/usr/share/pyshared/nitime/index_utils.py is in python-nitime 0.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 | """ Utilities for indexing into 2-d arrays, brought in from numpy 1.4, to
support use of older versions of numpy
"""
__all__ = ['tri', 'triu', 'tril', 'mask_indices', 'tril_indices',
'tril_indices_from', 'triu_indices', 'triu_indices_from',
]
from numpy.core.numeric import asanyarray, subtract, arange, \
greater_equal, multiply, ones, asarray, where
# Need to import numpy for the doctests!
import numpy as np
def tri(N, M=None, k=0, dtype=float):
"""
Construct an array filled with ones at and below the given diagonal.
Parameters
----------
N : int
Number of rows in the array.
M : int, optional
Number of columns in the array.
By default, `M` is taken equal to `N`.
k : int, optional
The sub-diagonal below which the array is filled.
`k` = 0 is the main diagonal, while `k` < 0 is below it,
and `k` > 0 is above. The default is 0.
dtype : dtype, optional
Data type of the returned array. The default is float.
Returns
-------
T : (N,M) ndarray
Array with a lower triangle filled with ones, in other words
``T[i,j] == 1`` for ``i <= j + k``.
Examples
--------
>>> np.tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, 0],
[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1]])
>>> np.tri(3, 5, -1)
array([[ 0., 0., 0., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 1., 1., 0., 0., 0.]])
"""
if M is None: M = N
m = greater_equal(subtract.outer(arange(N), arange(M)),-k)
return m.astype(dtype)
def tril(m, k=0):
"""
Lower triangle of an array.
Return a copy of an array with elements above the `k`-th diagonal zeroed.
Parameters
----------
m : array_like, shape (M, N)
Input array.
k : int
Diagonal above which to zero elements.
`k = 0` is the main diagonal, `k < 0` is below it and `k > 0` is above.
Returns
-------
L : ndarray, shape (M, N)
Lower triangle of `m`, of same shape and data-type as `m`.
See Also
--------
triu
Examples
--------
>>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 0, 0, 0],
[ 4, 0, 0],
[ 7, 8, 0],
[10, 11, 12]])
"""
m = asanyarray(m)
out = multiply(tri(m.shape[0], m.shape[1], k=k, dtype=int),m)
return out
def triu(m, k=0):
"""
Upper triangle of an array.
Construct a copy of a matrix with elements below the k-th diagonal zeroed.
Please refer to the documentation for `tril`.
See Also
--------
tril
Examples
--------
>>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 0, 8, 9],
[ 0, 0, 12]])
"""
m = asanyarray(m)
out = multiply((1-tri(m.shape[0], m.shape[1], k-1, int)),m)
return out
# borrowed from John Hunter and matplotlib
def vander(x, N=None):
"""
Generate a Van der Monde matrix.
The columns of the output matrix are decreasing powers of the input
vector. Specifically, the i-th output column is the input vector to
the power of ``N - i - 1``. Such a matrix with a geometric progression
in each row is named Van Der Monde, or Vandermonde matrix, from
Alexandre-Theophile Vandermonde.
Parameters
----------
x : array_like
1-D input array.
N : int, optional
Order of (number of columns in) the output. If `N` is not specified,
a square array is returned (``N = len(x)``).
Returns
-------
out : ndarray
Van der Monde matrix of order `N`. The first column is ``x^(N-1)``,
the second ``x^(N-2)`` and so forth.
References
----------
.. [1] Wikipedia, "Vandermonde matrix",
http://en.wikipedia.org/wiki/Vandermonde_matrix
Examples
--------
>>> x = np.array([1, 2, 3, 5])
>>> N = 3
>>> np.vander(x, N)
array([[ 1, 1, 1],
[ 4, 2, 1],
[ 9, 3, 1],
[25, 5, 1]])
>>> np.column_stack([x**(N-1-i) for i in range(N)])
array([[ 1, 1, 1],
[ 4, 2, 1],
[ 9, 3, 1],
[25, 5, 1]])
>>> x = np.array([1, 2, 3, 5])
>>> np.vander(x)
array([[ 1, 1, 1, 1],
[ 8, 4, 2, 1],
[ 27, 9, 3, 1],
[125, 25, 5, 1]])
"""
x = asarray(x)
if N is None: N=len(x)
X = ones( (len(x),N), x.dtype)
for i in range(N-1):
X[:,i] = x**(N-i-1)
return X
def histogram2d(x,y, bins=10, range=None, normed=False, weights=None):
"""
Compute the bi-dimensional histogram of two data samples.
Parameters
----------
x : array_like, shape(N,)
A sequence of values to be histogrammed along the first dimension.
y : array_like, shape(M,)
A sequence of values to be histogrammed along the second dimension.
bins : int or [int, int] or array_like or [array, array], optional
The bin specification:
* If int, the number of bins for the two dimensions (nx=ny=bins).
* If [int, int], the number of bins in each dimension (nx, ny = bins).
* If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).
* If [array, array], the bin edges in each dimension (x_edges, y_edges = bins).
range : array_like, shape(2,2), optional
The leftmost and rightmost edges of the bins along each dimension
(if not specified explicitly in the `bins` parameters):
``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range
will be considered outliers and not tallied in the histogram.
normed : bool, optional
If False, returns the number of samples in each bin. If True, returns
the bin density, i.e. the bin count divided by the bin area.
weights : array_like, shape(N,), optional
An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights
are normalized to 1 if `normed` is True. If `normed` is False, the
values of the returned histogram are equal to the sum of the weights
belonging to the samples falling into each bin.
Returns
-------
H : ndarray, shape(nx, ny)
The bi-dimensional histogram of samples `x` and `y`. Values in `x`
are histogrammed along the first dimension and values in `y` are
histogrammed along the second dimension.
xedges : ndarray, shape(nx,)
The bin edges along the first dimension.
yedges : ndarray, shape(ny,)
The bin edges along the second dimension.
See Also
--------
histogram: 1D histogram
histogramdd: Multidimensional histogram
Notes
-----
When `normed` is True, then the returned histogram is the sample density,
defined such that:
.. math::
\\sum_{i=0}^{nx-1} \\sum_{j=0}^{ny-1} H_{i,j} \\Delta x_i \\Delta y_j = 1
where `H` is the histogram array and :math:`\\Delta x_i \\Delta y_i`
the area of bin `{i,j}`.
Please note that the histogram does not follow the Cartesian convention
where `x` values are on the abcissa and `y` values on the ordinate axis.
Rather, `x` is histogrammed along the first dimension of the array
(vertical), and `y` along the second dimension of the array (horizontal).
This ensures compatibility with `histogramdd`.
Examples
--------
>>> x, y = np.random.randn(2, 100)
>>> H, xedges, yedges = np.histogram2d(x, y, bins=(5, 8))
>>> H.shape, xedges.shape, yedges.shape
((5, 8), (6,), (9,))
"""
from numpy import histogramdd
try:
N = len(bins)
except TypeError:
N = 1
if N != 1 and N != 2:
xedges = yedges = asarray(bins, float)
bins = [xedges, yedges]
hist, edges = histogramdd([x,y], bins, range, normed, weights)
return hist, edges[0], edges[1]
def mask_indices(n,mask_func,k=0):
"""
Return the indices to access (n, n) arrays, given a masking function.
Assume `mask_func` is a function that, for a square array a of size
``(n, n)`` with a possible offset argument `k`, when called as
``mask_func(a, k)`` returns a new array with zeros in certain locations
(functions like `triu` or `tril` do precisely this). Then this function
returns the indices where the non-zero values would be located.
Parameters
----------
n : int
The returned indices will be valid to access arrays of shape (n, n).
mask_func : callable
A function whose call signature is similar to that of `triu`, `tril`.
That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`.
`k` is an optional argument to the function.
k : scalar
An optional argument which is passed through to `mask_func`. Functions
like `triu`, `tril` take a second argument that is interpreted as an
offset.
Returns
-------
indices : tuple of arrays.
The `n` arrays of indices corresponding to the locations where
``mask_func(np.ones((n, n)), k)`` is True.
See Also
--------
triu, tril, triu_indices, tril_indices
Notes
-----
.. versionadded:: 1.4.0
Examples
--------
These are the indices that would allow you to access the upper triangular
part of any 3x3 array:
>>> iu = np.mask_indices(3, np.triu)
For example, if `a` is a 3x3 array:
>>> a = np.arange(9).reshape(3, 3)
>>> a
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> a[iu]
array([0, 1, 2, 4, 5, 8])
An offset can be passed also to the masking function. This gets us the
indices starting on the first diagonal right of the main one:
>>> iu1 = np.mask_indices(3, np.triu, 1)
with which we now extract only three elements:
>>> a[iu1]
array([1, 2, 5])
"""
m = ones((n,n),int)
a = mask_func(m,k)
return where(a != 0)
def tril_indices(n,k=0):
"""
Return the indices for the lower-triangle of an (n, n) array.
Parameters
----------
n : int
Sets the size of the arrays for which the returned indices will be valid.
k : int, optional
Diagonal offset (see `tril` for details).
Returns
-------
inds : tuple of arrays
The indices for the triangle. The returned tuple contains two arrays,
each with the indices along one dimension of the array.
See also
--------
triu_indices : similar function, for upper-triangular.
mask_indices : generic function accepting an arbitrary mask function.
tril, triu
Notes
-----
.. versionadded:: 1.4.0
Examples
--------
Compute two different sets of indices to access 4x4 arrays, one for the
lower triangular part starting at the main diagonal, and one starting two
diagonals further right:
>>> il1 = np.tril_indices(4)
>>> il2 = np.tril_indices(4, 2)
Here is how they can be used with a sample array:
>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
Both for indexing:
>>> a[il1]
array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15])
And for assigning values:
>>> a[il1] = -1
>>> a
array([[-1, 1, 2, 3],
[-1, -1, 6, 7],
[-1, -1, -1, 11],
[-1, -1, -1, -1]])
These cover almost the whole array (two diagonals right of the main one):
>>> a[il2] = -10
>>> a
array([[-10, -10, -10, 3],
[-10, -10, -10, -10],
[-10, -10, -10, -10],
[-10, -10, -10, -10]])
"""
return mask_indices(n,tril,k)
def tril_indices_from(arr,k=0):
"""
Return the indices for the lower-triangle of an (n, n) array.
See `tril_indices` for full details.
Parameters
----------
n : int
Sets the size of the arrays for which the returned indices will be valid.
k : int, optional
Diagonal offset (see `tril` for details).
See Also
--------
tril_indices, tril
Notes
-----
.. versionadded:: 1.4.0
"""
if not arr.ndim==2 and arr.shape[0] == arr.shape[1]:
raise ValueError("input array must be 2-d and square")
return tril_indices(arr.shape[0],k)
def triu_indices(n,k=0):
"""
Return the indices for the upper-triangle of an (n, n) array.
Parameters
----------
n : int
Sets the size of the arrays for which the returned indices will be valid.
k : int, optional
Diagonal offset (see `triu` for details).
Returns
-------
inds : tuple of arrays
The indices for the triangle. The returned tuple contains two arrays,
each with the indices along one dimension of the array.
See also
--------
tril_indices : similar function, for lower-triangular.
mask_indices : generic function accepting an arbitrary mask function.
triu, tril
Notes
-----
.. versionadded:: 1.4.0
Examples
--------
Compute two different sets of indices to access 4x4 arrays, one for the
upper triangular part starting at the main diagonal, and one starting two
diagonals further right:
>>> iu1 = np.triu_indices(4)
>>> iu2 = np.triu_indices(4, 2)
Here is how they can be used with a sample array:
>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
Both for indexing:
>>> a[iu1]
array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15])
And for assigning values:
>>> a[iu1] = -1
>>> a
array([[-1, -1, -1, -1],
[ 4, -1, -1, -1],
[ 8, 9, -1, -1],
[12, 13, 14, -1]])
These cover only a small part of the whole array (two diagonals right
of the main one):
>>> a[iu2] = -10
>>> a
array([[ -1, -1, -10, -10],
[ 4, -1, -1, -10],
[ 8, 9, -1, -1],
[ 12, 13, 14, -1]])
"""
return mask_indices(n,triu,k)
def triu_indices_from(arr,k=0):
"""
Return the indices for the lower-triangle of an (n, n) array.
See `triu_indices` for full details.
Parameters
----------
n : int
Sets the size of the arrays for which the returned indices will be valid.
k : int, optional
Diagonal offset (see `triu` for details).
See Also
--------
triu_indices, triu
Notes
-----
.. versionadded:: 1.4.0
"""
if not arr.ndim==2 and arr.shape[0] == arr.shape[1]:
raise ValueError("input array must be 2-d and square")
return triu_indices(arr.shape[0],k)
|