This file is indexed.

/usr/share/pyshared/openopt/kernel/oographics.py is in python-openopt 0.38+svn1589-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
from numpy import hstack, ravel, isnan, asfarray, log10, array,  isfinite, array, asarray
from openopt import __version__ as ooversion
ooversion = str(ooversion)
from setDefaultIterFuncs import stopcase

class Graphics:
    def __init__(self):
        self.drawFuncs = [self.oodraw]
        self.specifierStart = 'd'
        self.specifierFailed = 'x'
        self.specifierOK = 'p'
        self.specifierUndefined = 'o'
        self.specifierContinueFeasible = 'v'
        self.specifierContinueInfeasible = '>'
        self.specifierError = 's'
        self.REDUCE = 1e8
        self.axLineStyle= '-'
        self.axLineWidth= 2

        self.axMarker = ''
        self.axMarkerSize = 1
        self.markerEdgeWidth = 1
        self.axMarkerEdgeColor = 'b'
        self.axFaceColor = 'y'

        # figure updating rate, (time elapsed for graphics) / (time passed)
        self.rate = 0.5

        self.drawingInOneWindow = True#some solvers for the same problem
        #what do you want on label x?
        #self.xlabel = 'time'#case-unsensitive
        #other values: CPUTime, iter
        #ignores time, spent on figure updatings
        #iter not recomended because iterations of different solvers take
        #different time
        #cputime is unrecomended on computers with several CPU
        #because some solvers can handle different number of CPU units
        #so time is best provided no other programs consume much cputime

        self.markerSize = 12
        self.iterMarkerSize = 1
        self.plotIterMarkers = True
        #self.plotOnlyCurrentMinimum = 0


    def oodraw(self, p): #note that self is same as p.graphics
        try:
            import pylab
        except:
            p.pWarn('to use OpenOpt graphics you need pylab (Python module) installed. Turning graphics off...')
            p.plot = 0
            return

        #isNewFigure = (not isempty(lastTask) and not isequal(lastTask, {p.name p.primal.fName})) ...
            #or (~self.drawingInOneWindow and globstat.iter ==1)...
            #or ~isfield(self, 'figureHandler')...
            #or (isequal(p.env, 'matlab') and ~ishandle(self.figureHandler))

        #todo: fix me later!
        needNewFigure = not p.iter

        #lastTask={p.name p.primal.fName} % x0 can be absent
        colors = ['b', 'k', 'c', 'r', 'g']
        specifiers = ['-', ':', '-.', '--']
        pylab.ion()
        if needNewFigure:

            #self.figureHandler = pylab.figure
            self.colorCount = -1
            self.specifierCount = 0
            self.nTrajectories = 0
            self.ghandlers = []
            #self.solverNames = []

            #TODO: the condition should be handled somewhere other place, not here.
            if p.probType in ('NLSP', 'SNLE'):
                Y_LABELS = ['maxResidual']
                #pylab.plot([0], [log10(p.contol)-1.5])
            elif p.probType == 'NLLSP':
                Y_LABELS = ['sum(residuals^2)']
            else:
                Y_LABELS = ['objective function']
            isIterPointAlwaysFeasible = p.solver.__isIterPointAlwaysFeasible__ if type(p.solver.__isIterPointAlwaysFeasible__) == bool \
                else p.solver.__isIterPointAlwaysFeasible__(p)
            if not (p._isUnconstrained() or isIterPointAlwaysFeasible):
                self.isMaxConstraintSubplotRequired = True
                if p.useScaledResidualOutput:
                    Y_LABELS.append('MaxConstraint/ConTol')
                else:
                    Y_LABELS.append('maxConstraint')
            else: self.isMaxConstraintSubplotRequired = False

            if self.isMaxConstraintSubplotRequired: self.nSubPlots = 2
            else: self.nSubPlots = 1


        #creating new trajectory, if needed
        isNewTrajectory = not p.iter # FIXME
        if isNewTrajectory:
            self.colorCount += 1
            if self.drawingInOneWindow:
                if self.colorCount > len(colors) - 1 :
                    self.colorCount = 0
                    self.specifierCount += 1
                    if self.specifierCount > len(specifiers) - 1 :
                        p.warn('line types number exeeded')
                        self.specifierCount = 0

        #setting color & specifier
        #color = colors[self.colorCount]
        #specifier = specifiers[self.specifierCount]
        color = p.color
        specifier = p.specifier


        #setting xlabel, ylabel, title etc
        tx = p.xlabel.lower()
        if isNewTrajectory:

            self.nTrajectories += 1

            #win = gtk.Window()
            #win.set_name("OpenOpt " + str(oover) + ", license: BSD 2.0")
            pTitle = 'problem: ' + p.name
            if p.showGoal: pTitle += '       goal: ' + p.goal
            if self.nSubPlots>1: pylab.subplot(self.nSubPlots, 1, 1)
            p.figure = pylab.gcf()
            pylab.title(pTitle)
            p.figure.canvas.set_window_title('OpenOpt ' + ooversion)

            if tx == 'cputime':
                xlabel = 'CPU Time elapsed (without graphic output), sec'
                d_x = 0.01
            elif tx == 'time':
                xlabel = 'Time elapsed (without graphic output), sec'
                d_x = 0.01
            elif tx in ['niter',  'iter']:
                xlabel = 'iter'
                d_x = 4
            elif tx == 'nf':
                xlabel = 'Number of objective function evaluations'
                d_x = 4
            else:  p.err('unknown graphic output xlabel: "' + tx + '", should be in "time", "cputime", "iter", "nf"')
            self.nPointsPlotted = 0

            for ind in range(self.nSubPlots):
                if (self.nSubPlots > 1 and ind != 0) or p.probType in ('NLSP', 'SNLE'):
                    ax = pylab.subplot(self.nSubPlots, 1, ind+1)
                    ax.set_yscale('log')

#                if self.nSubPlots > 1:
#                    ax = pylab.subplot(self.nSubPlots, 1, ind+1)
#                    if p.probType in ('NLSP', 'SNLE') or ind != 0:
#                        ax.set_yscale('log')
                pylab.hold(1)
                pylab.grid(1)
                pylab.ylabel(Y_LABELS[ind])

            pylab.xlabel(xlabel)


        ################ getting data to plot ###############
        if p.iter>0:
            IND_start, IND_end = self.nPointsPlotted-1, p.iter+1#note: indexing from zero assumed
            #if p.isFinished: IND_end = p.iter
        else: IND_start, IND_end = 0, 1

        if p.plotOnlyCurrentMinimum:
            yy = array(p.iterValues.f[IND_start:])
            if isNewTrajectory: self.currMin = yy[0]
            k = 0
            for j in range(IND_start, IND_start + len(yy)): #todo: min is slow in 1x1 comparison vs if-then-else
                yy[k] = min(self.currMin, p.iterValues.f[j])
                self.currMin = yy[k]
                k += 1
            if IND_start<=IND_end: 
                if len(p.iterValues.f) >= 1:
                    yySave = [p.iterValues.f[-1]] # FIXME! (for constraints)
                else:
                    yySave = [p.f(p.x0)]
        else: 
            yy = array(p.iterValues.f[IND_start:IND_end])
            if IND_start<=IND_end:
                if len(p.iterValues.f) >= 1: yySave = [p.iterValues.f[-1]]
                else:
                    yySave = [p.f(p.x0)]

        if tx == 'iter': xx = range(IND_start, IND_end)
        elif tx == 'cputime':
            if len(p.iterTime) != len(p.cpuTimeElapsedForPlotting): p.iterTime.append(p.iterTime[-1])
            xx = asfarray(p.iterCPUTime[IND_start:IND_end]) - asfarray(p.cpuTimeElapsedForPlotting[IND_start:IND_end])
        elif tx == 'time':
            if len(p.iterTime) != len(p.timeElapsedForPlotting): p.iterTime.append(p.iterTime[-1])
            xx = asfarray(p.iterTime[IND_start:IND_end]) - asfarray(p.timeElapsedForPlotting[IND_start:IND_end])
        elif tx == 'nf':
            xx = asfarray(p.iterValues.nf[IND_start:IND_end])
        else: p.err('unknown labelX case')

        if len(xx)>len(yy):
            if p.isFinished: xx = xx[:-1]
            else:  p.err('OpenOpt graphics ERROR - FIXME!')

        if p.probType in ('NLSP', 'SNLE'):
            yy = yy+p.ftol/self.REDUCE
        YY = [yy]
        #if len(YY) == 0: YY = yySave

        if self.isMaxConstraintSubplotRequired:
            yy22 = p.contol/self.REDUCE+asfarray(p.iterValues.r[IND_start:IND_end])
            if p.useScaledResidualOutput: yy22 /= p.contol
            YY.append(yy22)
            if IND_start<=IND_end:
                if len(p.iterValues.r) == 0: return
                rr = p.iterValues.r[-1] 
                if p.useScaledResidualOutput: rr /= p.contol
                if len(p.iterValues.r) >= 1: yySave.append(p.contol/self.REDUCE+asfarray(rr))
                else:
                    yySave.append(p.contol/self.REDUCE+asfarray(p.getMaxResidual(p.x0)))

        if needNewFigure:
            if self.nSubPlots > 1:
                pylab.subplot(2, 1, 2)
                tmp = 1 if p.useScaledResidualOutput else p.contol
                pylab.plot([xx[0]],[tmp / 10**1.5])
                pylab.plot([xx[0]+d_x],[tmp / 10**1.5])
                pylab.plot([xx[0]], [YY[1][0] * 10])
                pylab.plot([xx[0]+d_x], [YY[1][0] * 10])
                pylab.subplot(2, 1, 1)

            pylab.plot([xx[0]],[YY[0][0]])
            pylab.plot([xx[0]+d_x],[YY[0][0]])

        ##########################################
        if self.plotIterMarkers: usualMarker = 'o'
        else: usualMarker = ''

        for ind in range(self.nSubPlots):
            if self.nSubPlots > 1: pylab.subplot(self.nSubPlots,1,ind+1)
            yy2 = ravel(YY[ind])
            if len(yy2) < len(xx): 
                if IND_start > IND_end:
                    yy2 = ravel(yySave[ind])
                elif yy2.size == 0:
                    yy2 = ravel(yySave[ind])
                else:
                    yy2 = hstack((yy2, yy2[-1]))
#            if len(yy2)<len(xx):
#                if p.debug: p.warn('FIXME! - different len of xx and yy in graphics')
#                yy2 = yy2.tolist()+[yy2[-1]]
            if isNewTrajectory:
                if isfinite(p.xlim[0]): pylab.plot([p.xlim[0]],  [yy2[0]],  color='w')
                if isfinite(p.xlim[1]): pylab.plot([p.xlim[1]],  [yy2[0]],  color='w')
                if ind==0:
                    if isfinite(p.ylim[0]): pylab.plot([xx[0]],  [p.ylim[0]],  color='w')
                    if isfinite(p.ylim[1]): pylab.plot([xx[0]],  [p.ylim[1]],  color='w')
                    if p.probType in ('NLSP', 'SNLE'): pylab.plot([xx[0]], [p.ftol / self.REDUCE],  color='w')
            if ind == 1:
                horz_line_value = 1 if p.useScaledResidualOutput else p.primalConTol
                pylab.plot([xx[0], xx[-1]], [horz_line_value, horz_line_value], ls = self.axLineStyle, linewidth = self.axLineWidth, color='g',\
                marker = self.axMarker, ms = self.axMarkerSize, mew = self.markerEdgeWidth, mec = self.axMarkerEdgeColor, mfc = self.axFaceColor)
            elif p.probType in ('NLSP', 'SNLE'):
                pylab.plot([xx[0], xx[-1]], [p.ftol, p.ftol], ls = self.axLineStyle, linewidth = self.axLineWidth, color='g',\
                marker = self.axMarker, ms = self.axMarkerSize, mew = self.markerEdgeWidth, mec = self.axMarkerEdgeColor, mfc = self.axFaceColor)
            if isNewTrajectory:
                p2 = pylab.plot([xx[0]], [yy2[0]], color = color, marker = self.specifierStart,  markersize = self.markerSize)
                p3 = pylab.plot([xx[0], xx[0]+1e-50], [yy2[0], yy2[0]], color = color, markersize = self.markerSize)
                p._p3 = p3
                if p.legend == '': pylab.legend([p3[0]], [p.solver.__name__], shadow = True)
                elif type(p.legend) in (tuple, list): pylab.legend([p3[0]], p.legend, shadow = True)
                else: pylab.legend([p3[0]], [p.legend], shadow = True)
                pylab.plot(xx[1:], yy2[1:], color,  marker = usualMarker, markersize = self.markerSize/3)
            else:
                pylab.plot(xx, ravel(yy2), color + specifier, marker = usualMarker, markersize = self.iterMarkerSize)

            if p.isFinished:
                pylab.legend([p._p3[0]], [p.solver.__name__], shadow = True, loc=0)
                #xMin, xMax = [], []
                if p.istop<0:
                    if stopcase(p.istop) == 0: # maxTime, maxIter, maxCPUTime, maxFunEvals etc exeeded
                        if p.isFeas(p.xf):  s = self.specifierContinueFeasible
                        else: s = self.specifierContinueInfeasible
                    else: s = self.specifierFailed
                else:
                    #if not hasattr(p, 'isFeasible'): p.isFeas()
                    if p.isFeasible:
                    #if p.isFeas(p.xk)
                        if p.istop > 0:
                            s = self.specifierOK
                        else:# p.istop = 0
                            s = self.specifierUndefined
                    else: s = self.specifierError
                if s == self.specifierOK: marker = (5, 1, 0)
                else: marker = s
                if isnan(yy2[-1]):
                    yy2[-1] = 0
                    
                pylab.scatter(ravel(xx[-1]), [yy2[-1]], c=color, marker = marker, s=[150])

                #pylab.axis('auto')
                [xmin, xmax, ymin, ymax] = pylab.axis()
                if ymax - ymin > 25 * (yy2[-1] -ymin):
                    delta = 0.04 * (ymax - ymin)
                    pylab.scatter([(xmin+xmax)/2,  (xmin+xmax)/2], [ymin-delta, ymax+delta], s=1, c='w', edgecolors='none',  marker='o')
                    pylab.draw()
                if  ind == 0 and p.probType in ('NLSP', 'SNLE'):
                    pylab.plot([xmin, xmax], [log10(p.ftol), log10(p.ftol)],\
                        linewidth = self.axLineWidth, ls = self.axLineStyle, color='g',\
                        marker = self.axMarker, ms = self.axMarkerSize, \
                        mew = self.markerEdgeWidth, mec = self.axMarkerEdgeColor, mfc = self.axFaceColor)
                if  ind == 1:
                    horz_line_value = 0 if p.useScaledResidualOutput else log10(p.primalConTol)
                    pylab.plot([xmin, xmax], [horz_line_value, horz_line_value],\
                        linewidth = self.axLineWidth, ls = self.axLineStyle, color='g',\
                        marker = self.axMarker, ms = self.axMarkerSize, \
                        mew = self.markerEdgeWidth, mec = self.axMarkerEdgeColor, mfc = self.axFaceColor)
                    pylab.subplot(self.nSubPlots, 1, 1)
                    pylab.plot([xmax], [yy2[-1]],  color='w')
                    



#                if p.probType == 'NLSP':
#                    pylab.axhline(y=log10(p.primalConTol),  xmin=xmin, xmax=xmax,\
#                        linewidth = self.axLineWidth, ls = self.axLineStyle, color='g',\
#                        marker = self.axMarker, ms = self.axMarkerSize, \
#                        mew = self.markerEdgeWidth, mec = self.axMarkerEdgeColor, mfc = self.axFaceColor)


#        if p.isFinished:
#            for ind in range(self.nSubPlots):
#                if self.nSubPlots>1: pylab.subplot(self.nSubPlots,1,ind+1)
                #pylab.xlim(min(xMin), max(xMax))
        self.nPointsPlotted = p.iter+1
        pylab.draw()