/usr/share/pyshared/mvpa2/mappers/flatten.py is in python-mvpa2 2.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234  | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Data mapper"""
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2.base.dochelpers import _str, _repr_attrs
from mvpa2.mappers.base import Mapper, accepts_dataset_as_samples, \
        ChainMapper
from mvpa2.featsel.base import StaticFeatureSelection
from mvpa2.misc.support import is_in_volume
if __debug__:
    from mvpa2.base import debug
class FlattenMapper(Mapper):
    """Reshaping mapper that flattens multidimensional arrays into 1D vectors.
    This mapper performs relatively cheap reshaping of arrays from ND into 1D
    and back upon reverse-mapping. The mapper has to be trained with a data
    array or dataset that has the first axis as the samples-separating
    dimension. Mapper training will set the particular multidimensional shape
    the mapper is transforming into 1D vector samples. The setting remains in
    place until the mapper is retrained.
    Notes
    -----
    At present this mapper is only designed (and tested) to work with C-ordered
    arrays.
    """
    def __init__(self, shape=None, maxdims=None, **kwargs):
        """
        Parameters
        ----------
        shape : tuple
          The shape of a single sample. If this argument is given the mapper
          is going to be fully configured and no training is necessary anymore.
        maxdims : int or None
          The maximum number of dimensions to flatten (starting with the first).
          If None, all axes will be flattened.
        """
        # by default auto train
        kwargs['auto_train'] = kwargs.get('auto_train', True)
        Mapper.__init__(self, **kwargs)
        self.__origshape = None         # pylint pacifier
        self.__maxdims = maxdims
        if not shape is None:
            self._train_with_shape(shape)
    def __repr__(self, prefixes=[]):
        return super(FlattenMapper, self).__repr__(
            prefixes=prefixes
            + _repr_attrs(self, ['shape', 'maxdims']))
    def __str__(self):
        return _str(self)
    @accepts_dataset_as_samples
    def _train(self, samples):
        """Train the mapper.
        Parameters
        ----------
        samples : array-like
          The first axis has to represent the samples-separating dimension. In
          case of a 1D-array each element is considered to be an individual
          element and *not* the whole array as a single sample!
        """
        self._train_with_shape(samples.shape[1:])
    def _train_with_shape(self, shape):
        """Configure the mapper with a particular sample shape.
        """
        # infer the sample shape from the data under the assumption that the
        # first axis is the samples-separating dimension
        self.__origshape = shape
        # flag the mapper as trained
        self._set_trained()
    def _forward_data(self, data):
        # this method always gets data where the first axis is the samples axis!
        # local binding
        nsamples = data.shape[0]
        sshape = data.shape[1:]
        oshape = self.__origshape
        if oshape is None:
            raise RuntimeError("FlattenMapper needs to be trained before it "
                               "can be used.")
        # at least the first feature axis has to match match
        if oshape[0] != sshape[0]:
            raise ValueError("FlattenMapper has not been trained for data "
                             "shape '%s' (known only '%s')."
                             % (str(sshape), str(oshape)))
        ## input matches the shape of a single sample
        #if sshape == oshape:
        #    return data.reshape(nsamples, -1)
        ## the first part of the shape matches (e.g. some additional axes present)
        #elif sshape[:len(oshape)] == oshape:
        if not self.__maxdims is None:
            maxdim = min(len(oshape), self.__maxdims)
        else:
            maxdim = len(oshape)
        # flatten the pieces the mapper knows about and preserve the rest
        return data.reshape((nsamples, -1) + sshape[maxdim:])
    def _forward_dataset(self, dataset):
        # invoke super class _forward_dataset, this calls, _forward_dataset
        # and this calls _forward_data in this class
        mds = super(FlattenMapper, self)._forward_dataset(dataset)
        # attribute collection needs to have a new length check
        mds.fa.set_length_check(mds.nfeatures)
        # we need to duplicate all existing feature attribute, as each original
        # feature is now spread across the new feature axis
        # take all "additional" axes after the actual feature axis and count
        # elements a sample -- if not axis exists this will be 1
        for k in dataset.fa:
            if __debug__:
                debug('MAP_', "Forward-mapping fa '%s'." % k)
            attr = dataset.fa[k].value
            # the maximmum number of axis to flatten in the attr
            if not self.__maxdims is None:
                maxdim = min(len(self.__origshape), self.__maxdims)
            else:
                maxdim = len(self.__origshape)
            multiplier = mds.nfeatures \
                    / np.prod(attr.shape[:maxdim])
            if __debug__:
                debug('MAP_', "Broadcasting fa '%s' %s %d times" 
                        % (k, attr.shape, multiplier))
            # broadcast as many times as necessary to get 'matching dimensions'
            bced = np.repeat(attr, multiplier, axis=0)
            # now reshape as many dimensions as the mapper knows about
            mds.fa[k] = bced.reshape((-1,) + bced.shape[maxdim:])
        # if there is no inspace return immediately
        if self.get_space() is None:
            return mds
        # otherwise create the coordinates as feature attributes
        else:
            mds.fa[self.get_space()] = \
                list(np.ndindex(dataset.samples[0].shape))
            return mds
    def _reverse_data(self, data):
        # this method always gets data where the first axis is the samples axis!
        # local binding
        nsamples = data.shape[0]
        sshape = data.shape[1:]
        oshape = self.__origshape
        return data.reshape((nsamples,) + oshape + sshape[1:])
    def _reverse_dataset(self, dataset):
        # invoke super class _reverse_dataset, this calls, _reverse_dataset
        # and this calles _reverse_data in this class
        mds = super(FlattenMapper, self)._reverse_dataset(dataset)
        # attribute collection needs to have a new length check
        mds.fa.set_length_check(mds.nfeatures)
        # now unflatten all feature attributes
        inspace = self.get_space()
        for k in mds.fa:
            # reverse map all attributes, but not the inspace indices, since the
            # did not come through this mapper and make not sense in inspace
            if k != inspace:
                mds.fa[k] = self.reverse1(mds.fa[k].value)
        # wipe out the inspace attribute -- needs to be done after the loop to
        # not change the size of the dict
        if inspace and inspace in mds.fa:
            del mds.fa[inspace]
        return mds
    shape = property(fget=lambda self:self.__origshape)
    maxdims = property(fget=lambda self:self.__maxdims)
def mask_mapper(mask=None, shape=None, space=None):
    """Factory method to create a chain of Flatten+StaticFeatureSelection Mappers
    Parameters
    ----------
    mask : None or array
      an array in the original dataspace and its nonzero elements are
      used to define the features included in the dataset. Alternatively,
      the `shape` argument can be used to define the array dimensions.
    shape : None or tuple
      The shape of the array to be mapped. If `shape` is provided instead
      of `mask`, a full mask (all True) of the desired shape is
      constructed. If `shape` is specified in addition to `mask`, the
      provided mask is extended to have the same number of dimensions.
    inspace
      Provided to `FlattenMapper`
    """
    if mask is None:
        if shape is None:
            raise ValueError, \
                  "Either `shape` or `mask` have to be specified."
        else:
            # make full dataspace mask if nothing else is provided
            mask = np.ones(shape, dtype='bool')
    else:
        if not shape is None:
            # expand mask to span all dimensions but first one
            # necessary e.g. if only one slice from timeseries of volumes is
            # requested.
            mask = np.array(mask, copy=False, subok=True, ndmin=len(shape))
            # check for compatibility
            if not shape == mask.shape:
                raise ValueError, \
                    "The mask dataspace shape %s is not " \
                    "compatible with the provided shape %s." \
                    % (mask.shape, shape)
    fm = FlattenMapper(shape=mask.shape, space=space)
    flatmask = fm.forward1(mask)
    mapper = ChainMapper([fm,
                          StaticFeatureSelection(
                              flatmask,
                              dshape=flatmask.shape,
                              oshape=(len(flatmask.nonzero()[0]),))])
    return mapper
 |