/usr/share/pyshared/neo/io/hdf5io.py is in python-neo 0.2.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 | """
README
================================================================================
This is the implementation of the NEO IO for the HDF5 files.
http://neuralensemble.org/
IO dependencies:
- NEO
- types
- warnings
- numpy
- pytables >= 2.2
- quantities
Quick reference:
================================================================================
Class NeoHdf5IO() with methods get(), save(), delete() is implemented. This
class represents a connection manager with the HDF5 file with the possibility
to put (save()) or retrieve (get()) runtime NEO objects from the file.
Start by initializing IO:
>>> from hdf5io import NeoHdf5IO
>>> iom = NeoHdf5IO()
>>> iom
<hdf5io.NeoHdf5IO object at 0x7f291ebe6810>
The file is created automatically (filename can be changed in "settings"
option). So you can also do
>>> iom = NeoHdf5IO(filename="myfile.h5")
Now you may save any of your neo object into the file (assuming your NEO objects
are in the pythonpath):
>>> b = Block()
>>> iom.write_block(b)
or just do
>>> iom.save(b)
After you stored an object it receives a unique "path" in the hdf5 file. This is
exactly the place in the HDF5 hierarchy, where it was written. This information
is now accessible by "hdf5_path" property:
>>> b.hdf5_path
'/block_0'
You may save more complicated NEO stuctures, with relations and arrays:
>>> import numpy as np
>>> import quantities as pq
>>> s = Segment()
>>> b._segments.append(s)
>>> a1 = AnalogSignal(signal=np.random.rand(300), t_start=42*ms)
>>> s._analogsignals.append(a1)
and then
>>> iom.write_block(b)
or just
>>> iom.save(b)
If you already have hdf5 file in NEO format, or you just created one, then you
may want to read NEO data (providing the path to what to read):
>>> b1 = iom.read_block("/block_0")
>>> b1
<neo.core.block.Block object at 0x34ee590>
or just use
>>> b1 = iom.get("/block_0")
You may notice, by default the reading function retrieves all available data,
with all downstream relations and arrays:
>>> b1._segments
[<neo.core.segment.Segment object at 0x34ee750>]
>>> b1._segments[0]._analogsignals[0].signal
array([ 3.18987819e-01, 1.08448284e-01, 1.03858980e-01,
...
3.78908705e-01, 3.08669731e-02, 9.48965785e-01]) * dimensionless
When you need to save time and performance, you may load an object without
relations
>>> b2 = iom.get("/block_0", cascade=False)
>>> b2._segments
[]
and/or even without arrays
>>> a2 = iom.get("/block_0/_segments/segment_0/_analogsignals/analogsignal_0",
lazy=True)
>>> a2.signal
[]
These functions return "pure" NEO objects. They are completely "detached" from
the HDF5 file - changes to the runtime objects will not cause any changes in the
file:
>>> a2.t_start
array(42.0) * ms
>>> a2.t_start = 32 * pq.ms
>>> a2.t_start
array(32.0) * ms
>>> iom.get("/block_0/_segments/segment_0/_analogsignals/analogsignal_0").t_start
array(42.0) * ms
However, if you want to work directly with HDF5 storage making instant
modifications, you may use the native PyTables functionality, where all objects
are accessible through "<IO_manager_inst>._data.root":
>>> iom._data.root
/ (RootGroup) 'neo.h5'
children := ['block_0' (Group)]
>>> b3 = iom._data.root.block_0
>>> b3
/block_0 (Group) ''
children := ['_recordingchannelgroups' (Group), '_segments' (Group)]
To understand more about this "direct" way of working with data, please refer to
http://www.pytables.org/
Finally, you may get an overview of the contents of the file by running
>>> iom.get_info()
This is a neo.HDF5 file. it contains:
{'spiketrain': 0, 'irsaanalogsignal': 0, 'analogsignalarray': 0,
'recordingchannelgroup': 0, 'eventarray': 0, 'analogsignal': 1, 'epoch': 0,
'unit': 0, 'recordingchannel': 0, 'spike': 0, 'epocharray': 0, 'segment': 1,
'event': 0, 'block': 1}
The general structure of the file:
================================================================================
\'Block_1'
\
\'Block_2'
\
\---'_recordingchannelgroups'
\ \
\ \---'RecordingChannelGroup_1'
\ \
\ \---'RecordingChannelGroup_2'
\ \
\ \---'_recordingchannels'
\ \
\ \---'RecordingChannel_1'
\ \
\ \---'RecordingChannel_2'
\ \
\ \---'_units'
\ \
\ \---'Unit_1'
\ \
\ \---'Unit_2'
\
\---'_segments'
\
\--'Segment_1'
\
\--'Segment_2'
\
\---'_epochs'
\ \
\ \---'Epoch_1'
\
\---'_epochs'
etc.
Plans for future extensions:
================================================================================
#FIXME - lazy load should be only for huge arrays, but not for all Quantities
#FIXME - implement logging mechanism (probably in general for NEO)
#FIXME - implement actions history (probably in general for NEO)
#FIXME - use global IDs for NEO objects (or even UUIDs?)
#FIXME - implement callbacks in functions for GUIs
#FIXME - no performance testing yet
IMPORTANT things:
================================================================================
1. Every NEO node object in HDF5 has a "_type" attribute. Please don't modify.
2. There are reserved attributes "unit__<quantity>" or "<name>__<quantity>" in
objects, containing quantities.
3. Don't use "__" in attribute names, as this symbol is reserved for quantities.
Author: asobolev
"""
from __future__ import absolute_import
from ..core import *
from ..test.tools import assert_neo_object_is_compliant
from ..description import *
from .baseio import BaseIO
from .tools import create_many_to_one_relationship
from tables import NoSuchNodeError as NSNE
import tables as tb
import numpy as np
import quantities as pq
import logging
import tables
#version checking
from distutils import version
if version.LooseVersion(tables.__version__) < '2.2':
raise ImportError("your pytables version is too old to support NeoHdf5IO, you need at least 2.2 you have %s"%tables.__version__)
"""
SETTINGS:
filename: the full path to the HDF5 file.
cascade: If 'True' all children are retrieved when get(object) is called.
lazy: If 'True' data (arrays) is retrieved when get(object) is called.
"""
settings = {'filename': "neo.h5", 'cascade': True, 'lazy': True}
def _func_wrapper(func):
try:
return func
except IOError:
raise IOError("There is no connection with the file or the file was recently corrupted. \
Please reload the IO manager.")
#---------------------------------------------------------------
# Basic I/O manager, implementing basic I/O functionality
#---------------------------------------------------------------
all_objects = list(class_by_name.values())
all_objects.remove(Block)# the order is important
all_objects = [Block]+all_objects
class NeoHdf5IO(BaseIO):
"""
The IO Manager is the core I/O class for HDF5 / NEO. It handles the
connection with the HDF5 file, and uses PyTables for data operations. Use
this class to get (load), insert or delete NEO objects to HDF5 file.
"""
supported_objects = all_objects
readable_objects = all_objects
writeable_objects = all_objects
read_params = dict( zip( all_objects, [ ]*len(all_objects)) )
write_params = dict( zip( all_objects, [ ]*len(all_objects)) )
name = 'Hdf5'
extensions = [ 'h5', ]
mode = 'file'
def __init__(self, filename=settings['filename'], **kwargs):
self._init_base_io()
self.connected = False
self.connect(filename=filename)
def _read_entity(self, path="/", cascade=True, lazy=False):
"""
Wrapper for base io "reader" functions.
"""
ob = self.get(path, cascade, lazy)
create_many_to_one_relationship(ob)
return ob
def _write_entity(self, obj, where="/", cascade=True, lazy=False):
"""
Wrapper for base io "writer" functions.
"""
self.save(obj, where, cascade, lazy)
def _init_base_io(self):
"""
Base io initialization.
"""
self.is_readable = True
self.is_writable = True
self.supported_objects = class_by_name.keys()
self.readable_objects = class_by_name.keys()
self.writeable_objects = class_by_name.keys()
self.name = 'HDF5 IO'
# wraps for Base IO functions
for obj_type in self.readable_objects:
self.__setattr__("read_" + obj_type.lower(), self._read_entity)
for obj_type in self.writeable_objects:
self.__setattr__("write_" + obj_type.lower(), self._write_entity)
#-------------------------------------------
# IO connectivity / Session management
#-------------------------------------------
def connect(self, filename=settings['filename']):
"""
Opens / initialises new HDF5 file.
We rely on PyTables and keep all session management staff there.
"""
if not self.connected:
try:
if tb.isHDF5File(filename):
self._data = tb.openFile(filename, mode = "a", title = filename)
self.connected = True
else:
raise TypeError("The file specified is not an HDF5 file format.")
except IOError:
# create a new file if specified file not found
self._data = tb.openFile(filename, mode = "w", title = filename)
self.connected = True
except:
raise NameError("Incorrect file path, couldn't find or create a file.")
else:
logging.info("Already connected.")
def close(self):
"""
Closes the connection.
"""
self._data.close()
self.connected = False
#-------------------------------------------
# some internal IO functions
#-------------------------------------------
def _get_class_by_node(self, node):
"""
Returns the type of the object (string) depending on node.
"""
try:
obj_type = node._f_getAttr("_type")
return class_by_name[obj_type]
except:
return None # that's an alien node
def _update_path(self, obj, node):
setattr(obj, "hdf5_name", node._v_name)
setattr(obj, "hdf5_path", node._v_pathname)
def _get_next_name(self, obj_type, where):
"""
Returns the next possible name within a given container (group)
Expensive with large saves! Define other algorithm?
"""
prefix = str(obj_type) + "_"
nodes = []
for node in self._data.listNodes(where):
index = node._v_name[node._v_name.find(prefix) + len(prefix):]
if len(index) > 0:
try:
nodes.append(int(index))
except ValueError:
pass # index was changed by user, but then we don't care
nodes.sort(reverse=True)
if len(nodes) > 0:
return prefix + str(nodes[0] + 1)
else:
return prefix + "0"
#-------------------------------------------
# general IO functions, for all NEO objects
#-------------------------------------------
@_func_wrapper
def save(self, obj, where="/", cascade=True, lazy=False):
""" Saves changes of a given object to the file. Saves object as new at
location "where" if it is not in the file yet.
cascade: True/False process downstream relationships
lazy: True/False process any quantity/ndarray attributes """
def assign_attribute(obj_attr, attr_name):
""" subfunction to serialize a given attribute """
if isinstance(obj_attr, pq.Quantity) or isinstance(obj_attr, np.ndarray):
if not lazy:
if obj_attr.size == 0:
atom = tb.Float64Atom(shape=(1,))
new_arr = self._data.createEArray(path, attr_name + "__temp", atom, shape=(0,), expectedrows=1)
#raise ValueError("A size of the %s of the %s has \
# length zero and can't be saved." %
# (attr_name, path))
# we try to create new array first, so not to loose the
# data in case of any failure
else:
new_arr = self._data.createArray(path, attr_name + "__temp", obj_attr)
if hasattr(obj_attr, "dimensionality"):
for un in obj_attr.dimensionality.items():
new_arr._f_setAttr("unit__" + un[0].name, un[1])
try:
self._data.removeNode(path, attr_name)
except:
pass # there is no array yet or object is new
self._data.renameNode(path, attr_name, name=attr_name + "__temp")
elif not obj_attr == None:
node._f_setAttr(attr_name, obj_attr)
#assert_neo_object_is_compliant(obj)
obj_type = name_by_class[obj.__class__]
if hasattr(obj, "hdf5_path"): # this is an update case
try:
path = str(obj.hdf5_path)
node = self._data.getNode(obj.hdf5_path)
except NSNE: # create a new node?
raise LookupError("A given object has a path %s attribute, \
but such an object does not exist in the file. Please \
correct these values or delete this attribute \
(.__delattr__('hdf5_path')) to create a new object in \
the file." % path)
else: # create new object
node = self._data.createGroup(where, self._get_next_name(obj_type, where))
node._f_setAttr("_type", obj_type)
path = node._v_pathname
# processing attributes
attrs = classes_necessary_attributes[obj_type] + classes_recommended_attributes[obj_type]
for attr in attrs: # we checked already obj is compliant, loop over all safely
if hasattr(obj, attr[0]): # save an attribute if exists
assign_attribute(getattr(obj, attr[0]), attr[0])
# not forget to save AS, ASA or ST - NEO "stars"
if obj_type in classes_inheriting_quantities.keys():
assign_attribute(obj, classes_inheriting_quantities[obj_type])
if hasattr(obj, "annotations"): # annotations should be just a dict
node._f_setAttr("annotations", getattr(obj, "annotations"))
if one_to_many_relationship.has_key(obj_type) and cascade:
rels = list(one_to_many_relationship[obj_type])
if obj_type == "RecordingChannelGroup":
rels += many_to_many_relationship[obj_type]
for child_name in rels: # child_name like "Segment", "Event" etc.
container = child_name.lower() + "s" # like "units"
try:
ch = self._data.getNode(node, container)
except NSNE:
ch = self._data.createGroup(node, container)
saved = [] # keeps track of saved object names for removal
for child in getattr(obj, container):
new_name = None
if hasattr(child, "hdf5_path") and hasattr(child, "hdf5_name"):
if not ch._v_pathname in child.hdf5_path:
# create a Hard Link as object exists already somewhere
target = self._data.getNode(child.hdf5_path)
new_name = self._get_next_name(name_by_class[child.__class__], ch._v_pathname)
self._data.createHardLink(ch._v_pathname, new_name, target)
self.save(child, where=ch._v_pathname)
if not new_name: new_name = child.hdf5_name
saved.append(new_name)
for child in self._data.iterNodes(ch._v_pathname):
if child._v_name not in saved: # clean-up
self._data.removeNode(ch._v_pathname, child._v_name, recursive=True)
# FIXME needed special processor for RC -> RCG
self._update_path(obj, node)
@_func_wrapper
def get(self, path="/", cascade=True, lazy=False):
""" Returns a requested NEO object as instance of NEO class. """
def rem_duplicates(target, source, attr):
""" removes duplicated objects in case a block is requested: for
RCGs, RCs and Units we remove duplicated ASAs, IrSAs, ASs, STs and
Spikes if those were already initialized in Segment. """
a = getattr(target, attr) # a container, e.g. "analogsignals"
b = getattr(source, attr) # a container, e.g. "analogsignals"
res = list(set(a) - set(b))
res += list(set(b) -(set(b) - set(a)))
setattr(target, attr, res)
def fetch_attribute(attr_name):
""" fetch required attribute from the corresp. node in the file """
try:
if attr[1] == pq.Quantity:
arr = self._data.getNode(node, attr_name)
units = ""
for unit in arr._v_attrs._f_list(attrset='user'):
if unit.startswith("unit__"):
units += " * " + str(unit[6:]) + " ** " + str(arr._f_getAttr(unit))
units = units.replace(" * ", "", 1)
if not lazy:
nattr = pq.Quantity(arr.read(), units)
else: # making an empty array
nattr = pq.Quantity(np.empty(tuple([0 for x in range(attr[2])])), units)
elif attr[1] == np.ndarray:
if not lazy:
arr = self._data.getNode(node, attr_name)
nattr = np.array(arr.read(), attr[3])
else: # making an empty array
nattr = np.empty((0), attr[3])
else:
nattr = node._f_getAttr(attr_name)
if attr[1] == str or attr[1] == int:
nattr = attr[1](nattr) # compliance with NEO attr types
except (AttributeError, NSNE): # not assigned, continue
nattr = None
return nattr
if path == "/": # this is just for convenience. Try to return any object
found = False
for n in self._data.listNodes(path):
for obj_type in class_by_name.keys():
if obj_type.lower() in str(n._v_name).lower():
path = n._v_pathname
found = True
if found: break
try:
if path == "/":
raise ValueError() # root is not a NEO object
node = self._data.getNode(path)
except (NSNE, ValueError): # create a new node?
raise LookupError("There is no valid object with a given path " +\
str(path) + " . Please give correct path or just browse the file \
(e.g. NeoHdf5IO()._data.root.<Block>._segments...) to find an \
appropriate name.")
classname = self._get_class_by_node(node)
if not classname:
raise LookupError("The requested object with the path " + str(path) +\
" exists, but is not of a NEO type. Please check the '_type' attribute.")
obj_type = name_by_class[classname]
kwargs = {}
# load attributes (inherited *-ed attrs are also here)
attrs = classes_necessary_attributes[obj_type] + classes_recommended_attributes[obj_type]
for i, attr in enumerate(attrs):
attr_name = attr[0]
nattr = fetch_attribute(attr_name)
if nattr is not None:
kwargs[attr_name] = nattr
obj = class_by_name[obj_type](**kwargs) # instantiate new object
self._update_path(obj, node) # set up HDF attributes: name, path
try:
setattr(obj, "annotations", node._f_getAttr("annotations"))
except AttributeError: pass # not assigned, continue
if lazy: # FIXME is this really needed?
setattr(obj, "lazy_shape", "some shape should go here..")
# load relationships
if cascade:
if one_to_many_relationship.has_key(obj_type):
rels = list(one_to_many_relationship[obj_type])
if obj_type == "RecordingChannelGroup":
rels += many_to_many_relationship[obj_type]
for child in rels: # 'child' is like 'Segment', 'Event' etc.
relatives = []
container = self._data.getNode(node, child.lower() + "s")
for n in self._data.listNodes(container):
try:
if n._f_getAttr("_type") == child:
relatives.append(self.get(n._v_pathname, lazy=lazy))
except AttributeError: # alien node
pass # not an error
setattr(obj, child.lower() + "s", relatives)
if cascade and obj_type == "Block": # this is a special case
# We need to clean-up some duplicated objects
for seg in obj.segments:
for RCG in obj.recordingchannelgroups:
rem_duplicates(RCG, seg, "analogsignalarrays") # clean-up duplicate ASA
for RC in RCG.recordingchannels:
rem_duplicates(RC, seg, "analogsignals")
rem_duplicates(RC, seg, "irregularlysampledsignals")
for unit in RCG.units:
rem_duplicates(unit, seg, "spiketrains")
rem_duplicates(unit, seg, "spikes")
# FIXME special processor for RC -> RCG
return obj
@_func_wrapper
def delete(self, path, cascade=False):
"""
Deletes an object in the file. Just a simple alternative of removeNode().
"""
self._data.removeNode(path, recursive=cascade)
@_func_wrapper
def reset(self, obj):
"""
Resets runtime changes made to the object. TBD.
"""
pass
@_func_wrapper
def get_info(self):
"""
Returns a quantitative information about the contents of the file.
"""
logging.info("This is a neo.HDF5 file. it contains:")
info = {}
info = info.fromkeys(class_by_name.keys(), 0)
for node in self._data.walkNodes():
try:
t = node._f_getAttr("_type")
info[t] += 1
except:
# node is not of NEO type
pass
return info
|