This file is indexed.

/usr/share/pyshared/mvpa2/clfs/glmnet.py is in python-mvpa2 2.1.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""GLM-Net (GLMNET) regression and classifier."""

__docformat__ = 'restructuredtext'

# system imports
import numpy as np

import mvpa2.base.externals as externals

# do conditional to be able to build module reference
if externals.exists('glmnet', raise_=True):
    import rpy2.robjects
    import rpy2.robjects.numpy2ri
    if hasattr(rpy2.robjects.numpy2ri,'activate'):
        rpy2.robjects.numpy2ri.activate()
    RRuntimeError = rpy2.robjects.rinterface.RRuntimeError
    r = rpy2.robjects.r
    r.library('glmnet')
    from mvpa2.support.rpy2_addons import Rrx2

# local imports
from mvpa2.base import warning
from mvpa2.clfs.base import Classifier, accepts_dataset_as_samples
from mvpa2.base.learner import FailedToTrainError
from mvpa2.measures.base import Sensitivity
from mvpa2.base.param import Parameter
from mvpa2.datasets.base import Dataset

if __debug__:
    from mvpa2.base import debug

def _label2indlist(labels, ulabels):
    """Convert labels to list of unique label indicies starting at 1.
    """

    # allocate for the new one-of-M labels
    new_labels = np.zeros(len(labels), dtype=np.int)

    # loop and convert to one-of-M
    for i, c in enumerate(ulabels):
        new_labels[labels == c] = i+1

    return [str(l) for l in new_labels.tolist()]


def _label2oneofm(labels, ulabels):
    """Convert labels to one-of-M form.

    TODO: Might be useful elsewhere so could migrate into misc/
    """

    # allocate for the new one-of-M labels
    new_labels = np.zeros((len(labels), len(ulabels)))

    # loop and convert to one-of-M
    for i, c in enumerate(ulabels):
        new_labels[labels == c, i] = 1

    return new_labels


class _GLMNET(Classifier):
    """GLM-Net regression (GLMNET) `Classifier`.

    GLM-Net is the model selection algorithm from:

    Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization
    Paths for Generalized Linear Models via Coordinate
    Descent. http://www-stat.stanford.edu/~hastie/Papers/glmnet.pdf

    To make use of GLMNET, you must have R and RPy2 installed as well
    as the glmnet contributed package. You can install the R and RPy2
    with the following command on Debian-based machines::

      sudo aptitude install python-rpy2 r-base-dev

    You can then install the glmnet package by running R
    as root and calling::

      install.packages()

    """

    __tags__ = [ 'glmnet', 'linear', 'has_sensitivity',
                 'does_feature_selection', 'rpy2'
                 ]

    family = Parameter('gaussian',
                       allowedtype='basestring',
                       choices=["gaussian", "multinomial"],
                       ro=True,
                       doc="""Response type of your targets (either 'gaussian'
                       for regression or 'multinomial' for classification).""")

    alpha = Parameter(1.0, min=0.01, max=1.0, allowedtype='float',
                      doc="""The elastic net mixing parameter.
                      Larger values will give rise to
                      less L2 regularization, with alpha=1.0
                      as a true LASSO penalty.""")

    nlambda = Parameter(100, allowedtype='int', min=1,
                        doc="""Maximum number of lambdas to calculate
                        before stopping if not converged.""")

    standardize = Parameter(True, allowedtype='bool',
                            doc="""Whether to standardize the variables
                            prior to fitting.""")

    thresh = Parameter(1e-4, min=1e-10, max=1.0, allowedtype='float',
             doc="""Convergence threshold for coordinate descent.""")

    pmax = Parameter(None, min=1, allowedtype='None or int',
             doc="""Limit the maximum number of variables ever to be
             nonzero.""")

    maxit = Parameter(100, min=10, allowedtype='int',
             doc="""Maximum number of outer-loop iterations for
             'multinomial' families.""")

    model_type = Parameter('covariance',
                           allowedtype='basestring',
                           choices=["covariance", "naive"],
             doc="""'covariance' saves all inner-products ever
             computed and can be much faster than 'naive'. The
             latter can be more efficient for
             nfeatures>>nsamples situations.""")

    def __init__(self, **kwargs):
        """
        Initialize GLM-Net.

        See the help in R for further details on the parameters
        """
        # init base class first
        Classifier.__init__(self, **kwargs)

        # pylint friendly initializations
        self._utargets = None
        self.__weights = None
        """The beta weights for each feature."""
        self.__trained_model = None
        """The model object after training that will be used for
        predictions."""
        self.__last_lambda = None
        """Lambda obtained on the last step"""

#     def __repr__(self):
#         """String summary of the object
#         """
#         return """ENET(lm=%s, normalize=%s, intercept=%s, trace=%s, max_steps=%s, enable_ca=%s)""" % \
#                (self.__lm,
#                 self.__normalize,
#                 self.__intercept,
#                 self.__trace,
#                 self.__max_steps,
#                 str(self.ca.enabled))

    def _train(self, dataset):
        """Train the classifier using `data` (`Dataset`).
        """
        # process targets based on the model family
        targets = dataset.sa[self.get_space()].value
        if self.params.family == 'gaussian':
            # do nothing, just save the targets as a list
            #targets = targets.tolist()
            self._utargets = None
        elif self.params.family == 'multinomial':
            # turn lables into list of range values starting at 1
            #targets = _label2indlist(dataset.targets,
            #                        dataset.uniquetargets)
            targets_unique = dataset.sa[self.get_space()].unique
            targets = _label2oneofm(targets, targets_unique)

            # save some properties of the data/classification
            self._utargets = targets_unique.copy()

        # process the pmax
        if self.params.pmax is None:
            # set it to the num features
            pmax = dataset.nfeatures
        else:
            # use the value
            pmax = self.params.pmax

        try:
            self.__trained_model = trained_model = \
                r.glmnet(dataset.samples,
                         targets,
                         family=self.params.family,
                         alpha=self.params.alpha,
                         nlambda=self.params.nlambda,
                         standardize=self.params.standardize,
                         thresh=self.params.thresh,
                         pmax=pmax,
                         maxit=self.params.maxit,
                         type=self.params.model_type)
        except RRuntimeError, e:
            raise FailedToTrainError, \
                  "Failed to train %s on %s. Got '%s' during call r.glmnet()." \
                  % (self, dataset, e)

        self.__last_lambda = last_lambda = \
                             np.asanyarray(Rrx2(trained_model, 'lambda'))[-1]

        # set the weights to the last step
        weights = r.coef(trained_model, s=last_lambda)
        if self.params.family == 'multinomial':
            self.__weights = np.hstack([np.array(r['as.matrix'](weights[i]))[1:]
                                       for i in range(len(weights))])
        elif self.params.family == 'gaussian':
            self.__weights = np.array(r['as.matrix'](weights))[1:, 0]
        else:
            raise NotImplementedError, \
                  "Somehow managed to get here with family %s." % \
                  (self.params.family,)

    @accepts_dataset_as_samples
    def _predict(self, data):
        """
        Predict the output for the provided data.
        """
        # predict with standard method
        values = np.array(r.predict(self.__trained_model,
                                   newx=data,
                                   type='link',
                                   s=self.__last_lambda))

        # predict with the final state (i.e., the last step)
        classes = None
        if self.params.family == 'multinomial':
            # remove last dimension of values
            values = values[:, :, 0]

            # get the classes too (they are 1-indexed)
            class_ind = np.array(r.predict(self.__trained_model,
                                          newx=data,
                                          type='class',
                                          s=self.__last_lambda))

            # convert to 0-based ints
            class_ind = (class_ind-1).astype('int')

            # convert to actual targets
            # XXX If just one sample is predicted, the converted predictions
            # array is just 1D, hence it yields an IndexError on [:,0]
            # Modified to .squeeze() which should do the same.
            # Please acknowledge and remove this comment.
            #classes = self._utargets[class_ind][:,0]
            classes = self._utargets[class_ind].squeeze()
        else:
            # is gaussian, so just remove last dim of values
            values = values[:, 0]

        # values need to be set anyways if values state is enabled
        self.ca.estimates = values
        if classes is not None:
            # set the values and return none
            return classes
        else:
            # return the values as predictions
            return values


    def _init_internals(self):
        """Reinitialize all internals
        """
        self._utargets = None
        self.__weights = None
        """The beta weights for each feature."""
        self.__trained_model = None
        """The model object after training that will be used for
        predictions."""
        self.__last_lambda = None
        """Lambda obtained on the last step"""

    def _untrain(self):
        super(_GLMNET, self)._untrain()
        self._init_internals()


    ##REF: Name was automagically refactored
    def _get_feature_ids(self):
        """Return ids of the used features
        """
        return np.where(np.abs(self.__weights)>0)[0]


    ##REF: Name was automagically refactored
    def get_sensitivity_analyzer(self, **kwargs):
        """Returns a sensitivity analyzer for GLMNET."""
        return GLMNETWeights(self, **kwargs)

    weights = property(lambda self: self.__weights)



class GLMNETWeights(Sensitivity):
    """`SensitivityAnalyzer` that reports the weights GLMNET trained
    on a given `Dataset`.
    """

    _LEGAL_CLFS = [ _GLMNET ]

    def _call(self, dataset=None):
        """Extract weights from GLMNET classifier.

        GLMNET always has weights available, so nothing has to be computed here.
        """
        clf = self.clf
        weights = clf.weights

        if __debug__:
            debug('GLMNET',
                  "Extracting weights for GLMNET - "+
                  "Result: min=%f max=%f" %\
                  (np.min(weights), np.max(weights)))

        #return weights
        if clf.params.family == 'multinomial':
            return Dataset(weights.T, sa={clf.get_space(): clf._utargets})
        else:
            return Dataset(weights[np.newaxis])


class GLMNET_R(_GLMNET):
    """
    GLM-NET Gaussian Regression Classifier.

    This is the GLM-NET algorithm from

    Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization
    Paths for Generalized Linear Models via Coordinate
    Descent. http://www-stat.stanford.edu/~hastie/Papers/glmnet.pdf

    parameterized to be a regression.

    See GLMNET_C for the multinomial classifier version.

    """

    __tags__ = _GLMNET.__tags__ + ['regression']

    def __init__(self,  **kwargs):
        """
        Initialize GLM-Net.

        See the help in R for further details on the parameters
        """
        # make sure they didn't specify incompatible model
        regr_family = 'gaussian'
        family = kwargs.pop('family', regr_family).lower()
        if family != regr_family:
            warning('You specified the parameter family=%s, but we '
                    'force this to be "%s" for regression.'
                    % (family, regr_family))
            family = regr_family

        # init base class first, forcing regression
        _GLMNET.__init__(self, family=family, **kwargs)


class GLMNET_C(_GLMNET):
    """
    GLM-NET Multinomial Classifier.

    This is the GLM-NET algorithm from

    Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization
    Paths for Generalized Linear Models via Coordinate
    Descent. http://www-stat.stanford.edu/~hastie/Papers/glmnet.pdf

    parameterized to be a multinomial classifier.

    See GLMNET_Class for the gaussian regression version.

    """

    __tags__ = _GLMNET.__tags__ + ['multiclass', 'binary']

    def __init__(self,  **kwargs):
        """
        Initialize GLM-Net multinomial classifier.

        See the help in R for further details on the parameters
        """
        # make sure they didn't specify regression
        if not kwargs.pop('family', None) is None:
            warning('You specified the "family" parameter, but we '
                    'force this to be "multinomial".')

        # init base class first, forcing regression
        _GLMNET.__init__(self, family='multinomial', **kwargs)