/usr/share/pyshared/mvpa2/datasets/miscfx.py is in python-mvpa2 2.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Misc function performing operations on datasets.
All the functions defined in this module must accept dataset as the
first argument since they are bound to Dataset class in the trailer.
"""
__docformat__ = 'restructuredtext'
from operator import isSequenceType
import random
import numpy as np
from mvpa2.base.dataset import datasetmethod
from mvpa2.datasets.base import Dataset
from mvpa2.base.dochelpers import table2string
from mvpa2.misc.support import get_nelements_per_value
from mvpa2.base import externals, warning
if __debug__:
from mvpa2.base import debug
@datasetmethod
##REF: Name was automagically refactored
def aggregate_features(dataset, fx=np.mean):
"""Apply a function to each row of the samples matrix of a dataset.
The functor given as `fx` has to honour an `axis` keyword argument in the
way that NumPy used it (e.g. NumPy.mean, var).
Returns
-------
a new `Dataset` object with the aggregated feature(s).
"""
agg = fx(dataset.samples, axis=1)
return Dataset(samples=np.array(agg, ndmin=2).T, sa=dataset.sa)
@datasetmethod
##REF: Name was automagically refactored
def remove_invariant_features(dataset):
"""Returns a new dataset with all invariant features removed.
"""
return dataset[:, dataset.samples.std(axis=0).nonzero()[0]]
@datasetmethod
##REF: Name was automagically refactored
def coarsen_chunks(source, nchunks=4):
"""Change chunking of the dataset
Group chunks into groups to match desired number of chunks. Makes
sense if originally there were no strong groupping into chunks or
each sample was independent, thus belonged to its own chunk
Parameters
----------
source : Dataset or list of chunk ids
dataset or list of chunk ids to operate on. If Dataset, then its chunks
get modified
nchunks : int
desired number of chunks
"""
if isinstance(source, Dataset):
chunks = source.chunks
else:
chunks = source
chunks_unique = np.unique(chunks)
nchunks_orig = len(chunks_unique)
if nchunks_orig < nchunks:
raise ValueError, \
"Original number of chunks is %d. Cannot coarse them " \
"to get %d chunks" % (nchunks_orig, nchunks)
# figure out number of samples per each chunk
counts = dict(zip(chunks_unique, [ 0 ] * len(chunks_unique)))
for c in chunks:
counts[c] += 1
# now we need to group chunks to get more or less equalized number
# of samples per chunk. No sophistication is done -- just
# consecutively group to get close to desired number of samples
# per chunk
avg_chunk_size = np.sum(counts.values())*1.0/nchunks
chunks_groups = []
cur_chunk = []
nchunks = 0
cur_chunk_nsamples = 0
samples_counted = 0
for i, c in enumerate(chunks_unique):
cc = counts[c]
cur_chunk += [c]
cur_chunk_nsamples += cc
# time to get a new chunk?
if (samples_counted + cur_chunk_nsamples
>= (nchunks+1)*avg_chunk_size) or i==nchunks_orig-1:
chunks_groups.append(cur_chunk)
samples_counted += cur_chunk_nsamples
cur_chunk_nsamples = 0
cur_chunk = []
nchunks += 1
if len(chunks_groups) != nchunks:
warning("Apparently logic in coarseChunks is wrong. "
"It was desired to get %d chunks, got %d"
% (nchunks, len(chunks_groups)))
# remap using groups
# create dictionary
chunks_map = {}
for i, group in enumerate(chunks_groups):
for c in group:
chunks_map[c] = i
# we always want an array!
chunks_new = np.array([chunks_map[x] for x in chunks])
if __debug__:
debug("DS_", "Using dictionary %s to remap old chunks %s into new %s"
% (chunks_map, chunks, chunks_new))
if isinstance(source, Dataset):
if __debug__:
debug("DS", "Coarsing %d chunks into %d chunks for %s"
%(nchunks_orig, len(chunks_new), source))
source.sa['chunks'].value = chunks_new
return
else:
return chunks_new
@datasetmethod
## TODO: make more efficient and more generic (accept >=1 attrs to
## operate on)
def get_samples_per_chunk_target(dataset,
targets_attr='targets', chunks_attr='chunks'):
"""Returns an array with the number of samples per target in each chunk.
Array shape is (chunks x targets).
Parameters
----------
dataset : Dataset
Source dataset.
"""
# shortcuts/local bindings
ta = dataset.sa[targets_attr]
ca = dataset.sa[chunks_attr]
# unique
ut = ta.unique
uc = ca.unique
# all
ts = ta.value
cs = ca.value
count = np.zeros((len(uc), len(ut)), dtype='uint')
for ic, c in enumerate(uc):
for it, t in enumerate(ut):
count[ic, it] = np.sum(np.logical_and(ts==t, cs==c))
return count
@datasetmethod
def random_samples(dataset, npertarget, targets_attr='targets'):
"""Create a dataset with a random subset of samples.
Parameters
----------
dataset : Dataset
npertarget : int or list
If an `int` is given, the specified number of samples is randomly
chosen from the group of samples sharing a unique target value. Total
number of selected samples: npertarget x len(uniquetargets).
If a `list` is given of length matching the unique target values, it
specifies the number of samples chosen for each particular unique
target.
targets_attr : str, optional
Returns
-------
Dataset
A dataset instance for the chosen samples. All feature attributes and
dataset attribute share there data with the source dataset.
"""
satargets = dataset.sa[targets_attr]
utargets = satargets.unique
# if interger is given take this value for all classes
if isinstance(npertarget, int):
npertarget = [npertarget for i in utargets]
sample = []
# for each available class
targets = satargets.value
for i, r in enumerate(utargets):
# get the list of pattern ids for this class
sample += random.sample((targets == r).nonzero()[0], npertarget[i] )
return dataset[sample]
@datasetmethod
def get_nsamples_per_attr(dataset, attr):
"""Returns the number of samples per unique value of a sample attribute.
Parameters
----------
attr : str
Name of the sample attribute
Returns
-------
dict with the number of samples (value) per unique attribute (key).
"""
return get_nelements_per_value(dataset.sa[attr])
@datasetmethod
def get_samples_by_attr(dataset, attr, values, sort=True):
"""Return indices of samples given a list of attributes
"""
if not isSequenceType(values) \
or isinstance(values, basestring):
values = [ values ]
# TODO: compare to plain for loop through the targets
# on a real data example
sel = np.array([], dtype=np.int16)
sa = dataset.sa
for value in values:
sel = np.concatenate((
sel, np.where(sa[attr].value == value)[0]))
if sort:
# place samples in the right order
sel.sort()
return sel
@datasetmethod
def summary(dataset, stats=True, lstats='auto', sstats='auto', idhash=False,
targets_attr='targets', chunks_attr='chunks',
maxc=30, maxt=20):
"""String summary over the object
Parameters
----------
stats : bool
Include some basic statistics (mean, std, var) over dataset samples
lstats : 'auto' or bool
Include statistics on chunks/targets. If 'auto', includes only if both
targets_attr and chunks_attr are present.
sstats : 'auto' or bool
Sequence (order) statistics. If 'auto', includes only if
targets_attr is present.
idhash : bool
Include idhash value for dataset and samples
targets_attr : str, optional
Name of sample attributes of targets
chunks_attr : str, optional
Name of sample attributes of chunks -- independent groups of samples
maxt : int
Maximal number of targets when provide details on targets/chunks
maxc : int
Maximal number of chunks when provide details on targets/chunks
"""
# local bindings
samples = dataset.samples
sa = dataset.sa
s = str(dataset)[1:-1]
if idhash:
s += '\nID-Hashes: %s' % dataset.idhash
# Deduce if necessary lstats and sstats
if lstats is 'auto':
lstats = (targets_attr in sa) and (chunks_attr in sa)
if sstats is 'auto':
sstats = (targets_attr in sa)
ssep = (' ', '\n')[lstats]
## Possibly summarize attributes listed as having unique
if stats:
if np.issctype(samples.dtype):
# TODO -- avg per chunk?
# XXX We might like to use scipy.stats.describe to get
# quick summary statistics (mean/range/skewness/kurtosis)
if dataset.nfeatures:
s += "%sstats: mean=%g std=%g var=%g min=%g max=%g\n" % \
(ssep, np.mean(samples), np.std(samples),
np.var(samples), np.min(samples), np.max(samples))
else:
s += "%sstats: dataset has no features\n" % ssep
else:
s += "%sstats: no stats for dataset of '%s' dtype" % (ssep, samples.dtype)
if lstats:
try:
s += dataset.summary_targets(
targets_attr=targets_attr, chunks_attr=chunks_attr,
maxc=maxc, maxt=maxt)
except KeyError, e:
s += 'No per %s/%s due to %r' % (targets_attr, chunks_attr, e)
if sstats and not targets_attr is None:
if len(dataset.sa[targets_attr].unique) < maxt:
ss = SequenceStats(dataset.sa[targets_attr].value)
s += str(ss)
else:
s += "Number of unique %s > %d thus no sequence statistics" % \
(targets_attr, maxt)
return s
@datasetmethod
def summary_targets(dataset, targets_attr='targets', chunks_attr='chunks',
maxc=30, maxt=20):
"""Provide summary statistics over the targets and chunks
Parameters
----------
dataset : `Dataset`
Dataset to operate on
targets_attr : str, optional
Name of sample attributes of targets
chunks_attr : str, optional
Name of sample attributes of chunks -- independent groups of samples
maxc : int
Maximal number of chunks when provide details
maxt : int
Maximal number of targets when provide details
"""
# We better avoid bound function since if people only
# imported Dataset without miscfx it would fail
spcl = get_samples_per_chunk_target(
dataset, targets_attr=targets_attr, chunks_attr=chunks_attr)
# XXX couldn't they be unordered?
ul = dataset.sa[targets_attr].unique.tolist()
uc = dataset.sa[chunks_attr].unique.tolist()
s = ""
if len(ul) < maxt and len(uc) < maxc:
s += "\nCounts of targets in each chunk:"
# only in a reasonable case do printing
table = [[' %s\\%s' % (chunks_attr, targets_attr)] + ul]
table += [[''] + ['---'] * len(ul)]
for c, counts in zip(uc, spcl):
table.append([ str(c) ] + counts.tolist())
s += '\n' + table2string(table)
else:
s += "No details due to large number of targets or chunks. " \
"Increase maxc and maxt if desired"
def cl_stats(axis, u, name1, name2):
"""Compute statistics per target
"""
stats = {'min': np.min(spcl, axis=axis),
'max': np.max(spcl, axis=axis),
'mean': np.mean(spcl, axis=axis),
'std': np.std(spcl, axis=axis),
'#%s' % name2: np.sum(spcl>0, axis=axis)}
entries = [' ' + name1, 'mean', 'std', 'min', 'max', '#%s' % name2]
table = [ entries ]
for i, l in enumerate(u):
d = {' ' + name1 : l}
d.update(dict([ (k, stats[k][i]) for k in stats.keys()]))
table.append( [ ('%.3g', '%s')[isinstance(d[e], basestring)]
% d[e] for e in entries] )
return '\nSummary for %s across %s\n' % (name1, name2) \
+ table2string(table)
if len(ul) < maxt:
s += cl_stats(0, ul, targets_attr, chunks_attr)
if len(uc) < maxc:
s += cl_stats(1, uc, chunks_attr, targets_attr)
return s
class SequenceStats(dict):
"""Simple helper to provide representation of sequence statistics
Matlab analog:
http://cfn.upenn.edu/aguirre/code/matlablib/mseq/mtest.m
WARNING: Experimental -- API might change without warning!
Current implementation is ugly!
"""
# TODO: operate given some "chunks" so it could report also
# counter-balance for the borders, mean across chunks, etc
def __init__(self, seq, order=2):#, chunks=None, chunks_attr=None):
"""Initialize SequenceStats
Parameters
----------
seq : list or ndarray
Actual sequence of targets
order : int
Maximal order of counter-balancing check. For perfect
counterbalancing all matrices should be identical
"""
"""
chunks : None or list or ndarray
Chunks to use if `perchunk`=True
"""
dict.__init__(self)
self.order = order
self._seq = seq
self.stats = None
self._str_stats = None
self._compute()
def __repr__(self):
"""Representation of SequenceStats
"""
return "SequenceStats(%s, order=%d)" % (repr(self._seq), self.order)
def __str__(self):
return self._str_stats
def _compute(self):
"""Compute stats and string representation
"""
# Do actual computation
order = self.order
seq = list(self._seq) # assure list
nsamples = len(seq) # # of samples/targets
utargets = sorted(list(set(seq))) # unique targets
ntargets = len(utargets) # # of targets
# mapping for targets
targets_map = dict([(l, i) for i, l in enumerate(utargets)])
# map sequence first
seqm = [targets_map[i] for i in seq]
# npertarget = np.bincount(seqm)
res = dict(utargets=utargets)
# Estimate counter-balance
cbcounts = np.zeros((order, ntargets, ntargets), dtype=int)
for cb in xrange(order):
for i, j in zip(seqm[:-(cb+1)], seqm[cb+1:]):
cbcounts[cb, i, j] += 1
res['cbcounts'] = cbcounts
"""
Lets compute relative counter-balancing
Ideally, npertarget[i]/ntargets should precede each target
"""
# Autocorrelation
corr = []
# for all possible shifts:
for shift in xrange(1, nsamples):
shifted = seqm[shift:] + seqm[:shift]
# ??? User pearsonsr with p may be?
corr += [np.corrcoef(seqm, shifted)[0, 1]]
# ??? report high (anti)correlations?
res['corrcoef'] = corr = np.array(corr)
res['sumabscorr'] = sumabscorr = np.sum(np.abs(corr))
self.update(res)
# Assign textual summary
# XXX move into a helper function and do on demand
t = [ [""] * (1 + self.order*(ntargets+1)) for i in xrange(ntargets+1) ]
t[0][0] = "Targets/Order"
for i, l in enumerate(utargets):
t[i+1][0] = '%s:' % l
for cb in xrange(order):
t[0][1+cb*(ntargets+1)] = "O%d" % (cb+1)
for i in xrange(ntargets+1):
t[i][(cb+1)*(ntargets+1)] = " | "
m = cbcounts[cb]
# ??? there should be better way to get indexes
ind = np.where(~np.isnan(m))
for i, j in zip(*ind):
t[1+i][1+cb*(ntargets+1)+j] = '%d' % m[i, j]
sout = "Sequence statistics for %d entries" \
" from set %s\n" % (len(seq), utargets) + \
"Counter-balance table for orders up to %d:\n" % order \
+ table2string(t)
if len(corr):
sout += "Correlations: min=%.2g max=%.2g mean=%.2g sum(abs)=%.2g" \
% (min(corr), max(corr), np.mean(corr), sumabscorr)
self._str_stats = sout
def plot(self):
"""Plot correlation coefficients
"""
externals.exists('pylab', raise_=True)
import pylab as pl
pl.plot(self['corrcoef'])
pl.title('Auto-correlation of the sequence')
pl.xlabel('Offset')
pl.ylabel('Correlation Coefficient')
pl.show()
|