/usr/share/pyshared/mvpa2/clfs/enet.py is in python-mvpa2 2.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Elastic-Net (ENET) regression classifier."""
__docformat__ = 'restructuredtext'
# system imports
import numpy as np
import mvpa2.base.externals as externals
# do conditional to be able to build module reference
if externals.exists('elasticnet', raise_=True):
import rpy2.robjects
import rpy2.robjects.numpy2ri
if hasattr(rpy2.robjects.numpy2ri,'activate'):
rpy2.robjects.numpy2ri.activate()
RRuntimeError = rpy2.robjects.rinterface.RRuntimeError
r = rpy2.robjects.r
r.library('elasticnet')
from mvpa2.support.rpy2_addons import Rrx2
# local imports
from mvpa2.clfs.base import Classifier, accepts_dataset_as_samples, \
FailedToPredictError
from mvpa2.base.learner import FailedToTrainError
from mvpa2.measures.base import Sensitivity
if __debug__:
from mvpa2.base import debug
class ENET(Classifier):
"""Elastic-Net regression (ENET) `Classifier`.
Elastic-Net is the model selection algorithm from:
:ref:`Zou and Hastie (2005) <ZH05>` 'Regularization and Variable
Selection via the Elastic Net' Journal of the Royal Statistical
Society, Series B, 67, 301-320.
Similar to SMLR, it performs a feature selection while performing
classification, but instead of starting with all features, it
starts with none and adds them in, which is similar to boosting.
Unlike LARS it has both L1 and L2 regularization (instead of just
L1). This means that while it tries to sparsify the features it
also tries to keep redundant features, which may be very very good
for fMRI classification.
In the true nature of the PyMVPA framework, this algorithm was
actually implemented in R by Zou and Hastie and wrapped via RPy.
To make use of ENET, you must have R and RPy installed as well as
both the lars and elasticnet contributed package. You can install
the R and RPy with the following command on Debian-based machines:
sudo aptitude install python-rpy python-rpy-doc r-base-dev
You can then install the lars and elasticnet package by running R
as root and calling:
install.packages()
"""
__tags__ = [ 'enet', 'regression', 'linear', 'has_sensitivity',
'does_feature_selection', 'rpy2' ]
def __init__(self, lm=1.0, trace=False, normalize=True,
intercept=True, max_steps=None, **kwargs):
"""
Initialize ENET.
See the help in R for further details on the following parameters:
Parameters
----------
lm : float
Penalty parameter. 0 will perform LARS with no ridge regression.
Default is 1.0.
trace : boolean
Whether to print progress in R as it works.
normalize : boolean
Whether to normalize the L2 Norm.
intercept : boolean
Whether to add a non-penalized intercept to the model.
max_steps : None or int
If not None, specify the total number of iterations to run. Each
iteration adds a feature, but leaving it none will add until
convergence.
"""
# init base class first
Classifier.__init__(self, **kwargs)
# set up the params
self.__lm = lm
self.__normalize = normalize
self.__intercept = intercept
self.__trace = trace
self.__max_steps = max_steps
# pylint friendly initializations
self.__weights = None
"""The beta weights for each feature."""
self.__trained_model = None
"""The model object after training that will be used for
predictions."""
# It does not make sense to calculate a confusion matrix for a
# regression
self.ca.enable('training_stats', False)
def __repr__(self):
"""String summary of the object
"""
return """ENET(lm=%s, normalize=%s, intercept=%s, trace=%s, max_steps=%s, enable_ca=%s)""" % \
(self.__lm,
self.__normalize,
self.__intercept,
self.__trace,
self.__max_steps,
str(self.ca.enabled))
def _train(self, data):
"""Train the classifier using `data` (`Dataset`).
"""
targets = data.sa[self.get_space()].value[:, np.newaxis]
enet_kwargs = {}
if self.__max_steps is not None:
enet_kwargs['max.steps'] = self.__max_steps
try:
self.__trained_model = trained_model = \
r.enet(data.samples,
targets,
self.__lm,
normalize=self.__normalize,
intercept=self.__intercept,
trace=self.__trace,
**enet_kwargs)
except RRuntimeError, e:
raise FailedToTrainError, \
"Failed to predict on %s using %s. Exceptions was: %s" \
% (data, self, e)
# find the step with the lowest Cp (risk)
# it is often the last step if you set a max_steps
# must first convert dictionary to array
# Cp_vals = np.asarray([trained_model['Cp'][str(x)]
# for x in range(len(trained_model['Cp']))])
# self.__lowest_Cp_step = Cp_vals.argmin()
# set the weights to the last step
beta_pure = np.asanyarray(Rrx2(trained_model, 'beta.pure'))
self.__beta_pure_shape = beta_pure.shape
self.__weights = np.zeros(data.nfeatures,
dtype=beta_pure.dtype)
ind = np.asanyarray(Rrx2(trained_model, 'allset'))-1
self.__weights[ind] = beta_pure[-1,:]
# # set the weights to the final state
# self.__weights = trained_model['beta'][-1,:]
@accepts_dataset_as_samples
def _predict(self, data):
"""Predict the output for the provided data.
"""
# predict with the final state (i.e., the last step)
try:
res = r.predict(self.__trained_model,
data,
mode='step',
type='fit',
s=rpy2.robjects.IntVector(self.__beta_pure_shape))
fit = np.asanyarray(Rrx2(res, 'fit'))[:, -1]
except RRuntimeError, e:
raise FailedToPredictError, \
"Failed to predict on %s using %s. Exceptions was: %s" \
% (data, self, e)
if len(fit.shape) == 0:
# if we just got 1 sample with a scalar
fit = fit.reshape( (1,) )
self.ca.estimates = fit # charge conditional attribute
return fit
##REF: Name was automagically refactored
def _get_feature_ids(self):
"""Return ids of the used features
"""
return np.where(np.abs(self.__weights)>0)[0]
##REF: Name was automagically refactored
def get_sensitivity_analyzer(self, **kwargs):
"""Returns a sensitivity analyzer for ENET."""
return ENETWeights(self, **kwargs)
weights = property(lambda self: self.__weights)
class ENETWeights(Sensitivity):
"""`SensitivityAnalyzer` that reports the weights ENET trained
on a given `Dataset`.
"""
_LEGAL_CLFS = [ ENET ]
def _call(self, dataset=None):
"""Extract weights from ENET classifier.
ENET always has weights available, so nothing has to be computed here.
"""
clf = self.clf
weights = clf.weights
if __debug__:
debug('ENET',
"Extracting weights for ENET - "+
"Result: min=%f max=%f" %\
(np.min(weights), np.max(weights)))
return weights
|