This file is indexed.

/usr/share/pyshared/nitime/timeseries.py is in python-nitime 0.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
"""Base classes for generic time series analysis.

The classes implemented here are meant to provide fairly basic objects for
managing time series data.  They should serve mainly as data containers, with
only minimal algorithmic functionality.

In the timeseries subpackage, there is a separate library of algorithms, and
the classes defined here mostly delegate any computational facilities they may
have to that library.

Over time, it is OK to add increasingly functionally rich classes, but only
after their design is well proven in real-world use.

"""
#-----------------------------------------------------------------------------
# Public interface
#-----------------------------------------------------------------------------
__all__ = ['time_unit_conversion',
           'TimeSeriesInterface',
           'TimeSeries',
           'TimeInterface',
           'UniformTime',
           'TimeArray',
           'Epochs',
           'Events'
           ]
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------

import numpy as np

# Our own
from nitime import descriptors as desc

#-----------------------------------------------------------------------------
# Module globals
#-----------------------------------------------------------------------------

# These are the valid names for time units, taken from the Numpy date/time
# types specification document.  They conform to SI nomenclature where
# applicable.

# Most uses of this are membership checks, so we make a set for fast
# validation.  But we create them first as a list so we can print an ordered
# and easy to read error message.

time_unit_conversion = {
                        'ps': 1,  # picosecond
                        'ns': 10 ** 3,  # nanosecond
                        'us': 10 ** 6,  # microsecond
                        'ms': 10 ** 9,  # millisecond
                        's': 10 ** 12,   # second
                         None: 10 ** 12,  # The default is seconds (when
                                        # constructor doesn't get any
                                        # input, it defaults to None)
                        'm': 60 * 10 ** 12,   # minute
                        'h': 3600 * 10 ** 12,   # hour
                        'D': 24 * 3600 * 10 ** 12,   # day
                        'W': 7 * 24 * 3600 * 10 ** 12,  # week
                                                        # (not an SI unit)
                        }

# The basic resolution:
base_unit = 'ps'


#-----------------------------------------------------------------------------
# Class declarations
#-----------------------------------------------------------------------------

# Time:
class TimeInterface(object):
    """ The minimal object interface for time representations

    This should be thought of as an abstract base class. """

    time_unit = None


def get_time_unit(obj):
    """
    Extract the time unit of the object. If it is an iterable, get the time
    unit of the first element.
    """

    # If this is a Time object, no problem:
    if isinstance(obj, TimeInterface):
        return obj.time_unit

    # Otherwise, if it is iterable, we recurse on it:
    try:
        it = iter(obj)
    except TypeError:
        return None
    else:
        return get_time_unit(it.next())


class TimeArray(np.ndarray, TimeInterface):
    """Base-class for time representations, implementing the TimeInterface"""
    def __new__(cls, data, time_unit=None, copy=True):
        """XXX Write a doc-string - in particular, mention the the default
        time-units to be used are seconds (which is why it is set to None) """

        # Check that the time units provided are sensible:
        if time_unit not in time_unit_conversion:
            raise ValueError('Invalid time unit %s, must be one of %s' %
                             (time_unit, time_unit_conversion.keys()))

        # Get the conversion factor from the input:
        conv_fac = time_unit_conversion[time_unit]

        # Call get_time_unit to pull the time_unit out from inside:
        data_time_unit = get_time_unit(data)
        # If it has a time unit, you should not convert the values to
        # base_unit, because they are already in that:
        if data_time_unit is not None:
            conv_fac = 1

        # We check whether the data has a time-unit somewhere inside (for
        # example, if it is a list of TimeArray objects):
        if time_unit is None:
            time_unit = data_time_unit

        # We can only honor the copy flag in a very narrow set of cases
        # if data is already a TimeArray or if data is an ndarray with
        # dtype=int64
        if copy == False:
            if not getattr(data, 'dtype', None) == np.int64:
                e_s = 'When copy flag is set to False, must provide a'
                e_s += 'TimeArray in object, or int64 times, in %s' % base_unit
                raise ValueError(e_s)

            time = np.array(data, copy=False)
        else:
            if isinstance(data, TimeInterface):
                time = data.copy()
            else:
                data_arr = np.asarray(data)
                if issubclass(data_arr.dtype.type, np.integer):
                    # If this is an array of integers, cast to 64 bit integer
                    # and convert to the base_unit.
                    #XXX This will fail when even 64 bit is not large enough to
                    # avoid wrap-around (When you try to make more than 10**6
                    # seconds). XXX this should be mentioned in the docstring
                    time = data_arr.astype(np.int64) * conv_fac
                else:
                    # Otherwise: first convert, round and then cast to 64
                    time = (data_arr * conv_fac).round().astype(np.int64)

        # Make sure you have an array on your hands (for example, if you input
        # an integer, you might have reverted to an integer when multiplying
        # with the conversion factor:
        time = np.asarray(time).view(cls)

        # Make sure time is one-dimensional or 0-d
        if time.ndim > 1:
            raise ValueError('TimeArray can only be one-dimensional or 0-d')

        if time_unit is None:
            time_unit = 's'

        time.time_unit = time_unit
        time._conversion_factor = time_unit_conversion[time_unit]
        return time

    def __array_wrap__(self, out_arr, context=None):
        # When doing comparisons between TimeArrays, make sure that you return
        # a boolean array, not a time array:
        if out_arr.dtype == bool:
            return np.asarray(out_arr)
        else:
            return np.ndarray.__array_wrap__(self, out_arr, context)

    def __array_finalize__(self, obj):
        """XXX """
        # Make sure that the TimeArray has the time units set (and not equal to
        # None):
        if not hasattr(self, 'time_unit') or self.time_unit is None:
            if hasattr(obj, 'time_unit'):  # looks like view cast
                self.time_unit = obj.time_unit
            else:
                self.time_unit = 's'

        # Make sure that the conversion factor is set properly:
        if not hasattr(self, '_conversion_factor'):
            if hasattr(obj, '_conversion_factor'):
                self._conversion_factor = obj._conversion_factor
            else:
                self._conversion_factor = time_unit_conversion[self.time_unit]

    def __repr__(self):
        """Pass it through the conversion factor"""

        # If the input is a single int/float (with no shape) return a 'scalar'
        # time-point:
        if self.shape == ():
            return "%r %s" % (int(self) / float(self._conversion_factor),
                           self.time_unit)
        # Otherwise, return the TimeArray representation:
        else:
            return np.ndarray.__repr__(self / float(self._conversion_factor)
             )[:-1] + ", time_unit='%s')" % self.time_unit

    def __str__(self):
        """Return a nice string representation of this TimeArray"""
        return self.__repr__()

    def __getitem__(self, key):
        # return scalar TimeArray in case key is integer
        if isinstance(key, (int, np.int64, np.int32)):
            return self[[key]].reshape(())
        elif isinstance(key, float):
            return self.at(key)
        elif isinstance(key, Epochs):
            return self.during(key)
        else:
            return np.ndarray.__getitem__(self, key)

    def __setitem__(self, key, val):
        # look at the units - convert the values to what they need to be (in
        # the base_unit) and then delegate to the ndarray.__setitem__
        if not hasattr(val, '_conversion_factor'):
            val *= self._conversion_factor
        return np.ndarray.__setitem__(self, key, val)

    def _convert_if_needed(self,val):
        if not hasattr(val, '_conversion_factor'):
            val = np.asarray(val)
            if getattr(val, 'dtype', None) == np.int32:
                # we'll overflow if val's dtype is np.int32
                val = np.array(val, dtype=np.int64)
            val *= self._conversion_factor
        return val

    def __add__(self,val):
        val = self._convert_if_needed(val)
        return np.ndarray.__add__(self,val)

    def __sub__(self,val):
        val = self._convert_if_needed(val)
        return np.ndarray.__sub__(self,val)

    def __radd__(self,val):
        val = self._convert_if_needed(val)
        return np.ndarray.__radd__(self,val)

    def __rsub__(self,val):
        val = self._convert_if_needed(val)
        return np.ndarray.__rsub__(self,val)

    def __lt__(self,val):
        val = self._convert_if_needed(val)
        return np.ndarray.__lt__(self,val)

    def __gt__(self,val):
        val = self._convert_if_needed(val)
        return np.ndarray.__gt__(self,val)

    def __le__(self,val):
        val = self._convert_if_needed(val)
        return np.ndarray.__le__(self,val)

    def __ge__(self,val):
        val = self._convert_if_needed(val)
        return np.ndarray.__ge__(self,val)

    def __eq__(self,val):
        val = self._convert_if_needed(val)
        return np.ndarray.__eq__(self,val)
    
    def min(self, *args,**kwargs):
        ret = TimeArray(np.ndarray.min(self, *args,**kwargs),
            time_unit=base_unit)
        ret.convert_unit(self.time_unit)
        return ret

    def max(self, *args,**kwargs):
        ret = TimeArray(np.ndarray.max(self, *args,**kwargs),
            time_unit=base_unit)
        ret.convert_unit(self.time_unit)
        return ret

    def mean(self, *args,**kwargs):
        ret = TimeArray(np.ndarray.mean(self, *args,**kwargs),
            time_unit=base_unit)
        ret.convert_unit(self.time_unit)
        return ret

    def ptp(self, *args,**kwargs):
        ret = TimeArray(np.ndarray.ptp(self, *args,**kwargs),
            time_unit=base_unit)
        ret.convert_unit(self.time_unit)
        return ret

    def sum(self, *args,**kwargs):
        ret = TimeArray(np.ndarray.sum(self, *args,**kwargs),
            time_unit=base_unit)
        ret.convert_unit(self.time_unit)
        return ret
    
    def prod(self, *args, **kwargs):
        e_s = "Product computation changes TimeArray units"
        raise NotImplementedError(e_s)
        
    
    def var(self, *args, **kwargs):
        e_s = "Variance computation changes TimeArray units"
        raise NotImplementedError(e_s)

        
    def std(self, *args, **kwargs):
        """Returns the standard deviation of this TimeArray (with time units)

        for detailed information, see numpy.std()
        """
        ret = TimeArray(np.ndarray.std(self, *args,**kwargs),
            time_unit=base_unit)
        ret.convert_unit(self.time_unit)
        return ret


    def index_at(self, t, tol=None, mode='closest'):
        """ Returns the integer indices that corresponds to the time t

        The returned indices depend on both `tol` and `mode`.  The `tol`
        parameter specifies how close the given time must be to those present
        in the array to give a match, when `mode` is `closest`.  The default
        tolerance is 1 `base_unit` (by default, picoseconds).  If you specify
        the tolerance as 0, then only *exact* matches are allowed, be careful
        in this case of possible problems due to floating point roundoff error
        in your time specification.

        When mode is `before` or `after`, the tolerance is completely ignored.
        In this case, either the largest time equal or *before* the given `t`
        or the earliest time equal or *after* the given `t` is returned.

        Parameters
        ----------
        t : time-like
          Anything that is valid input for a TimeArray constructor.
        tol : time-like, optional
          Tolerance, specified in the time units of this TimeArray.
        mode : string
          One of ['closest', 'before', 'after'].

        Returns
        -------
        The array with all the indices where the condition is met.
          """
        if not np.iterable(t):
            t = [t]
        t_e = TimeArray(t, time_unit=self.time_unit)
        if mode == 'closest':
            return self._index_closest(t_e, tol)
        elif mode == 'before':
            return self._index_before(t_e)
        elif mode == 'after':
            return self._index_after(t_e)
        else:
            raise ValueError('Invalid mode specification')

    def _index_closest(self, t, tol=None):
        d = np.abs(self - t)
        if tol is None:
            # If no tolerance is specified, use one clock tick of the
            # base_unit:
            tol = clock_tick

        # tolerance is converted into a time-array, so that it does the
        # right thing:
        ttol = TimeArray(tol, time_unit=self.time_unit)
        return np.where(d <= ttol)[0]

    def _index_before(self, t):
        # Use the standard Decorate-Sort-Undecorate (Schwartzian transform)
        # pattern to find the right index.
        cond = np.where(self <= t)[0]
        if len(cond) == 0:
            return cond
        idx_max = self[cond].argmax()
        return cond[idx_max]

    def _index_after(self, t):
        cond = np.where(t <= self)[0]
        if len(cond) == 0:
            return cond

        idx_min = self[cond].argmin()
        return cond[idx_min]

    def slice_during(self, e):
        """ Returns the slice that corresponds to Epoch e"""

        if not isinstance(e, Epochs):
            raise ValueError('e has to be of Epochs type')

        if e.data.ndim > 0:
            raise NotImplementedError('e has to be a scalar Epoch')

        if self.ndim != 1:
            e_s = 'slicing only implemented for 1-d TimeArrays'
            return NotImplementedError(e_s)

        # These two should be called with modes, such that they catch the right
        # slice
        start = self.index_at(e.start, mode='after')
        stop = self.index_at(e.stop, mode='before')

        # If *either* the start or stop index object comes back as the empty
        # array, then it means the condition is not satisfied, we return the
        # slice that does [:0],  i.e., always slices to nothing.
        if start.shape == (0,) or stop.shape == (0,):
            return slice(0)

        # Now,  we know the start/stop are not empty arrays, but they can be
        # either scalars or arrays.
        i_start = start if np.isscalar(start) else start.max()
        i_stop = stop if np.isscalar(stop) else stop.min()

        if e.start > self[i_start]:  # make sure self[i_start] is in epoch e
            i_start += 1
        if e.stop > self[i_stop]:  # make sure to include self[i_stop]
            i_stop += 1

        return slice(i_start, i_stop)

    def at(self, t, tol=None):
        """ Returns the values of the TimeArray object at time t"""
        return self[self.index_at(t, tol=tol)]

    def during(self, e):
        """ Returns the values of the TimeArray object during Epoch e"""

        if not isinstance(e, Epochs):
            raise ValueError('e has to be of Epochs type')

        if e.data.ndim > 0:
            ## TODO: Implement slicing with 1-d Epochs array,
            ## resulting in (ragged/jagged) 2-d TimeArray
            raise NotImplementedError('e has to be a scalar Epoch')

        return self[self.slice_during(e)]

##     def min(self,axis=None,out=None):
##         """Returns the minimal time"""
##         # this is a quick fix to return a time and will
##         # be obsolete once we use proper time dtypes
##         if axis is not None:
##             raise NotImplementedError, 'axis argument not implemented'
##         if out is not None:
##             raise NotImplementedError, 'out argument not implemented'
##         if self.ndim:
##             return self[self.argmin()]
##         else:
##             return self

    def max(self, axis=None, out=None):
        """Returns the maximal time"""
        # this is a quick fix to return a time and will
        # be obsolete once we use proper time dtypes
        if axis is not None:
            raise NotImplementedError('axis argument not implemented')
        if out is not None:
            raise NotImplementedError('out argument not implemented')
        if self.ndim:
            return self[self.argmax()]
        else:
            return self

    def convert_unit(self, time_unit):
        """Convert from one time unit to another in place"""

        self.time_unit = time_unit
        self._conversion_factor = time_unit_conversion[time_unit]

    def __div__(self, d):
        """Division by another time object eliminates units """
        if isinstance(d, TimeInterface):
            return np.divide(np.array(self), np.array(d).astype(float))
        else:
            return np.divide(self, d)

# Globally define a single tick of the base unit:
clock_tick = TimeArray(1, time_unit=base_unit)


class UniformTime(np.ndarray, TimeInterface):
    """ A representation of time sampled uniformly

    Parameters
    ----------

    length: int, the number of items in the time-array

    duration: float, the duration to be represented (given in the time-unit) of
    the array. If this item is an TimeArray, the units of the UniformTime
    array resulting will 'inherit' the units of the duration. Otherwise, the
    unit of the UniformTime will be set by that kwarg

    sampling_rate: float, the sampling rate (in 1/time-unit)

    sampling_interval: float, the inverse of the sampling_interval

    t0: the value of the first time-point in the array (in time-unit)

    time_unit:

    copy: whether to make a copy of not. Needs to be set to False

    XXX continue writing this
    """

    def __new__(cls, data=None, length=None, duration=None, sampling_rate=None,
                sampling_interval=None, t0=0, time_unit=None, copy=False):
        """Create a new UniformTime """

        # Sanity checks. There are different valid combinations of inputs
        tspec = tuple(x is not None for x in
                      [sampling_interval, sampling_rate, length, duration])

        # Used in converting tspecs to human readable form
        tspec_arg_names = ['sampling_interval',
                           'sampling_rate',
                           'length',
                           'duration']

        # The valid configurations
        valid_tspecs = [
            # interval, length:
            (True, False, True, False),
            # interval, duration:
            (True, False, False, True),
            # rate, length:
            (False, True, True, False),
            # rate, duration:
            (False, True, False, True),
            # length, duration:
            (False, False, True, True)
            ]

        if isinstance(data, UniformTime):
            # Assuming data was given, some other tspecs become valid:
            tspecs_w_data = dict(
                    nothing=(False, False, False, False),
                    sampling_interval=(True, False, False, False),
                    sampling_rate=(False, True, False, False),
                    length=(False, False, True, False),
                    duration=(False, False, False, True))
            # preserve the order of the keys
            valid_tspecs.append(tspecs_w_data['nothing'])
            for name in tspec_arg_names:
                valid_tspecs.append(tspecs_w_data[name])

        if (tspec not in valid_tspecs):
            # l = ['sampling_interval', 'sampling_rate', 'length', 'duration']
            # args = [arg for t,arg in zip(tspec,l) if t]
            raise ValueError("Invalid time specification.\n" +
                "You provided: %s \n"
                "%s \nsee docstring for more info."
                % (str_tspec(tspec, tspec_arg_names),
                  str_valid_tspecs(valid_tspecs,
                                   tspec_arg_names)))

        if isinstance(data, UniformTime):
            # Get attributes from the UniformTime object and transfer those
            # over:
            if tspec == tspecs_w_data['nothing']:
                sampling_rate = data.sampling_rate
                duration = data.duration
            elif tspec == tspecs_w_data['sampling_interval']:
                duration == data.duration
            elif tspec == tspecs_w_data['sampling_rate']:
                if isinstance(sampling_rate, Frequency):
                    sampling_interval = sampling_rate.to_period()
                else:
                    sampling_interval = 1.0 / sampling_rate
                duration = data.duration
            elif tspec == tspecs_w_data['length']:
                duration = length * data.sampling_interval
                sampling_rate = data.sampling_rate
            elif tspec == tspecs_w_data['duration']:
                sampling_rate = data.sampling_rate
            if time_unit is None:
                # If the user didn't ask to change the time-unit, use the
                # time-unit from the object you got:
                time_unit = data.time_unit

        # Check that the time units provided are sensible:
        if time_unit not in time_unit_conversion:
            raise ValueError('Invalid time unit %s, must be one of %s' %
                         (time_unit, time_unit_conversion.keys()))

        # Make sure you have a time unit:
        if time_unit is None:
            #If you gave us a duration with time_unit attached
            if isinstance(duration, TimeInterface):
                time_unit = duration.time_unit
            #Otherwise, you might have given us a sampling_interval with a
            #time_unit attached:
            elif isinstance(sampling_interval, TimeInterface):
                time_unit = sampling_interval.time_unit
            else:
                time_unit = 's'

        # Calculate the sampling_interval or sampling_rate:
        if sampling_interval is None:
            if isinstance(sampling_rate, Frequency):
                c_f = time_unit_conversion[time_unit]
                sampling_interval = sampling_rate.to_period() / float(c_f)
            elif sampling_rate is None:
                sampling_interval = float(duration) / length
                sampling_rate = Frequency(1.0 / sampling_interval,
                                          time_unit=time_unit)
            else:
                c_f = time_unit_conversion[time_unit]
                sampling_rate = Frequency(sampling_rate, time_unit='s')
                sampling_interval = sampling_rate.to_period() / float(c_f)
        else:
            if isinstance(sampling_interval, TimeInterface):
                c_f = time_unit_conversion[sampling_interval.time_unit]
                sampling_rate = Frequency(1.0 / (float(sampling_interval) /
                                                                       c_f),
                                     time_unit=sampling_interval.time_unit)
            else:
                sampling_rate = Frequency(1.0 / sampling_interval,
                                          time_unit=time_unit)

        # Calculate the duration, if that is not defined:
        if duration is None:
            duration = length * sampling_interval

        # 'cast' the time inputs as TimeArray
        duration = TimeArray(duration, time_unit=time_unit)
        #XXX If data is given - the t0 should be taken from there:
        t0 = TimeArray(t0, time_unit=time_unit)
        sampling_interval = TimeArray(sampling_interval, time_unit=time_unit)

        # in order for time[-1]-time[0]==duration to be true (which it should)
        # add the sampling_interval to the stop value:
        # time = np.arange(np.int64(t0),
        #                  np.int64(t0+duration+sampling_interval),
        #                  np.int64(sampling_interval),dtype=np.int64)

        # But it's unclear whether that's really the behavior we want?
        time = np.arange(np.int64(t0), np.int64(t0 + duration),
                         np.int64(sampling_interval), dtype=np.int64)

        time = np.asarray(time).view(cls)
        time.time_unit = time_unit
        time._conversion_factor = time_unit_conversion[time_unit]
        time.duration = duration
        time.sampling_rate = Frequency(sampling_rate)
        time.sampling_interval = sampling_interval
        time.t0 = t0

        return time

    def __array_wrap__(self, out_arr, context=None):
        # When doing comparisons between UniformTime, make sure that you return
        # a boolean array, not a time array:
        if out_arr.dtype == bool:
            return np.asarray(out_arr)
        else:
            return np.ndarray.__array_wrap__(self, out_arr, context)

    def __array_finalize__(self, obj):
        """XXX """
        # Make sure that the UniformTime has the time units set (and not equal
        # to None):
        if not hasattr(self, 'time_unit') or self.time_unit is None:
            if hasattr(obj, 'time_unit'):  # looks like view cast
                self.time_unit = obj.time_unit
            else:
                self.time_unit = 's'

        # Make sure that the conversion factor is set properly:
        if not hasattr(self, '_conversion_factor'):
            if hasattr(obj, '_conversion_factor'):
                self._conversion_factor = obj._conversion_factor
            else:
                self._conversion_factor = time_unit_conversion[self.time_unit]

        # Make sure that t0 attribute is set properly:
        for attr in ['t0', 'sampling_rate', 'sampling_interval', 'duration']:
            if not hasattr(self, attr) and hasattr(obj, attr):
                setattr(self, attr, getattr(obj, attr))

    def __repr__(self):
        """Pass it through the conversion factor"""

        #If the input is a single int/float (with no shape) return a 'scalar'
        #time-point:
        if self.shape == ():
            return "%r %s" % (int(self) / float(self._conversion_factor),
                            self.time_unit)

        #Otherwise, return the UniformTime representation:
        else:
            return np.ndarray.__repr__(self / float(self._conversion_factor)
             )[:-1] + ", time_unit='%s')" % self.time_unit

    def __getitem__(self, key):
        # return scalar TimeArray in case key is integer
        if isinstance(key, (int, np.int64, np.int32)):
            return self[[key]].reshape(()).view(TimeArray)
        elif isinstance(key, float) or isinstance(key, TimeInterface):
            return self.at(key)
        elif isinstance(key, Epochs):
            return self.during(key)
        else:
            return np.ndarray.__getitem__(self, key)

    def __setitem__(self, key, val):
        raise ValueError("""Setting of individual indices would break uniformity:
            You can either use += on the full array, OR
            create a new TimeArray from this UniformTime""")

    def _convert_and_check_uniformity(self, val):
        # look at the units - convert the values to what they need to be (in
        # the base_unit) and then delegate to the ndarray.__iadd__
        if not hasattr(val, '_conversion_factor'):
            val = np.asarray(val)
            if getattr(val, 'dtype', None) == np.int32:
                # we'll overflow if val's dtype is np.int32
                val = np.array(val, dtype=np.int64)
            val *= self._conversion_factor
        if hasattr(val, 'ndim') and val.ndim == 1:
            # we have to check that adding this will preserve uniformity
            dv = np.diff(val)
            uniformity_breaks, = np.where(dv!=dv[0])
            if len(uniformity_breaks) != 0:
                raise ValueError(
                    """All elements in the operand array must have a constant
                    interval between them in order to preserve uniformity.
                    Uniformity is broken at these indices: %s
                    """ %str(uniformity_breaks))
            self.sampling_interval += dv[0]
            self.sampling_rate = Frequency(1.0 / (float(self.sampling_interval) /
                                        time_unit_conversion[self.time_unit]),
                                        time_unit=self.time_unit)
        return val

    def __iadd__(self, val):
        val = self._convert_and_check_uniformity(val)
        return np.ndarray.__iadd__(self, val)

    def __isub__(self, val):
        val = self._convert_and_check_uniformity(val)
        return np.ndarray.__isub__(self, val)

    def __imul__(self, val):
        np.ndarray.__imul__(self, val)
        self.sampling_interval *= val
        self.sampling_rate = Frequency(self.sampling_rate / val)
        return self

    def __idiv__(self, val):
        np.ndarray.__idiv__(self, val)
        self.sampling_interval /= val
        self.sampling_rate = Frequency(self.sampling_rate * val)
        return self


    def index_at(self, t, boolean=False):
        """Find the index that corresponds to the time bin containing t

           Returns boolean mask if boolean=True and integer indices otherwise.
        """

        # cast t into time
        ta = TimeArray(t, time_unit=self.time_unit)

        # check that index is within range
        if ta.min() < self.t0 or ta.max() >= self.t0 + self.duration:
            raise ValueError('index out of range')
        idx = (ta - self.t0) // self.sampling_interval
        if boolean:
            bool_idx = np.zeros(len(self), dtype=bool)
            bool_idx[idx] = True
            return bool_idx
        elif ta.ndim == 0:
            return idx[()]
        else:
            return idx.view(np.ndarray)

    def slice_during(self, e):
        """ Returns the slice that corresponds to Epoch e"""

        if not isinstance(e, Epochs):
            raise ValueError('e has to be of Epochs type')

        if e.data.ndim > 0:
            raise NotImplementedError('e has to be a scalar Epoch')

        if self.ndim != 1:
            e_s = 'slicing only implemented for 1-d TimeArrays'
            return NotImplementedError(e_s)
        i_start = self.index_at(e.start)
        i_stop = self.index_at(e.stop)
        if e.start > self[i_start]:  # make sure self[i_start] is in epoch e
            i_start += 1
        if e.stop > self[i_stop]:  # make sure to include self[i_stop]
            i_stop += 1

        return slice(i_start, i_stop)

    def at(self, t):
        """ Returns the values of the UniformTime object at time t"""
        return TimeArray(self[self.index_at(t)], time_unit=self.time_unit)

    def during(self, e):
        """ Returns the values of the UniformTime object during Epoch e"""

        if not isinstance(e, Epochs):
            raise ValueError('e has to be of Epochs type')

        if e.data.ndim > 0:
            raise NotImplementedError('e has to be a scalar Epoch')

        return self[self.slice_during(e)]

    def min(self, axis=None, out=None):
        """Returns the minimal time"""
        # this is a quick fix to return a time and will
        # be obsolete once we use proper time dtypes
        if axis is not None:
            raise NotImplementedError('axis argument not implemented')
        if out is not None:
            raise NotImplementedError('out argument not implemented')
        if self.ndim:
            return self[self.argmin()]
        else:
            return self

    def max(self, axis=None, out=None):
        """Returns the maximal time"""
        # this is a quick fix to return a time and will
        # be obsolete once we use proper time dtypes
        if axis is not None:
            raise NotImplementedError('axis argument not implemented')
        if out is not None:
            raise NotImplementedError('out argument not implemented')
        if self.ndim:
            return self[self.argmax()]
        else:
            return self

    def __div__(self, d):
        """Division by another time object eliminates units """
        if isinstance(d, TimeInterface):
            return np.divide(np.array(self), np.array(d).astype(float))
        else:
            return np.divide(self, d)


##Frequency:

class Frequency(float):
    """A class for representation of the frequency (in Hz) """

    def __new__(cls, f, time_unit='s'):
        """Initialize a frequency object """

        tuc = time_unit_conversion
        scale_factor = (float(tuc['s']) / tuc[time_unit])
        #If the input is a Frequency object, it is already in Hz:
        if isinstance(f, Frequency) == False:
            #But otherwise convert to Hz:
            f = f * scale_factor

        freq = super(Frequency, cls).__new__(cls, f)
        freq._time_unit = time_unit

        return freq

    def __repr__(self):

        return str(self) + ' Hz'

    def to_period(self, time_unit=base_unit):
        """Convert the value of a frequency to the corresponding period
        (defaulting to a representation in the base_unit)

        """
        tuc = time_unit_conversion
        scale_factor = (float(tuc['s']) / tuc[time_unit])

        return np.int64((1 / self) * scale_factor)


##Time-series:
class TimeSeriesInterface(TimeInterface):
    """The minimally agreed upon interface for all time series.

    This should be thought of as an abstract base class.
    """
    time = None
    data = None
    metadata = None


class TimeSeriesBase(object):
    """Base class for time series, implementing the TimeSeriesInterface."""

    def __init__(self, data, time_unit, metadata=None):
        """Common constructor shared by all TimeSeries classes."""
        # Check that sensible time units were given
        if time_unit not in time_unit_conversion:
            raise ValueError('Invalid time unit %s, must be one of %s' %
                             (time_unit, time_unit_conversion.keys()))

        #: the data is an arbitrary numpy array
        self.data = np.asanyarray(data)
        self.time_unit = time_unit

        # Every instance carries an empty metadata dict, which we promise never
        # to touch.  This reserves this name as a user area for extra
        # information without the danger of name clashes in the future.
        if metadata is None:
            self.metadata = {}
        else:
            self.metadata = metadata

    def __len__(self):
        """Return the length of the time series."""
        return self.data.shape[-1]

    def _validate_dimensionality(self):
        """Check that the data and time have the proper dimensions.
        """

        if self.time.ndim != 1:
            raise ValueError("time array must be one-dimensional")
        npoints = self.data.shape[-1]
        if npoints != len(self.time):
            raise ValueError("mismatch of time and data dimensions")

    def __getitem__(self, key):
        """use fancy time-indexing (at() method)."""
        if isinstance(key, TimeInterface):
            return self.at(key)
        elif isinstance(key, Epochs):
            return self.during(key)
        elif self.data.ndim == 1:
            return self.data[key]  # time is the last dimension
        else:
            return self.data[..., key]  # time is the last dimension

    def __repr__(self):
        rep = self.__class__.__name__ + ":"
        return rep + self.time.__repr__() + self.data.T.__repr__()

    # add some methods that implement arithmetic on the timeseries data
    def __add__(self, other):
        out = self.copy()
        out.data = out.data.__add__(other)
        return out

    def __sub__(self, other):
        out = self.copy()
        out.data = out.data.__sub__(other)
        return out

    def __mul__(self, other):
        out = self.copy()
        out.data = out.data.__mul__(other)
        return out

    def __div__(self, other):
        out = self.copy()
        out.data = out.data.__div__(other)
        return out

    def __iadd__(self, other):
        self.data.__iadd__(other)
        return self

    def __isub__(self, other):
        self.data.__isub__(other)
        return self

    def __imul__(self, other):
        self.data.__imul__(other)
        return self

    def __idiv__(self, other):
        self.data.__idiv__(other)
        return self


class TimeSeries(TimeSeriesBase):
    """Represent data collected at uniform intervals.
    """

    @desc.setattr_on_read
    def time(self):
        """Construct time array for the time-series object. This holds a
    UniformTime object, with properties derived from the TimeSeries
    object"""
        return UniformTime(length=self.__len__(), t0=self.t0,
                           sampling_interval=self.sampling_interval,
                           time_unit=self.time_unit)

    #XXX This should call the constructor in an appropriate way, when provided
    #with a UniformTime object and data, so that you don't need to deal with
    #the constructor itself:
    @staticmethod
    def from_time_and_data(time, data):
        return TimeSeries.__init__(data, time=time)

    def copy(self):
        return TimeSeries(data=self.data.copy(),
                          time=self.time.copy(),
                          time_unit=self.time_unit,
                          metadata=self.metadata.copy())

    def __init__(self, data, t0=None, sampling_interval=None,
                 sampling_rate=None, duration=None, time=None, time_unit='s',
                 metadata=None):
        """Create a new TimeSeries.

        This class assumes that data is uniformly sampled, but you can specify
        the sampling in one of three (mutually exclusive) ways:

        - sampling_interval [, t0]: data sampled starting at t0, equal
          intervals of sampling_interval.

        - sampling_rate [, t0]: data sampled starting at t0, equal intervals of
          width 1/sampling_rate.

        - time: a UniformTime object, in which case the TimeSeries can
          'inherit' the properties of this object.

        Parameters
        ----------
        data : array_like
          Data array, interpreted as having its last dimension being time.
        sampling_interval : float
          Interval between successive time points.
        sampling_rate : float
          Inverse of the interval between successive time points.
        t0 : float
          If you provide a sampling rate, you can optionally also provide a
          starting time.
        time
          Instead of sampling rate, you can explicitly provide an object of
        class UniformTime. Note that you can still also provide a different
        sampling_rate/sampling_interval/duration to take the place of the one
        in this object, but only as long as the changes are consistent with the
        length of the data.

        time_unit :  string
          The unit of time.

        Examples
        --------

        The minimal specification of data and sampling interval:

        >>> ts = TimeSeries([1,2,3],sampling_interval=0.25)
        >>> ts.time
        UniformTime([ 0.  ,  0.25,  0.5 ], time_unit='s')
        >>> ts.t0
        0.0 s
        >>> ts.sampling_rate
        4.0 Hz

        Or data and sampling rate:
        >>> ts = TimeSeries([1,2,3],sampling_rate=2)
        >>> ts.time
        UniformTime([ 0. ,  0.5,  1. ], time_unit='s')
        >>> ts.t0
        0.0 s
        >>> ts.sampling_interval
        0.5 s

        A time series where we specify the start time and sampling interval:
        >>> ts = TimeSeries([1,2,3],t0=4.25,sampling_interval=0.5)
        >>> ts.data
        array([1, 2, 3])
        >>> ts.time
        UniformTime([ 4.25,  4.75,  5.25], time_unit='s')
        >>> ts.t0
        4.25 s
        >>> ts.sampling_interval
        0.5 s
        >>> ts.sampling_rate
        2.0 Hz

        >>> ts = TimeSeries([1,2,3],t0=4.25,sampling_rate=2.0)
        >>> ts.data
        array([1, 2, 3])
        >>> ts.time
        UniformTime([ 4.25,  4.75,  5.25], time_unit='s')
        >>> ts.t0
        4.25 s
        >>> ts.sampling_interval
        0.5 s
        >>> ts.sampling_rate
        2.0 Hz

        """

        #If a UniformTime object was provided as input:
        if isinstance(time, UniformTime):
            c_fac = time._conversion_factor
            #If the user did not provide an alternative t0, get that from the
            #input:
            if t0 is None:
                t0 = time.t0
            #If the user did not provide an alternative sampling interval/rate:
            if sampling_interval is None and sampling_rate is None:
                sampling_interval = time.sampling_interval
                sampling_rate = time.sampling_rate
            #The duration can be read either from the length of the data, or
            #from the duration specified by the time-series:
            if duration is None:
                duration = time.duration
                length = time.shape[-1]
                #If changing the duration requires a change to the
                #sampling_rate, make sure that this was explicitely required by
                #the user - if the user did not explicitely set the
                #sampling_rate, or it is inconsistent, throw an error:
                data_len = np.array(data).shape[-1]

                if (length != data_len and
                    sampling_rate != float(data_len * c_fac) / time.duration):
                    e_s = "Length of the data (%s) " % str(len(data))
                    e_s += "specified sampling_rate (%s) " % str(sampling_rate)
                    e_s += "do not match."
                    raise ValueError(e_s)
            #If user does not provide a
            if time_unit is None:
                time_unit = time.time_unit

        else:
            ##If the input was not a UniformTime, we need to check that there
            ##is enough information in the input to generate the UniformTime
            ##array.

            #There are different valid combinations of inputs
            tspec = tuple(x is not None for x in
                      [sampling_interval, sampling_rate, duration])

            tspec_arg_names = ["sampling_interval",
                               "sampling_rate",
                               "duration"]

            #The valid configurations
            valid_tspecs = [
                      #interval, length:
                      (True, False, False),
                      #interval, duration:
                      (True, False, True),
                      #rate, length:
                      (False, True, False),
                      #rate, duration:
                      (False, True, True),
                      #length, duration:
                      (False, False, True)
                      ]

            if tspec not in valid_tspecs:
                raise ValueError("Invalid time specification. \n"
                      "You provided: %s\n %s see docstring for more info." % (
                            str_tspec(tspec, tspec_arg_names),
                            str_valid_tspecs(valid_tspecs, tspec_arg_names)))

        # Make sure to grab the time unit from the inputs, if it is provided:
        if time_unit is None:
            # If you gave us a duration with time_unit attached
            if isinstance(duration, TimeInterface):
                time_unit = duration.time_unit
            # Otherwise, you might have given us a sampling_interval with a
            # time_unit attached:
            elif isinstance(sampling_interval, TimeInterface):
                time_unit = sampling_interval.time_unit

        # Calculate the sampling_interval or sampling_rate from each other and
        # assign t0, if it is not already assigned:
        if sampling_interval is None:
            if isinstance(sampling_rate, Frequency):
                c_f = time_unit_conversion[time_unit]
                sampling_interval = sampling_rate.to_period() / float(c_f)
            elif sampling_rate is None:
                data_len = np.asarray(data).shape[-1]
                sampling_interval = float(duration) / data_len
                sampling_rate = Frequency(1.0 / sampling_interval,
                                             time_unit=time_unit)
            else:
                c_f = time_unit_conversion[time_unit]
                sampling_rate = Frequency(sampling_rate, time_unit='s')
                sampling_interval = sampling_rate.to_period() / float(c_f)
        else:
            if sampling_rate is None:  # Only if you didn't already 'inherit'
                                       # this property from another time object
                                       # above:
                if isinstance(sampling_interval, TimeInterface):
                    c_f = time_unit_conversion[sampling_interval.time_unit]
                    sampling_rate = Frequency(1.0 / (float(sampling_interval) /
                                                                         c_f),
                                       time_unit=sampling_interval.time_unit)
                else:
                    sampling_rate = Frequency(1.0 / sampling_interval,
                                              time_unit=time_unit)

        #Calculate the duration, if that is not defined:
        if duration is None:
            duration = np.asarray(data).shape[-1] * sampling_interval

        if t0 is None:
            t0 = 0

        # Make sure to grab the time unit from the inputs, if it is provided:
        if time_unit is None:
            #If you gave us a duration with time_unit attached
            if isinstance(duration, TimeInterface):
                time_unit = duration.time_unit
            #Otherwise, you might have given us a sampling_interval with a
            #time_unit attached:
            elif isinstance(sampling_interval, TimeInterface):
                time_unit = sampling_interval.time_unit

        #Otherwise, you can still call the common constructor to get the real
        #object initialized, with time_unit set to None and that will generate
        #the object with time_unit set to 's':
        TimeSeriesBase.__init__(self, data, time_unit, metadata=metadata)

        self.time_unit = time_unit
        self.sampling_interval = TimeArray(sampling_interval,
                                           time_unit=self.time_unit)
        self.t0 = TimeArray(t0, time_unit=self.time_unit)
        self.sampling_rate = sampling_rate
        self.duration = TimeArray(duration, time_unit=self.time_unit)

    def at(self, t, tol=None):
        """ Returns the values of the TimeArray object at time t"""
        return self.data[..., self.time.index_at(t)]

    def during(self, e):
        """ Returns the TimeSeries slice corresponding to epoch e """

        if not isinstance(e, Epochs):
            raise ValueError('e has to be of Epochs type')

        if e.data.ndim == 0:
            return TimeSeries(data=self.data[..., self.time.slice_during(e)],
                              time_unit=self.time_unit, t0=e.offset,
                              sampling_rate=self.sampling_rate)
        else:
            # TODO: make this a more efficient implementation, naive first pass
            if (e.duration != e.duration[0]).any():
                raise ValueError("All epochs must have the same duration")

            data = np.array([self.data[..., self.time.slice_during(ep)]
                             for ep in e])

            return TimeSeries(data=data,
                              time_unit=self.time_unit, t0=e.offset,
                              sampling_rate=self.sampling_rate)

    @property
    def shape(self):
        return self.data.shape


_epochtype = np.dtype({'names': ['start', 'stop'], 'formats': [np.int64] * 2})


class Epochs(desc.ResetMixin):
    """Represents a time interval"""
    def __init__(self, t0=None, stop=None, offset=None, start=None,
                 duration=None, time_unit=None, static=None, **kwargs):

        # Short-circuit path for a fast initialization. This relies on `static`
        # to be a dict that contains everything that defines an Epochs class
        # XXX: add this sort of fast __init__ to all other classes
        if static is not None:
            self.__dict__.update(static)
            # we have to reset the duration OneTimeProperty, since it refers
            # to computations performed on the former object
            self.reset()
            return

        if t0 is None and start is None:
            raise ValueError('Either start or t0 need to be specified')
        # Normal, error checking and type converting initialization logic

        if stop is None and duration is None:
            raise ValueError('Either stop or duration have to be specified')

        if stop is not None and duration is not None:
            ### TODO: check if stop and duration are consistent
            e_s = 'Only either stop or duration have to be specified'
            raise ValueError(e_s)

        if offset is None:
            offset = 0

        t_offset = TimeArray(offset, time_unit=time_unit)

        if t_offset.ndim > 0:
            raise ValueError('Only scalar offset allowed')

        if t0 is None:
            t_0 = 0
        else:
            t_0 = TimeArray(t0, time_unit=time_unit)

        if start is None:
            t_start = t_0 - t_offset
        else:
            t_start = TimeArray(start, time_unit=time_unit)

        # inherit time_unit of t_start
        self.time_unit = t_start.time_unit

        if stop is None:
            t_duration = TimeArray(duration, time_unit=time_unit)
            t_stop = t_start + t_duration
        else:
            t_stop = TimeArray(stop, time_unit=time_unit)

        if t_start.shape != t_stop.shape:
            raise ValueError('start and stop have to have same shape')

        if t_start.ndim == 0:
            # return a 'scalar' epoch
            self.data = np.empty(1, dtype=_epochtype).reshape(())
        elif t_start.ndim == 1:
            # return a 1-d epoch array
            self.data = np.empty(t_start.shape[0], dtype=_epochtype)
        else:
            e_s = 'Only 0-dim and 1-dim start and stop times allowed'
            raise ValueError(e_s)

        self.data['start'] = t_start
        self.data['stop'] = t_stop

        self.offset = t_offset

    # TODO: define setters for start, stop, offset attributes
    @property
    def start(self):
        return TimeArray(self.data['start'],
                         time_unit=self.time_unit,
                         copy=False)

    @property
    def stop(self):
        return TimeArray(self.data['stop'],
                         time_unit=self.time_unit,
                         copy=False)

    @desc.setattr_on_read
    def duration(self):
        """Duration array for the epoch"""
        return self.stop - self.start

    def __getitem__(self, key):
        # create the static dict needed for fast version of __init__
        static = self.__dict__.copy()
        static['data'] = self.data[key]
        # self.__class__ here is Epochs or a subclass of Epochs
        # and `start` is a required argument
        return self.__class__(start=None, static=static)

    def __repr__(self):
        if self.data.ndim == 0:
            z = (self.start, self.stop)
        else:
            z = zip(self.start, self.stop)
        rep = self.__class__.__name__ + "(" + z.__repr__()
        return rep + ", as (start,stop) tuples)"

    def __len__(self):
        return len(self.data)


def str_tspec(tspec, arg_names):
    """ Turn a single tspec into human readable form"""
    # an all "False" will convert to an empty string unless we do the following
    # where we create an all False tuple of the appropriate length
    if tspec == tuple([False] * len(arg_names)):
        return "(nothing)"
    return ", ".join([arg for t, arg in zip(tspec, arg_names) if t])


def str_valid_tspecs(valid_tspecs, arg_names):
    """Given a set of valid_tspecs, return a string that turns them into
    human-readable form"""
    vargs = []
    for tsp in valid_tspecs:
        vargs.append(str_tspec(tsp, arg_names))
    return "\n Valid time specifications are:\n\t%s" % ("\n\t".join(vargs))


def concatenate_time_series(time_series_seq):
    """Concatenates a sequence of time-series objects in time.

    The input can be any iterable of time-series objects; metadata, sampling
    rates and other attributes are kept from the last one in the sequence.

    This one requires that all the time-series in the list have the same
    sampling rate and that all the data have the same number of items in all
    dimensions, except the time dimension"""

    # Extract the data pointer for each and build a common data block
    data = []
    metadata = {}
    for ts in time_series_seq:
        data.append(ts.data)
        metadata.update(ts.metadata)

    # Sampling interval is read from the last one
    tseries = TimeSeries(np.concatenate(data,-1),
                                sampling_interval=ts.sampling_interval,
                                metadata=metadata)
    return tseries


class Events(TimeInterface):
    """Represents timestamps and associated data """

    def __init__(self, time, labels=None, indices=None,
                 time_unit=None, **data):

        # The time data must be at least a 1-d array, NOT a time scalar
        if not np.iterable(time):
            time = [time]

        # First initilaize the TimeArray from the time-stamps
        self.time = TimeArray(time, time_unit=time_unit)
        self.time_unit = self.time.time_unit

        # Make sure time is one-dimensional
        if self.time.ndim != 1:
            e_s = 'The TimeArray provided can only be one-dimensional'
            raise ValueError(e_s)
        # Ensure that the dict of data values has a known, uniform structure:
        # all values must be arrays, with at least one dimension.
        new_data = {}
        for k, v in data.iteritems():
            if np.iterable(v):
                v = np.asanyarray(v)
            else:
                # For scalars, we do NOT want to create 0-d arrays, which are
                # rather tricky to work with.  So if the input value is not an
                # iterable object, we turn it into a one-element 1-d array.
                v = np.array([v])
            new_data[k] = v

        # Make sure all data has same length
        ntimepts = len(self.time)
        for check_v in new_data.values():
            if len(check_v) != ntimepts:
                e_s = 'All data in the Events must be of the same'
                e_s += 'length as the associated time'
                raise ValueError(e_s)

        # Make sure indices have same length and are integers
        if labels is not None:
            if len(labels) != len(indices):
                e_s = 'Labels and indices must have the same length'
                raise ValueError(e_s)
            dt = [(l, np.int64) for l in labels]
        else:
            dt = np.int64
            dt = [('i%d' % i, np.int64)
                  for i in range(len(indices or ()))] or np.int64

        self.index = np.array(zip(*(indices or ())),
                                       dtype=dt).view(np.recarray)

        #Should data be a recarray?
##         dt = [(st,np.array(data[st]).dtype) for st in data] or None
##         self.data = np.array(zip(*data.values()),
##         dtype=dt).view(np.recarray)

        #Or a dict?
        self.data = new_data

    def __repr__(self):
        rep = self.__class__.__name__ + ":\n\t"
        rep += repr(self.time) + "\n\t"
        rep += repr(self.data)
        return rep

    def __getitem__(self, key):
        # return scalar TimeArray in case key is integer
        newdata = dict()
        newtime = self.time[key].reshape(-1)
        sl = key
        if isinstance(key, float):
            sl = self.time.index_at(key)
        elif isinstance(key, Epochs):
            sl = self.time.slice_during(key)
        for k, v in self.data.items():
            newdata[k] = v[sl]

        # XXX: I don't really understand how labels and index are supposed to
        # be used, so I'm not implementing them when slicing events - pi
        # 2010-12-04

        # self.__class__ here is Events or a subclass of Events
        return self.__class__(newtime, **newdata)

    def __len__(self):
        return len(self.time)