices and not within, e.g. both elements of
a pair never have the same source matrix as origin.
Both arrays need to have the same number of columns.
Parameters
----------
X: 2D-array
Y: 2D-array
Examples
--------
>>> import numpy as np
>>> from mvpa2.clfs.distance import one_minus_correlation
>>> X = np.random.rand(20,80)
>>> Y = np.random.rand(5,80)
>>> C = one_minus_correlation(X, Y)
>>> print C.shape
(20, 5)
"""
# check if matrices have same number of columns
if __debug__:
if not X.shape[1] == Y.shape[1]:
raise ValueError, 'correlation() requires to matrices with the ' \
'same #columns (Got: %s and %s)' \
% (X.shape, Y.shape)
# zscore each sample/row
Zx = X - np.c_[X.mean(axis=1)]
Zx /= np.c_[X.std(axis=1)]
Zy = Y - np.c_[Y.mean(axis=1)]
Zy /= np.c_[Y.std(axis=1)]
C = ((np.matrix(Zx) * np.matrix(Zy).T) / Zx.shape[1]).A
# let it behave like a distance, i.e. smaller is closer
C -= 1.0
return np.abs(C)
def pnorm_w_python(data1, data2=None, weight=None, p=2,
heuristic='auto', use_sq_euclidean=True):
"""Weighted p-norm between two datasets (pure Python implementation)
||x - x'||_w = (\sum_{i=1...N} (w_i*|x_i - x'_i|)**p)**(1/p)
Parameters
----------
data1 : np.ndarray
First dataset
data2 : np.ndarray or None
Optional second dataset
weight : np.ndarray or None
Optional weights per 2nd dimension (features)
p
Power
heuristic : str
Which heuristic to use:
* 'samples' -- python sweep over 0th dim
* 'features' -- python sweep over 1st dim
* 'auto' decides automatically. If # of features (shape[1]) is much
larger than # of samples (shape[0]) -- use 'samples', and use
'features' otherwise
use_sq_euclidean : bool
Either to use squared_euclidean_distance_matrix for computation if p==2
"""
if weight == None:
weight = np.ones(data1.shape[1], 'd')
pass
if p == 2 and use_sq_euclidean:
return np.sqrt(squared_euclidean_distance(data1=data1, data2=data2,
weight=weight**2))
if data2 == None:
data2 = data1
pass
S1, F1 = data1.shape[:2]
S2, F2 = data2.shape[:2]
# sanity check
if not (F1==F2==weight.size):
raise ValueError, \
"Datasets should have same #columns == #weights. Got " \
"%d %d %d" % (F1, F2, weight.size)
d = np.zeros((S1, S2), 'd')
# Adjust local functions for specific p values
# pf - power function
# af - after function
if p == 1:
pf = lambda x:x
af = lambda x:x
else:
pf = lambda x:x ** p
af = lambda x:x ** (1.0/p)
# heuristic 'auto' might need to be adjusted
if heuristic == 'auto':
heuristic = {False: 'samples',
True: 'features'}[(F1/S1) < 500]
if heuristic == 'features':
# Efficient implementation if the feature size is little.
for NF in range(F1):
d += pf(np.abs(np.subtract.outer(data1[:, NF],
data2[:, NF]))*weight[NF])
pass
elif heuristic == 'samples':
# Efficient implementation if the feature size is much larger
# than number of samples
for NS in xrange(S1):
dfw = pf(np.abs(data1[NS] - data2) * weight)
d[NS] = np.sum(dfw, axis=1)
pass
else:
raise ValueError, "Unknown heuristic '%s'. Need one of " \
"'auto', 'samples', 'features'" % heuristic
return af(d)
if externals.exists('weave'):
from scipy import weave
from scipy.weave import converters
def pnorm_w(data1, data2=None, weight=None, p=2):
"""Weighted p-norm between two datasets (scipy.weave implementation)
||x - x'||_w = (\sum_{i=1...N} (w_i*|x_i - x'_i|)**p)**(1/p)
Parameters
----------
data1 : np.ndarray
First dataset
data2 : np.ndarray or None
Optional second dataset
weight : np.ndarray or None
Optional weights per 2nd dimension (features)
p
Power
"""
if weight == None:
weight = np.ones(data1.shape[1], 'd')
pass
S1, F1 = data1.shape[:2]
code = ""
if data2 == None or id(data1)==id(data2):
if not (F1==weight.size):
raise ValueError, \
"Dataset should have same #columns == #weights. Got " \
"%d %d" % (F1, weight.size)
F = F1
d = np.zeros((S1, S1), 'd')
try:
code_peritem = \
{1.0 : "tmp = tmp+weight(t)*fabs(data1(i,t)-data1(j,t))",
2.0 : "tmp2 = weight(t)*(data1(i,t)-data1(j,t));" \
" tmp = tmp + tmp2*tmp2"}[p]
except KeyError:
code_peritem = "tmp = tmp+pow(weight(t)*fabs(data1(i,t)-data1(j,t)),p)"
code = """
int i,j,t;
double tmp, tmp2;
for (i=0; i<S1-1; i++) {
for (j=i+1; j<S1; j++) {
tmp = 0.0;
for(t=0; t<F; t++) {
%s;
}
d(i,j) = tmp;
}
}
return_val = 0;
""" % code_peritem
counter = weave.inline(code,
['data1', 'S1', 'F', 'weight', 'd', 'p'],
type_converters=converters.blitz,
compiler = 'gcc')
d = d + np.triu(d).T # copy upper part to lower part
return d**(1.0/p)
S2, F2 = data2.shape[:2]
if not (F1==F2==weight.size):
raise ValueError, \
"Datasets should have same #columns == #weights. Got " \
"%d %d %d" % (F1, F2, weight.size)
F = F1
d = np.zeros((S1, S2), 'd')
try:
code_peritem = \
{1.0 : "tmp = tmp+weight(t)*fabs(data1(i,t)-data2(j,t))",
2.0 : "tmp2 = weight(t)*(data1(i,t)-data2(j,t));" \
" tmp = tmp + tmp2*tmp2"}[p]
except KeyError:
code_peritem = "tmp = tmp+pow(weight(t)*fabs(data1(i,t)-data2(j,t)),p)"
pass
code = """
int i,j,t;
double tmp, tmp2;
for (i=0; i<S1; i++) {
for (j=0; j<S2; j++) {
tmp = 0.0;
for(t=0; t<F; t++) {
%s;
}
d(i,j) = tmp;
}
}
return_val = 0;
""" % code_peritem
counter = weave.inline(code,
['data1', 'data2', 'S1', 'S2',
'F', 'weight', 'd', 'p'],
type_converters=converters.blitz,
compiler = 'gcc')
return d**(1.0/p)
else:
# Bind pure python implementation
pnorm_w = pnorm_w_python
pass
### XXX EO: This is code to compute streamline-streamline distance.
### Currently used just for testing purpose for the PrototypeMapper.
def mean_min(streamline1, streamline2):
"""Basic building block to compute several distances between
streamlines.
"""
d_e_12 = np.sqrt(squared_euclidean_distance(streamline1, streamline2))
return np.array([d_e_12.min(1).mean(), d_e_12.min(0).mean()])
def corouge(streamline1, streamline2):
"""Mean of the mean min distances. See Zhang et al., Identifying
White-Matter Fiber Bundles in DTI Data Using an Automated
Proximity-Based Fiber-Clustering Method, 2008.
"""
return mean_min(streamline1, streamline2).mean()
|