/usr/share/pyshared/nitime/analysis/coherence.py is in python-nitime 0.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 | import warnings
import numpy as np
from nitime.lazy import scipy_stats_distributions as dist
from nitime.lazy import scipy_fftpack as fftpack
from nitime import descriptors as desc
from nitime import utils as tsu
from nitime import algorithms as tsa
# To suppport older versions of numpy that don't have tril_indices:
from nitime.index_utils import tril_indices, triu_indices
from .base import BaseAnalyzer
class CoherenceAnalyzer(BaseAnalyzer):
"""Analyzer object for coherence/coherency analysis """
def __init__(self, input=None, method=None, unwrap_phases=False):
"""
Parameters
----------
input: TimeSeries object
Containing the data to analyze.
method: dict, optional,
This is the method used for spectral analysis of the signal for the
coherence caclulation. See :func:`algorithms.get_spectra`
documentation for details.
unwrap_phases: bool, optional
Whether to unwrap the phases. This should be True if you assume that
the time-delay is the same for all the frequency bands. See
_[Sun2005] for details. Default : False
Examples
--------
>>> import nitime.timeseries as ts
>>> np.set_printoptions(precision=4) # for doctesting
>>> t1 = ts.TimeSeries(data = np.arange(0,1024,1).reshape(2,512),
... sampling_rate=np.pi)
>>> c1 = CoherenceAnalyzer(t1)
>>> c1.method['Fs']
3.14159265359 Hz
>>> c1.method['this_method']
'welch'
>>> c1.coherence[0,1]
array([ 0.9024, 0.9027, 0.9652, 0.9433, 0.9297, 0.9213, 0.9161,
0.9126, 0.9102, 0.9085, 0.9072, 0.9063, 0.9055, 0.905 ,
0.9045, 0.9041, 0.9038, 0.9036, 0.9034, 0.9032, 0.9031,
0.9029, 0.9028, 0.9027, 0.9027, 0.9026, 0.9026, 0.9025,
0.9025, 0.9025, 0.9025, 0.9026, 1. ])
>>> c1.phase[0,1]
array([ 0. , -0.035 , -0.4839, -0.4073, -0.3373, -0.2828, -0.241 ,
-0.2085, -0.1826, -0.1615, -0.144 , -0.1292, -0.1164, -0.1054,
-0.0956, -0.0869, -0.0791, -0.072 , -0.0656, -0.0596, -0.0541,
-0.0489, -0.0441, -0.0396, -0.0353, -0.0314, -0.0277, -0.0244,
-0.0216, -0.0197, -0.0198, -0.028 , 0. ])
"""
BaseAnalyzer.__init__(self, input)
# Set the variables for spectral estimation (can also be entered by
# user):
if method is None:
self.method = {'this_method': 'welch',
'Fs': self.input.sampling_rate}
else:
self.method = method
# If an input is provided, get the sampling rate from there, if you
# want to over-ride that, input a method with a 'Fs' field specified:
self.method['Fs'] = self.method.get('Fs', self.input.sampling_rate)
self._unwrap_phases = unwrap_phases
# The following only applies to the welch method:
if (self.method.get('this_method') == 'welch' or
self.method.get('this_method') is None):
# If the input is shorter than NFFT, all the coherences will be
# 1 per definition. Throw a warning about that:
self.method['NFFT'] = self.method.get('NFFT', tsa.default_nfft)
self.method['n_overlap'] = self.method.get('n_overlap',
tsa.default_n_overlap)
if (self.input.shape[-1] <
(self.method['NFFT'] + self.method['n_overlap'])):
e_s = "In nitime.analysis, the provided input time-series is"
e_s += " shorter than the requested NFFT + n_overlap. All "
e_s += "coherence values will be set to 1."
warnings.warn(e_s, RuntimeWarning)
@desc.setattr_on_read
def coherency(self):
"""The standard output for this kind of analyzer is the coherency """
data = self.input.data
tseries_length = data.shape[0]
spectrum_length = self.spectrum.shape[-1]
coherency = np.zeros((tseries_length,
tseries_length,
spectrum_length), dtype=complex)
for i in xrange(tseries_length):
for j in xrange(i, tseries_length):
coherency[i][j] = tsa.coherency_spec(self.spectrum[i][j],
self.spectrum[i][i],
self.spectrum[j][j])
idx = tril_indices(tseries_length, -1)
coherency[idx[0], idx[1], ...] = coherency[idx[1], idx[0], ...].conj()
return coherency
@desc.setattr_on_read
def spectrum(self):
"""
The spectra of each of the channels and cross-spectra between
different channles in the input TimeSeries object
"""
f, spectrum = tsa.get_spectra(self.input.data, method=self.method)
return spectrum
@desc.setattr_on_read
def frequencies(self):
"""
The central frequencies in the bands
"""
#XXX Use NFFT in the method in order to calculate these, without having
#to calculate the spectrum:
f, spectrum = tsa.get_spectra(self.input.data, method=self.method)
return f
@desc.setattr_on_read
def coherence(self):
"""
The coherence between the different channels in the input TimeSeries
object
"""
#XXX Calculate this from the standard output, instead of recalculating
#the coherence:
tseries_length = self.input.data.shape[0]
spectrum_length = self.spectrum.shape[-1]
coherence = np.zeros((tseries_length,
tseries_length,
spectrum_length))
for i in xrange(tseries_length):
for j in xrange(i, tseries_length):
coherence[i][j] = tsa.coherence_spec(self.spectrum[i][j],
self.spectrum[i][i],
self.spectrum[j][j])
idx = tril_indices(tseries_length, -1)
coherence[idx[0], idx[1], ...] = coherence[idx[1], idx[0], ...].conj()
return coherence
@desc.setattr_on_read
def phase(self):
""" The frequency-dependent phase relationship between all the pairwise
combinations of time-series in the data"""
#XXX calcluate this from the standard output, instead of recalculating:
tseries_length = self.input.data.shape[0]
spectrum_length = self.spectrum.shape[-1]
phase = np.zeros((tseries_length,
tseries_length,
spectrum_length))
for i in xrange(tseries_length):
for j in xrange(i, tseries_length):
phase[i][j] = np.angle(
self.spectrum[i][j])
phase[j][i] = np.angle(
self.spectrum[i][j].conjugate())
return phase
@desc.setattr_on_read
def delay(self):
""" The delay in seconds between the two time series """
p_shape = self.phase.shape[:-1]
delay = np.zeros(self.phase.shape)
for i in xrange(p_shape[0]):
for j in xrange(p_shape[1]):
this_phase = self.phase[i, j]
#If requested, unwrap the phases:
if self._unwrap_phases:
this_phase = tsu.unwrap_phases(this_phase)
delay[i, j] = this_phase / (2 * np.pi * self.frequencies)
return delay
@desc.setattr_on_read
def coherence_partial(self):
"""The partial coherence between data[i] and data[j], given data[k], as
a function of frequency band"""
tseries_length = self.input.data.shape[0]
spectrum_length = self.spectrum.shape[-1]
p_coherence = np.zeros((tseries_length,
tseries_length,
tseries_length,
spectrum_length))
for i in xrange(tseries_length):
for j in xrange(tseries_length):
for k in xrange(tseries_length):
if j == k or i == k:
pass
else:
p_coherence[i][j][k] = tsa.coherence_partial_spec(
self.spectrum[i][j],
self.spectrum[i][i],
self.spectrum[j][j],
self.spectrum[i][k],
self.spectrum[j][k],
self.spectrum[k][k])
idx = tril_indices(tseries_length, -1)
p_coherence[idx[0], idx[1], ...] =\
p_coherence[idx[1], idx[0], ...].conj()
return p_coherence
class MTCoherenceAnalyzer(BaseAnalyzer):
""" Analyzer for multi-taper coherence analysis, including jack-knife
estimate of confidence interval """
def __init__(self, input=None, bandwidth=None, alpha=0.05, adaptive=True):
"""
Initializer function for the MTCoherenceAnalyzer
Parameters
----------
input: TimeSeries object
bandwidth: float,
The bandwidth of the windowing function will determine the number
tapers to use. This parameters represents trade-off between
frequency resolution (lower main lobe bandwidth for the taper) and
variance reduction (higher bandwidth and number of averaged
estimates). Per default will be set to 4 times the fundamental
frequency, such that NW=4
alpha: float, default =0.05
This is the alpha used to construct a confidence interval around
the multi-taper csd estimate, based on a jack-knife estimate of the
variance [Thompson2007]_.
adaptive: bool, default to True
Whether to set the weights for the tapered spectra according to the
adaptive algorithm (Thompson, 2007).
Notes
-----
Thompson, DJ (2007) Jackknifing multitaper spectrum estimates. IEEE
Signal Processing Magazing. 24: 20-30
"""
BaseAnalyzer.__init__(self, input)
if input is None:
self.NW = 4
self.bandwidth = None
else:
N = input.shape[-1]
Fs = self.input.sampling_rate
if bandwidth is not None:
self.NW = bandwidth / (2 * Fs) * N
else:
self.NW = 4
self.bandwidth = self.NW * (2 * Fs) / N
self.alpha = alpha
self._L = self.input.data.shape[-1] / 2 + 1
self._adaptive = adaptive
@desc.setattr_on_read
def tapers(self):
return tsa.dpss_windows(self.input.shape[-1], self.NW,
2 * self.NW - 1)[0]
@desc.setattr_on_read
def eigs(self):
return tsa.dpss_windows(self.input.shape[-1], self.NW,
2 * self.NW - 1)[1]
@desc.setattr_on_read
def df(self):
# The degrees of freedom:
return 2 * self.NW - 1
@desc.setattr_on_read
def spectra(self):
tdata = self.tapers[None, :, :] * self.input.data[:, None, :]
tspectra = fftpack.fft(tdata)
return tspectra
@desc.setattr_on_read
def weights(self):
channel_n = self.input.data.shape[0]
w = np.empty((channel_n, self.df, self._L))
if self._adaptive:
for i in xrange(channel_n):
# this is always a one-sided spectrum?
w[i] = tsu.adaptive_weights(self.spectra[i],
self.eigs,
sides='onesided')[0]
# Set the weights to be the square root of the eigen-values:
else:
wshape = [1] * len(self.spectra.shape)
wshape[0] = channel_n
wshape[-2] = int(self.df)
pre_w = np.sqrt(self.eigs) + np.zeros((wshape[0],
self.eigs.shape[0]))
w = pre_w.reshape(*wshape)
return w
@desc.setattr_on_read
def coherence(self):
nrows = self.input.data.shape[0]
psd_mat = np.zeros((2, nrows, nrows, self._L), 'd')
coh_mat = np.zeros((nrows, nrows, self._L), 'd')
for i in xrange(self.input.data.shape[0]):
for j in xrange(i):
sxy = tsa.mtm_cross_spectrum(self.spectra[i], self.spectra[j],
(self.weights[i], self.weights[j]),
sides='onesided')
sxx = tsa.mtm_cross_spectrum(self.spectra[i], self.spectra[i],
self.weights[i],
sides='onesided')
syy = tsa.mtm_cross_spectrum(self.spectra[j], self.spectra[j],
self.weights[i],
sides='onesided')
psd_mat[0, i, j] = sxx
psd_mat[1, i, j] = syy
coh_mat[i, j] = np.abs(sxy) ** 2
coh_mat[i, j] /= (sxx * syy)
idx = triu_indices(self.input.data.shape[0], 1)
coh_mat[idx[0], idx[1], ...] = coh_mat[idx[1], idx[0], ...].conj()
return coh_mat
@desc.setattr_on_read
def confidence_interval(self):
"""The size of the 1-alpha confidence interval"""
coh_var = np.zeros((self.input.data.shape[0],
self.input.data.shape[0],
self._L), 'd')
for i in xrange(self.input.data.shape[0]):
for j in xrange(i):
if i != j:
coh_var[i, j] = tsu.jackknifed_coh_variance(
self.spectra[i],
self.spectra[j],
self.eigs,
adaptive=self._adaptive
)
idx = triu_indices(self.input.data.shape[0], 1)
coh_var[idx[0], idx[1], ...] = coh_var[idx[1], idx[0], ...].conj()
coh_mat_xform = tsu.normalize_coherence(self.coherence,
2 * self.df - 2)
lb = coh_mat_xform + dist.t.ppf(self.alpha / 2,
self.df - 1) * np.sqrt(coh_var)
ub = coh_mat_xform + dist.t.ppf(1 - self.alpha / 2,
self.df - 1) * np.sqrt(coh_var)
# convert this measure with the normalizing function
tsu.normal_coherence_to_unit(lb, 2 * self.df - 2, lb)
tsu.normal_coherence_to_unit(ub, 2 * self.df - 2, ub)
return ub - lb
@desc.setattr_on_read
def frequencies(self):
return np.linspace(0, self.input.sampling_rate / 2, self._L)
class SparseCoherenceAnalyzer(BaseAnalyzer):
"""
This analyzer is intended for analysis of large sets of data, in which
possibly only a subset of combinations of time-series needs to be compared.
The constructor for this class receives as input not only a time-series
object, but also a list of tuples with index combinations (i,j) for the
combinations. Importantly, this class implements only the mlab csd function
and cannot use other methods of spectral estimation
"""
def __init__(self, time_series=None, ij=(0, 0), method=None, lb=0, ub=None,
prefer_speed_over_memory=True, scale_by_freq=True):
"""The constructor for the SparseCoherenceAnalyzer
Parameters
----------
time_series: a time-series object
ij: a list of tuples, each containing a pair of indices.
The resulting cache will contain the fft of time-series in the rows
indexed by the unique elements of the union of i and j
lb,ub: float,optional, default: lb=0, ub=None (max frequency)
define a frequency band of interest
prefer_speed_over_memory: Boolean, optional, default=True
Does exactly what the name implies. If you have enough memory
method: optional, dict
The method for spectral estimation (see :func:`algorithms.get_spectra`)
"""
BaseAnalyzer.__init__(self, time_series)
#Initialize variables from the time series
self.ij = ij
#Set the variables for spectral estimation (can also be entered by
#user):
if method is None:
self.method = {'this_method': 'welch'}
else:
self.method = method
if self.method['this_method'] != 'welch':
e_s = "For SparseCoherenceAnalyzer, "
e_s += "spectral estimation method must be welch"
raise ValueError(e_s)
self.method['Fs'] = self.method.get('Fs', self.input.sampling_rate)
#Additional parameters for the coherency estimation:
self.lb = lb
self.ub = ub
self.prefer_speed_over_memory = prefer_speed_over_memory
self.scale_by_freq = scale_by_freq
@desc.setattr_on_read
def coherency(self):
""" The default behavior is to calculate the cache, extract it and then
output the coherency"""
coherency = tsa.cache_to_coherency(self.cache, self.ij)
return coherency
@desc.setattr_on_read
def coherence(self):
""" The coherence values for the output"""
coherence = np.abs(self.coherency ** 2)
return coherence
@desc.setattr_on_read
def cache(self):
"""Caches the fft windows required by the other methods of the
SparseCoherenceAnalyzer. Calculate only once and reuse
"""
data = self.input.data
f, cache = tsa.cache_fft(data,
self.ij,
lb=self.lb,
ub=self.ub,
method=self.method,
prefer_speed_over_memory=self.prefer_speed_over_memory,
scale_by_freq=self.scale_by_freq)
return cache
@desc.setattr_on_read
def spectrum(self):
"""get the spectrum for the collection of time-series in this analyzer
"""
spectrum = tsa.cache_to_psd(self.cache, self.ij)
return spectrum
@desc.setattr_on_read
def phases(self):
"""The frequency-band dependent phases of the spectra of each of the
time -series i,j in the analyzer"""
phase = tsa.cache_to_phase(self.cache, self.ij)
return phase
@desc.setattr_on_read
def relative_phases(self):
"""The frequency-band dependent relative phase between the two
time-series """
return np.angle(self.coherency)
@desc.setattr_on_read
def delay(self):
""" The delay in seconds between the two time series """
return self.relative_phases / (2 * np.pi * self.frequencies)
@desc.setattr_on_read
def frequencies(self):
"""Get the central frequencies for the frequency bands, given the
method of estimating the spectrum """
self.method['Fs'] = self.method.get('Fs', self.input.sampling_rate)
NFFT = self.method.get('NFFT', 64)
Fs = self.method.get('Fs')
freqs = tsu.get_freqs(Fs, NFFT)
lb_idx, ub_idx = tsu.get_bounds(freqs, self.lb, self.ub)
return freqs[lb_idx:ub_idx]
class SeedCoherenceAnalyzer(object):
"""
This analyzer takes two time-series. The first is designated as a
time-series of seeds. The other is designated as a time-series of targets.
The analyzer performs a coherence analysis between each of the channels in
the seed time-series and *all* of the channels in the target time-series.
Note
----
This is a convenience class, which provides a convenient-to-use interface
to the SparseCoherenceAnalyzer
"""
def __init__(self, seed_time_series=None, target_time_series=None,
method=None, lb=0, ub=None, prefer_speed_over_memory=True,
scale_by_freq=True):
"""
The constructor for the SeedCoherenceAnalyzer
Parameters
----------
seed_time_series: a time-series object
target_time_series: a time-series object
lb,ub: float,optional, default: lb=0, ub=None (max frequency)
define a frequency band of interest
prefer_speed_over_memory: Boolean, optional, default=True
Makes things go a bit faster, if you have enough memory
"""
self.seed = seed_time_series
self.target = target_time_series
# Check that the seed and the target have the same sampling rate:
if self.seed.sampling_rate != self.target.sampling_rate:
e_s = "The sampling rate for the seed time-series and the target"
e_s += " time-series need to be identical."
raise ValueError(e_s)
#Set the variables for spectral estimation (can also be entered by
#user):
if method is None:
self.method = {'this_method': 'welch'}
else:
self.method = method
if ('this_method' in self.method.keys() and
self.method['this_method'] != 'welch'):
e_s = "For SparseCoherenceAnalyzer, "
e_s += "spectral estimation method must be welch"
raise ValueError(e_s)
#Additional parameters for the coherency estimation:
self.lb = lb
self.ub = ub
self.prefer_speed_over_memory = prefer_speed_over_memory
self.scale_by_freq = scale_by_freq
@desc.setattr_on_read
def coherence(self):
"""
The coherence between each of the channels of the seed time series and
all the channels of the target time-series.
"""
return np.abs(self.coherency) ** 2
@desc.setattr_on_read
def frequencies(self):
"""Get the central frequencies for the frequency bands, given the
method of estimating the spectrum """
# Get the sampling rate from the seed time-series:
self.method['Fs'] = self.method.get('Fs', self.seed.sampling_rate)
NFFT = self.method.get('NFFT', 64)
Fs = self.method.get('Fs')
freqs = tsu.get_freqs(Fs, NFFT)
lb_idx, ub_idx = tsu.get_bounds(freqs, self.lb, self.ub)
return freqs[lb_idx:ub_idx]
@desc.setattr_on_read
def target_cache(self):
data = self.target.data
#Make a cache with all the fft windows for each of the channels in the
#target.
#This is the kind of input that cache_fft expects:
ij = zip(np.arange(data.shape[0]), np.arange(data.shape[0]))
f, cache = tsa.cache_fft(data, ij, lb=self.lb, ub=self.ub,
method=self.method,
prefer_speed_over_memory=self.prefer_speed_over_memory,
scale_by_freq=self.scale_by_freq)
return cache
@desc.setattr_on_read
def coherency(self):
#Pre-allocate the final result:
if len(self.seed.shape) > 1:
Cxy = np.empty((self.seed.data.shape[0],
self.target.data.shape[0],
self.frequencies.shape[0]), dtype=np.complex)
else:
Cxy = np.empty((self.target.data.shape[0],
self.frequencies.shape[0]), dtype=np.complex)
#Get the fft window cache for the target time-series:
cache = self.target_cache
#A list of indices for the target:
target_chan_idx = np.arange(self.target.data.shape[0])
#This is a list of indices into the cached fft window libraries,
#setting the index of the seed to be -1, so that it is easily
#distinguished from the target indices:
ij = zip(np.ones_like(target_chan_idx) * -1, target_chan_idx)
#If there is more than one channel in the seed time-series:
if len(self.seed.shape) > 1:
for seed_idx, this_seed in enumerate(self.seed.data):
#Here ij is 0, because it is just one channel and we stack the
#channel onto itself in order for the input to the function to
#make sense:
f, seed_cache = tsa.cache_fft(
np.vstack([this_seed, this_seed]),
[(0, 0)],
lb=self.lb,
ub=self.ub,
method=self.method,
prefer_speed_over_memory=self.prefer_speed_over_memory,
scale_by_freq=self.scale_by_freq)
#Insert the seed_cache into the target_cache:
cache['FFT_slices'][-1] = seed_cache['FFT_slices'][0]
#If this is true, the cache contains both FFT_slices and
#FFT_conj_slices:
if self.prefer_speed_over_memory:
cache['FFT_conj_slices'][-1] = \
seed_cache['FFT_conj_slices'][0]
#This performs the caclulation for this seed:
Cxy[seed_idx] = tsa.cache_to_coherency(cache, ij)
#In the case where there is only one channel in the seed time-series:
else:
f, seed_cache = tsa.cache_fft(
np.vstack([self.seed.data,
self.seed.data]),
[(0, 0)],
lb=self.lb,
ub=self.ub,
method=self.method,
prefer_speed_over_memory=self.prefer_speed_over_memory,
scale_by_freq=self.scale_by_freq)
cache['FFT_slices'][-1] = seed_cache['FFT_slices'][0]
if self.prefer_speed_over_memory:
cache['FFT_conj_slices'][-1] = \
seed_cache['FFT_conj_slices'][0]
Cxy = tsa.cache_to_coherency(cache, ij)
return Cxy.squeeze()
@desc.setattr_on_read
def relative_phases(self):
"""The frequency-band dependent relative phase between the two
time-series """
return np.angle(self.coherency)
@desc.setattr_on_read
def delay(self):
""" The delay in seconds between the two time series """
return self.relative_phases / (2 * np.pi * self.frequencies)
|