This file is indexed.

/usr/share/pyshared/openopt/kernel/runProbSolver.py is in python-openopt 0.38+svn1589-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
__docformat__ = "restructuredtext en"
from time import time, clock
from numpy import asfarray, copy, inf, nan, isfinite, ones, ndim, all, atleast_1d, any, isnan, \
array_equal, asscalar, asarray, where, ndarray, isscalar, matrix, seterr, isinf
from setDefaultIterFuncs import stopcase,  SMALL_DELTA_X,  SMALL_DELTA_F, IS_MAX_ITER_REACHED
from check import check
from oologfcn import OpenOptException
from openopt import __version__ as version
import copy
import os, string
from ooMisc import isSolved, killThread
#from baseProblem import ProbDefaults
from baseSolver import baseSolver
from nonOptMisc import getSolverFromStringName, EmptyClass

try:
    import setproctitle
    hasSetproctitleModule = True
except ImportError:
    hasSetproctitleModule = False
    
#from openopt.kernel.ooMisc import __solverPaths__
ConTolMultiplier = 0.8

#if __solverPaths__ is None:
#    __solverPaths__ = {}
#    file = string.join(__file__.split(os.sep)[:-1], os.sep)
#    for root, dirs, files in os.walk(os.path.dirname(file)+os.sep+'solvers'):
#        rd = root.split(os.sep)
#        if '.svn' in rd: continue
#        rd = rd[rd.index('solvers')+1:]
#        for file in files:
#            print file
#            if len(file)>6 and file[-6:] == '_oo.py':
#                __solverPaths__[file[:-6]] = 'openopt.solvers.' + string.join(rd,'.') + '.'+file[:-3]

#import pickle
#f = open('solverPaths.py', 'w')
#solverPaths = pickle.load(f)


def runProbSolver(p_, solver_str_or_instance=None, *args, **kwargs):
    #p = copy.deepcopy(p_, memo=None, _nil=[])
    p = p_
    if len(args) != 0: p.err('unexpected args for p.solve()')
    if hasattr(p, 'was_involved'): p.err("""You can't run same prob instance for twice. 
    Please reassign prob struct. 
    You can avoid it via using FuncDesigner oosystem.""")
    else: p.was_involved = True

    if solver_str_or_instance is None:
        if hasattr(p, 'solver'): solver_str_or_instance = p.solver
        elif 'solver' in kwargs.keys(): solver_str_or_instance = kwargs['solver']

    if type(solver_str_or_instance) is str and ':' in solver_str_or_instance:
        isConverter = True
        probTypeToConvert,  solverName = solver_str_or_instance.split(':', 1)
        converterName = p.probType.lower()+'2'+probTypeToConvert
        converter = getattr(p, converterName)
        p.solver = getSolverFromStringName(p, solverName)
        solver_params = {}
        #return converter(solverName, *args, **kwargs)
    else:
        isConverter = False
        if solver_str_or_instance is None:
            p.err('you should provide name of solver')
        elif type(solver_str_or_instance) is str:
            p.solver = getSolverFromStringName(p, solver_str_or_instance)
        else: # solver_str_or_instance is oosolver
            p.solver = solver_str_or_instance
            for key, value  in solver_str_or_instance.fieldsForProbInstance.iteritems():
                setattr(p, key, value)
    p.isConverterInvolved = isConverter

    old_err = seterr(all= 'ignore')
    
    if 'debug' in kwargs.keys():
       p.debug =  kwargs['debug']

    probAttributes = set(p.__dict__)
    solverAttributes = set(p.solver.__dict__)
    intersection = list(probAttributes.intersection(solverAttributes))
    if len(intersection) != 0:
        if p.debug:
            p.warn('''
            attribute %s is present in both solver and prob 
            (probably you assigned solver parameter in prob constructor), 
            the attribute will be assigned to solver''' % intersection[0])
        for elem in intersection:
            setattr(p.solver, elem, getattr(p, elem))

    solver = p.solver.__solver__
    
    for key, value in kwargs.items():
        if hasattr(p.solver, key):
            if isConverter:
                solver_params[key] = value
            else:
                setattr(p.solver, key, value)
        elif hasattr(p, key):
            setattr(p, key, value)
        else: p.warn('incorrect parameter for prob.solve(): "' + str(key) + '" - will be ignored (this one has been not found in neither prob nor ' + p.solver.__name__ + ' solver parameters)')
    if p.probType == 'EIG' and 'goal' in kwargs:
        p.err('for EIG parameter "goal" should be used only in class instance definition, not in "solve" method')
        
    p.iterValues = EmptyClass()

    p.iterCPUTime = []
    p.iterTime = []
    p.iterValues.x = [] # iter points
    p.iterValues.f = [] # iter ObjFunc Values
    p.iterValues.r = [] # iter MaxResidual
    p.iterValues.rt = [] # iter MaxResidual Type: 'c', 'h', 'lb' etc
    p.iterValues.ri = [] # iter MaxResidual Index
    p.solutions = [] # list of solutions, may contain several elements for interalg and mb other solvers
    if p._baseClassName == 'NonLin':p.iterValues.nNaNs = [] # number of constraints equal to numpy.nan



    if p.goal in ['max','maximum']: p.invertObjFunc = True

    #TODO: remove it!
    p.advanced = EmptyClass()

    p.istop = 0
    p.iter = 0
    p.graphics.nPointsPlotted = 0
    p.finalIterFcnFinished = False
    #for fn in p.nEvals.keys(): p.nEvals[fn] = 0 # NB! f num is used in LP/QP/MILP/etc stop criteria check

    p.msg = ''
    if not type(p.callback) in (list,  tuple): p.callback = [p.callback]
    if hasattr(p, 'xlabel'): p.graphics.xlabel = p.xlabel
    if p.graphics.xlabel == 'nf': p.iterValues.nf = [] # iter ObjFunc evaluation number

    p._Prepare()
    
   
    for fn in ['FunEvals', 'Iter', 'Time', 'CPUTime']:
        if hasattr(p,'min'+fn) and hasattr(p,'max'+fn) and getattr(p,'max'+fn) < getattr(p,'min'+fn):
            p.warn('min' + fn + ' (' + str(getattr(p,'min'+fn)) +') exceeds ' + 'max' + fn + '(' + str(getattr(p,'max'+fn)) +'), setting latter to former')
            setattr(p,'max'+fn, getattr(p,'min'+fn))

    for fn in ['maxFunEvals', 'maxIter']: setattr(p, fn, int(getattr(p, fn)))# to prevent warnings from numbers like 1e7

    if hasattr(p, 'x0'): 
        try:
            p.x0 = atleast_1d(asfarray(p.x0).copy())
        except NotImplementedError:
            p.x0 = asfarray(p.x0.tolist())
    for fn in ['lb', 'ub', 'b', 'beq']:
        if hasattr(p, fn):
            fv = getattr(p, fn)
            if fv is not None:# and fv != []:
                if str(type(fv)) == "<class 'map'>":
                    p.err("Python3 incompatibility with previous versions: you can't use 'map' here, use rendered value instead")
                setattr(p, fn, asfarray(fv).flatten())
            else:
                setattr(p, fn, asfarray([]))

    if p.solver._requiresFiniteBoxBounds:
        ind1, ind2 = isinf(p.lb), isinf(p.ub)
        if isscalar(p.implicitBounds): p.implicitBounds = (-p.implicitBounds, p.implicitBounds) # may be from lp2nlp converter, thus omit nlp init code
        p.lb[ind1] = p.implicitBounds[0] if asarray(p.implicitBounds[0]).size == 1 else p.implicitBounds[0][ind1]
        p.ub[ind2] = p.implicitBounds[1] if asarray(p.implicitBounds[1]).size == 1 else p.implicitBounds[0][ind2]


#    if p.lb.size == 0:
#        p.lb = -inf * ones(p.n)
#    if p.ub.size == 0:
#        p.ub = inf * ones(p.n)

    p.stopdict = {}

    for s in ['b','beq']:
        if hasattr(p, s): setattr(p, 'n'+s, len(getattr(p, s)))

    #if p.probType not in ['LP', 'QP', 'MILP', 'LLSP']: p.objFunc(p.x0)

    p.isUC = p._isUnconstrained()
    
    isIterPointAlwaysFeasible = p.solver.__isIterPointAlwaysFeasible__ if type(p.solver.__isIterPointAlwaysFeasible__) == bool \
        else p.solver.__isIterPointAlwaysFeasible__(p)
    if isIterPointAlwaysFeasible:
        #assert p.data4TextOutput[-1] == 'log10(maxResidual)'
        if p.data4TextOutput[-1] == 'log10(maxResidual)': 
            p.data4TextOutput = p.data4TextOutput[:-1]
#        else:
#            p.err('bug in runProbSolver.py')
    elif p.useScaledResidualOutput:
        p.data4TextOutput[-1] = 'log10(MaxResidual/ConTol)'

    if p.showFeas and p.data4TextOutput[-1] != 'isFeasible': p.data4TextOutput.append('isFeasible')
    if p.maxSolutions != 1:
        p._nObtainedSolutions = 0
        p.data4TextOutput.append('nSolutions')

    if not p.solver.iterfcnConnected:
        if SMALL_DELTA_X in p.kernelIterFuncs: p.kernelIterFuncs.pop(SMALL_DELTA_X)
        if SMALL_DELTA_F in p.kernelIterFuncs: p.kernelIterFuncs.pop(SMALL_DELTA_F)

    if not p.solver._canHandleScipySparse:
        if hasattr(p.A, 'toarray'): p.A = p.A.toarray()
        if hasattr(p.Aeq, 'toarray'): p.Aeq = p.Aeq.toarray()
    
    if isinstance(p.A, ndarray) and type(p.A) != ndarray: # numpy matrix
        p.A = p.A.A 
    if isinstance(p.Aeq, ndarray) and type(p.Aeq) != ndarray: # numpy matrix
        p.Aeq = p.Aeq.A 

    if hasattr(p, 'optVars'):
        p.err('"optVars" is deprecated, use "freeVars" instead ("optVars" is not appropriate for some prob types, e.g. systems of (non)linear equations)')

#    p.xf = nan * ones([p.n, 1])
#    p.ff = nan
    #todo : add scaling, etc
    p.primalConTol = p.contol
    if not p.solver.__name__.startswith('interalg'): p.contol *= ConTolMultiplier

    p.timeStart = time()
    p.cpuTimeStart = clock()
    
    # TODO: move it into solver parameters
    if p.probType not in ('MINLP', 'IP'):
        p.plotOnlyCurrentMinimum = p.__isNoMoreThanBoxBounded__()


    ############################
    # Start solving problem:

    if p.iprint >= 0:
        p.disp('\n' + '-'*25 + ' OpenOpt %s ' % version + '-'*25)
        pt = p.probType if p.probType != 'NLSP' else 'SNLE'
        s = 'solver: ' +  p.solver.__name__ +  '   problem: ' + p.name + '    type: %s' % pt
        if p.showGoal: s += '   goal: ' + p.goal
        p.disp(s)

    p.extras = {}

    
    try:
        if isConverter:
            # TODO: will R be somewhere used?
            R = converter(solverName, **solver_params)
        else:
            nErr = check(p)
            if nErr: p.err("prob check results: " +str(nErr) + "ERRORS!")#however, I guess this line will be never reached.
            if p.probType not in ('IP', 'EIG'): p.iterfcn(p.x0)
            if hasSetproctitleModule:
                try:
                    originalName = setproctitle.getproctitle()
                    if originalName.startswith('OpenOpt-'):
                        originalName = None
                    else:
                        s = 'OpenOpt-' + p.solver.__name__
                        # if p.name != 'unnamed':
                        s += '-' + p.name
                        setproctitle.setproctitle(s)
                except:
                    originalName = None
            else:
                p.pWarn('''
                please install setproctitle module 
                (it's available via easy_install and Linux soft channels like apt-get)''')
            solver(p)
            if hasSetproctitleModule and originalName is not None:
                setproctitle.setproctitle(originalName)
#    except killThread:
#        if p.plot:
#            print 'exiting pylab'
#            import pylab
#            if hasattr(p, 'figure'):
#                print 'closing figure'
#                #p.figure.canvas.draw_drawable = lambda: None
#                pylab.ioff()
#                pylab.close()
#                #pylab.draw()
#            #pylab.close()
#            print 'pylab exited'
#        return None
    except isSolved:
#        p.fk = p.f(p.xk)
#        p.xf = p.xk
#        p.ff = p.objFuncMultiple2Single(p.fk)

        if p.istop == 0: p.istop = 1000
    finally:
        seterr(**old_err)
    ############################
    p.contol = p.primalConTol

    # Solving finished
    if p.probType != 'EIG':
        if not hasattr(p, 'xf') and not hasattr(p, 'xk'): p.xf = p.xk = ones(p.n)*nan
        if hasattr(p, 'xf') and (not hasattr(p, 'xk') or array_equal(p.xk, p.x0)): p.xk = p.xf
        if not hasattr(p,  'xf') or all(isnan(p.xf)): p.xf = p.xk
        if p.xf is nan: 
            p.xf = p.xk = ones(p.n)*nan
        
        if p.isFeas(p.xf) and (not p.probType=='MINLP' or p.discreteConstraintsAreSatisfied(p.xf)):
            p.isFeasible = True
        else: p.isFeasible = False
    else:
        p.isFeasible = True # check it!
    
    p.isFinished = True # After the feasibility check above!
    
    if p.probType == 'MOP':
        p.isFeasible = True
    elif p.probType == 'IP':
        p.isFeasible = p.rk < p.ftol
    else:
        p.ff = p.fk = p.objFunc(p.xk)
        
        # walkaround for PyPy:
        if type(p.ff) == ndarray and p.ff.size == 1:
            p.ff = p.fk = asscalar(p.ff)
        
    if not hasattr(p,  'ff') or any(p.ff==nan): 
        p.iterfcn, tmp_iterfcn = lambda *args: None, p.iterfcn
        p.ff = p.fk
        p.iterfcn = tmp_iterfcn

    if p.invertObjFunc:  p.fk, p.ff = -p.fk, -p.ff

    if asfarray(p.ff).size > 1: p.ff = p.objFuncMultiple2Single(p.fk)

    #p.ff = p.objFuncMultiple2Single(p.ff)
    #if not hasattr(p, 'xf'): p.xf = p.xk
    if type(p.xf) in (list, tuple) or isscalar(p.xf): p.xf = asarray(p.xf)
    p.xf = p.xf.flatten()
    p.rf = p.getMaxResidual(p.xf) if not p.probType == 'IP' else p.rk

    if not p.isFeasible and p.istop > 0: p.istop = -100-p.istop/1000.0
    
    if p.istop == 0 and p.iter >= p.maxIter:
        p.istop, p.msg = IS_MAX_ITER_REACHED, 'Max Iter has been reached'
    
    p.stopcase = stopcase(p)

    p.xk, p.rk = p.xf, p.rf
    if p.invertObjFunc: 
        p.fk = -p.ff
        p.iterfcn(p.xf, -p.ff, p.rf)
    else: 
        p.fk = p.ff
        p.iterfcn(p.xf, p.ff, p.rf)

    p.__finalize__()
    if not p.storeIterPoints: delattr(p.iterValues, 'x')

    r = OpenOptResult(p)

    #TODO: add scaling handling!!!!!!!
#    for fn in ('df', 'dc', 'dh', 'd2f', 'd2c', 'd2h'):
#        if hasattr(p, '_' + fn): setattr(r, fn, getattr(p, '_'+fn))

    p.invertObjFunc = False
    
    if p.isFDmodel:
        p.x0 = p._x0

    finalTextOutput(p, r)
    if not hasattr(p, 'isManagerUsed') or p.isManagerUsed == False: 
        finalShow(p)
    return r

##################################################################
def finalTextOutput(p, r):
    if p.iprint >= 0:
        if len(p.msg):  
            p.disp("istop: " + str(r.istop) + ' (' + p.msg +')')
        else: 
            p.disp("istop: " + str(r.istop))

        p.disp('Solver:   Time Elapsed = ' + str(r.elapsed['solver_time']) + ' \tCPU Time Elapsed = ' + str(r.elapsed['solver_cputime']))
        if p.plot:
            p.disp('Plotting: Time Elapsed = '+ str(r.elapsed['plot_time'])+ ' \tCPU Time Elapsed = ' + str(r.elapsed['plot_cputime']))
        
        if p.probType == 'MOP':
            msg = '%d solutions have been obtained' % len(p.solutions.coords)
            p.disp(msg)
            return
        
        # TODO: add output of NaNs number in constraints (if presernt)
        if p.useScaledResidualOutput: 
            rMsg = 'max(residuals/requiredTolerances) = %g' % (r.rf / p.contol)
        else:
            rMsg = 'MaxResidual = %g' % r.rf
        if not p.isFeasible:
            nNaNs = (len(where(isnan(p.c(p.xf)))[0]) if hasattr(p, 'c') else 0) + (len(where(isnan(p.h(p.xf)))[0]) if hasattr(p, 'h') else 0)
            if nNaNs == 0:
                nNaNsMsg = ''
            elif nNaNs == 1:
                nNaNsMsg = '1 constraint is equal to NaN, '
            else:
                nNaNsMsg = ('%d constraints are equal to NaN, ' % nNaNs)
            p.disp('NO FEASIBLE SOLUTION has been obtained (%s%s, objFunc = %0.8g)' % (nNaNsMsg,  rMsg, r.ff))
        else:
            if p.maxSolutions == 1:
                msg = "objFunValue: " + (p.finalObjFunTextFormat % r.ff)
                if not p.isUC: msg += ' (feasible, %s)' % rMsg
            else:
                msg = '%d solutions have been obtained' % len(p.solutions)
            p.disp(msg)

##################################################################
def finalShow(p):
    if not p.plot: return
    pylab = __import__('pylab')
    pylab.ioff()
    if p.show:
#        import os
#        if os.fork():
            pylab.show()

class OpenOptResult: 
    # TODO: implement it
    #extras = EmptyClass() # used for some optional output
    def __call__(self, *args):
        if not self.isFDmodel:
            raise OpenOptException('Is callable for FuncDesigner models only')
        r = []
        for arg in args:
            tmp = [(self._xf[elem] if isinstance(elem,  str) else self.xf[elem]) for elem in (arg.tolist() if isinstance(arg, ndarray) else arg if type(arg) in (tuple, list) else [arg])]
            tmp = [asscalar(item) if type(item) in (ndarray, matrix) and item.size == 1 \
                   #else item[0] if type(item) in (list, tuple) and len(item) == 0 \
                   else item for item in tmp]
            r.append(tmp if type(tmp) not in (list, tuple) or len(tmp)!=1 else tmp[0])
        r = r[0] if len(args) == 1 else r
        if len(args) == 1 and type(r) in (list, tuple) and len(r) >1: r = asfarray(r, dtype = type(r[0]))
        return r
        
    def __init__(self, p):
        self.rf = asscalar(asarray(p.rf))
        self.ff = asscalar(asarray(p.ff))
        self.isFDmodel = p.isFDmodel
        self.probType = p.probType
        if p.probType == 'EIG':
            self.eigenvalues, self.eigenvectors = p.eigenvalues, p.eigenvectors
              
        if p.isFDmodel:
            self.xf = dict([(v, asscalar(val) if isinstance(val, ndarray) and val.size ==1 else v.aux_domain[val] if 'aux_domain' in v.__dict__ else val) for v, val in p.xf.items()])
            if not hasattr(self, '_xf'):
                #self._xf = dict([(v.name, asscalar(val) if isinstance(val, ndarray) and val.size ==1 else val) for v, val in p.xf.items()])
                self._xf = dict([(v.name, val) for v, val in self.xf.items()])
        else:
            self.xf = p.xf
        #if len(p.solutions) == 0 and p.isFeas(p.xk): p.solutions = [p.xk]
        
        # TODO: mb perform check on each solution for more safety?
        # although it can slow down calculations for huge solutions number
        #self.solutions = p.solutions 

        self.elapsed = dict()
        self.elapsed['solver_time'] = round(100.0*(time() - p.timeStart))/100.0
        self.elapsed['solver_cputime'] = clock() - p.cpuTimeStart

        for fn in ('ff', 'istop', 'duals', 'isFeasible', 'msg', 'stopcase', 'iterValues',  'special', 'extras', 'solutions'):
            if hasattr(p, fn):  setattr(self, fn, getattr(p, fn))

        if hasattr(p.solver, 'innerState'):
            self.extras['innerState'] = p.solver.innerState

        self.solverInfo = dict()
        for fn in ('homepage',  'alg',  'authors',  'license',  'info', 'name'):
            self.solverInfo[fn] =  getattr(p.solver,  '__' + fn + '__')

            # note - it doesn't work for len(args)>1 for current Python ver  2.6
            #self.__getitem__ = c # = self.__call__
            
        if p.plot:
            #for df in p.graphics.drawFuncs: df(p)    #TODO: include time spent here to (/cpu)timeElapsedForPlotting
            self.elapsed['plot_time'] = round(100*p.timeElapsedForPlotting[-1])/100 # seconds
            self.elapsed['plot_cputime'] = p.cpuTimeElapsedForPlotting[-1]
        else:
            self.elapsed['plot_time'] = 0
            self.elapsed['plot_cputime'] = 0

        self.elapsed['solver_time'] -= self.elapsed['plot_time']
        self.elapsed['solver_cputime'] -= self.elapsed['plot_cputime']

        self.evals = dict([(key, val if type(val) == int else round(val *10) /10.0) for key, val in p.nEvals.items()])
        self.evals['iter'] = p.iter