/usr/share/pyshared/mvpa2/clfs/gnb.py is in python-mvpa2 2.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Gaussian Naive Bayes Classifier
Basic implementation of Gaussian Naive Bayes classifier.
"""
"""
TODO: for now all estimates are allocated at the first level of GNB
instance (e.g. self.priors, etc) -- move them deeper or into a
corresponding "Collection"?
The same for GNBSearchlight
"""
__docformat__ = 'restructuredtext'
import numpy as np
from numpy import ones, zeros, sum, abs, isfinite, dot
from mvpa2.base import warning, externals
from mvpa2.clfs.base import Classifier, accepts_dataset_as_samples
from mvpa2.base.param import Parameter
from mvpa2.base.state import ConditionalAttribute
#from mvpa2.measures.base import Sensitivity
if __debug__:
from mvpa2.base import debug
__all__ = [ "GNB" ]
class GNB(Classifier):
"""Gaussian Naive Bayes `Classifier`.
`GNB` is a probabilistic classifier relying on Bayes rule to
estimate posterior probabilities of labels given the data. Naive
assumption in it is an independence of the features, which allows
to combine per-feature likelihoods by a simple product across
likelihoods of "independent" features.
See http://en.wikipedia.org/wiki/Naive_bayes for more information.
Provided here implementation is "naive" on its own -- various
aspects could be improved, but it has its own advantages:
- implementation is simple and straightforward
- no data copying while considering samples of specific class
- provides alternative ways to assess prior distribution of the
classes in the case of unbalanced sets of samples (see parameter
`prior`)
- makes use of NumPy broadcasting mechanism, so should be
relatively efficient
- should work for any dimensionality of samples
`GNB` is listed both as linear and non-linear classifier, since
specifics of separating boundary depends on the data and/or
parameters: linear separation is achieved whenever samples are
balanced (or ``prior='uniform'``) and features have the same
variance across different classes (i.e. if
``common_variance=True`` to enforce this).
Whenever decisions are made based on log-probabilities (parameter
``logprob=True``, which is the default), then conditional
attribute `values`, if enabled, would also contain
log-probabilities. Also mention that normalization by the
evidence (P(data)) is disabled by default since it has no impact
per se on classification decision. You might like to set
parameter normalize to True if you want to access properly scaled
probabilities in `values` conditional attribute.
"""
# XXX decide when should we set corresponding internal,
# since it depends actually on the data -- no clear way,
# so set both linear and non-linear
__tags__ = [ 'gnb', 'linear', 'non-linear',
'binary', 'multiclass' ]
common_variance = Parameter(False, allowedtype='bool',
doc="""Use the same variance across all classes.""")
prior = Parameter('laplacian_smoothing',
allowedtype='basestring',
choices=["laplacian_smoothing", "uniform", "ratio"],
doc="""How to compute prior distribution.""")
logprob = Parameter(True, allowedtype='bool',
doc="""Operate on log probabilities. Preferable to avoid unneeded
exponentiation and loose precision.
If set, logprobs are stored in `values`""")
normalize = Parameter(False, allowedtype='bool',
doc="""Normalize (log)prob by P(data). Requires probabilities thus
for `logprob` case would require exponentiation of 'logprob's, thus
disabled by default since does not impact classification output.
""")
def __init__(self, **kwargs):
"""Initialize an GNB classifier.
"""
# init base class first
Classifier.__init__(self, **kwargs)
# pylint friendly initializations
self.means = None
"""Means of features per class"""
self.variances = None
"""Variances per class, but "vars" is taken ;)"""
self.ulabels = None
"""Labels classifier was trained on"""
self.priors = None
"""Class probabilities"""
# Define internal state of classifier
self._norm_weight = None
def _get_priors(self, nlabels, nsamples, nsamples_per_class):
"""Return prior probabilities given data
"""
# helper function - squash all dimensions but 1
squash = lambda x: np.atleast_1d(x.squeeze())
prior = self.params.prior
if prior == 'uniform':
priors = np.ones((nlabels,))/nlabels
elif prior == 'laplacian_smoothing':
priors = (1+squash(nsamples_per_class)) \
/ (float(nsamples) + nlabels)
elif prior == 'ratio':
priors = squash(nsamples_per_class) / float(nsamples)
else:
raise ValueError(
"No idea on how to handle '%s' way to compute priors"
% self.params.prior)
return priors
def _train(self, dataset):
"""Train the classifier using `dataset` (`Dataset`).
"""
params = self.params
targets_sa_name = self.get_space()
targets_sa = dataset.sa[targets_sa_name]
# get the dataset information into easy vars
X = dataset.samples
labels = targets_sa.value
self.ulabels = ulabels = targets_sa.unique
nlabels = len(ulabels)
label2index = dict((l, il) for il, l in enumerate(ulabels))
# set the feature dimensions
nsamples = len(X)
s_shape = X.shape[1:] # shape of a single sample
self.means = means = \
np.zeros((nlabels, ) + s_shape)
self.variances = variances = \
np.zeros((nlabels, ) + s_shape)
# degenerate dimension are added for easy broadcasting later on
nsamples_per_class = np.zeros((nlabels,) + (1,)*len(s_shape))
# Estimate means and number of samples per each label
for s, l in zip(X, labels):
il = label2index[l] # index of the label
nsamples_per_class[il] += 1
means[il] += s
# helper function - squash all dimensions but 1
squash = lambda x: np.atleast_1d(x.squeeze())
## Actually compute the means
non0labels = (squash(nsamples_per_class) != 0)
means[non0labels] /= nsamples_per_class[non0labels]
# Store prior probabilities
self.priors = self._get_priors(nlabels, nsamples, nsamples_per_class)
# Estimate variances
# better loop than repmat! ;)
for s, l in zip(X, labels):
il = label2index[l] # index of the label
variances[il] += (s - means[il])**2
## Actually compute the variances
if params.common_variance:
# we need to get global std
cvar = np.sum(variances, axis=0)/nsamples # sum across labels
# broadcast the same variance across labels
variances[:] = cvar
else:
variances[non0labels] /= nsamples_per_class[non0labels]
# Precompute and store weighting coefficient for Gaussian
if params.logprob:
# it would be added to exponent
self._norm_weight = -0.5 * np.log(2*np.pi*variances)
else:
self._norm_weight = 1.0/np.sqrt(2*np.pi*variances)
if __debug__ and 'GNB' in debug.active:
debug('GNB', "training finished on data.shape=%s " % (X.shape, )
+ "min:max(data)=%f:%f" % (np.min(X), np.max(X)))
def _untrain(self):
"""Untrain classifier and reset all learnt params
"""
self.means = None
self.variances = None
self.ulabels = None
self.priors = None
super(GNB, self)._untrain()
@accepts_dataset_as_samples
def _predict(self, data):
"""Predict the output for the provided data.
"""
params = self.params
# argument of exponentiation
scaled_distances = \
-0.5 * (((data - self.means[:, np.newaxis, ...])**2) \
/ self.variances[:, np.newaxis, ...])
if params.logprob:
# if self.params.common_variance:
# XXX YOH:
# For decision there is no need to actually compute
# properly scaled p, ie 1/sqrt(2pi * sigma_i) could be
# simply discarded since it is common across features AND
# classes
# For completeness -- computing everything now even in logprob
lprob_csfs = self._norm_weight[:, np.newaxis, ...] \
+ scaled_distances
# XXX for now just cut/paste with different operators, but
# could just bind them and reuse in the same equations
# Naive part -- just a product of probabilities across features
## First we need to reshape to get class x samples x features
lprob_csf = lprob_csfs.reshape(
lprob_csfs.shape[:2] + (-1,))
## Now -- sum across features
lprob_cs = lprob_csf.sum(axis=2)
# Incorporate class probabilities:
prob_cs_cp = lprob_cs + np.log(self.priors[:, np.newaxis])
else:
# Just a regular Normal distribution with per
# feature/class mean and variances
prob_csfs = \
self._norm_weight[:, np.newaxis, ...] \
* np.exp(scaled_distances)
# Naive part -- just a product of probabilities across features
## First we need to reshape to get class x samples x features
prob_csf = prob_csfs.reshape(
prob_csfs.shape[:2] + (-1,))
## Now -- product across features
prob_cs = prob_csf.prod(axis=2)
# Incorporate class probabilities:
prob_cs_cp = prob_cs * self.priors[:, np.newaxis]
# Normalize by evidence P(data)
if params.normalize:
if params.logprob:
prob_cs_cp_real = np.exp(prob_cs_cp)
else:
prob_cs_cp_real = prob_cs_cp
prob_s_cp_marginals = np.sum(prob_cs_cp_real, axis=0)
if params.logprob:
prob_cs_cp -= np.log(prob_s_cp_marginals)
else:
prob_cs_cp /= prob_s_cp_marginals
# Take the class with maximal (log)probability
winners = prob_cs_cp.argmax(axis=0)
predictions = [self.ulabels[c] for c in winners]
# set to the probabilities per class
self.ca.estimates = prob_cs_cp.T
if __debug__ and 'GNB' in debug.active:
debug('GNB', "predict on data.shape=%s min:max(data)=%f:%f " %
(data.shape, np.min(data), np.max(data)))
return predictions
# XXX Later come up with some
# could be a simple t-test maps using distributions
# per each class
#def get_sensitivity_analyzer(self, **kwargs):
# """Returns a sensitivity analyzer for GNB."""
# return GNBWeights(self, **kwargs)
# XXX Is there any reason to use properties?
#means = property(lambda self: self.__biases)
#variances = property(lambda self: self.__weights)
## class GNBWeights(Sensitivity):
## """`SensitivityAnalyzer` that reports the weights GNB trained
## on a given `Dataset`.
## """
## _LEGAL_CLFS = [ GNB ]
## def _call(self, dataset=None):
## """Extract weights from GNB classifier.
## GNB always has weights available, so nothing has to be computed here.
## """
## clf = self.clf
## means = clf.means
## XXX we can do something better ;)
## return means
|