This file is indexed.

/usr/share/pyshared/openopt/solvers/CoinOr/ipopt_oo.py is in python-openopt 0.38+svn1589-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from numpy import *
import re
from openopt.kernel.baseSolver import baseSolver
from openopt.kernel.ooMisc import isSolved
from openopt.kernel.nonOptMisc import scipyInstalled, Hstack, Vstack, Find, isspmatrix
import os
#from openopt.kernel.setDefaultIterFuncs import SMALL_DF
try:
    import pyipopt
    pyipoptInstalled = True
except:
    pyipoptInstalled = False
    
class ipopt(baseSolver):
    __name__ = 'ipopt'
    __license__ = "CPL"
    __authors__ = 'Carl Laird (Carnegie Mellon University) and Andreas Wachter'
    __alg__ = "A. Wachter and L. T. Biegler, On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming, Mathematical Programming 106(1), pp. 25-57, 2006 "
    __homepage__ = 'http://www.coin-or.org/'
    __info__ = "requires pyipopt made by Eric Xu You"
    __cannotHandleExceptions__ = True
    __optionalDataThatCanBeHandled__ = ['A', 'Aeq', 'b', 'beq', 'lb', 'ub', 'c', 'h']
    _canHandleScipySparse = True

    # CHECK ME!
    #__isIterPointAlwaysFeasible__ = lambda self, p: p.__isNoMoreThanBoxBounded__()

    optFile = 'auto'
    options = ''

    def __init__(self): pass
    def __solver__(self, p):
        if not pyipoptInstalled:
            p.err('you should have pyipopt installed')
            
#        try:
#            os.close(1); os.close(2) # may not work for non-Unix OS
#        except:
#            pass
            
        nvar = p.n
        x_L = p.lb
        x_U = p.ub

        ncon = p.nc + p.nh + p.b.size + p.beq.size

        g_L, g_U = zeros(ncon), zeros(ncon)
        g_L[:p.nc] = -inf
        g_L[p.nc+p.nh:p.nc+p.nh+p.b.size] = -inf

        
        # IPOPT non-linear constraints, both eq and ineq
        if p.isFDmodel:
            r = []
            if p.nc != 0: r.append(p._getPattern(p.user.c))
            if p.nh != 0: r.append(p._getPattern(p.user.h))
            if p.nb != 0: r.append(p.A)
            if p.nbeq != 0: r.append(p.Aeq)
            if len(r)>0:
                if all([isinstance(elem, ndarray) for elem in r]):
                    r = vstack(r)
                else:
                    r = Vstack(r)
                    if isspmatrix(r):
                        from scipy import __version__
                        if __version__.startswith('0.7.3') or __version__.startswith('0.7.2') or __version__.startswith('0.7.1') or __version__.startswith('0.7.0'):
                            p.pWarn('updating scipy to version >= 0.7.4 is very recommended for the problem with the solver IPOPT')
            else:
                r = array([])
            
            #if isspmatrix(r): r = r.A
            # isspmatrix(r) turned off till more proper sparse matrices fancy indexation
            if isspmatrix(r):
                I, J, _ = Find(r)
                # DON'T remove it!
                I, J = array(I, int64), array(J, int64)
            
            elif isinstance(r, ndarray):
                if r.size == 0:
                    I, J= array([], dtype=int64),array([], dtype=int64)
                else:
                    I, J = where(r)
            
            else:
                p.disp('unimplemented type:%s' % str(type(r))) # dense matrix? 
                
            
            nnzj = len(I)
        else:
            I, J = where(ones((ncon, p.n)))
            #I, J = None, None
            nnzj = ncon * p.n #TODO: reduce it
        

        def eval_g(x):
            r = array(())
            if p.userProvided.c: r = p.c(x)
            if p.userProvided.h: r = hstack((r, p.h(x)))
            r = hstack((r, p._get_AX_Less_B_residuals(x), p._get_AeqX_eq_Beq_residuals(x)))
            return r

#        def eval_jac_g(x, flag, userdata = None):
#            r = []
#            if p.userProvided.c: r.append(p.dc(x))
#            if p.userProvided.h: r.append(p.dh(x))
#            if p.nb > 0: p.append(p.A)
#            if p.nbeq > 0: p.append(p.Aeq)
#            
#            if flag:
#                return where(ones(r.shape))
#            else:
#                return r.flatten()

        #def eval_jac_g(x, flag, userdata = None):
        def eval_jac_g(x, flag, userdata = (I, J)):
            (I, J) = userdata
            if  flag and p.isFDmodel: 
                return (I, J) 
            r = []
            if p.userProvided.c: r.append(p.dc(x))
            if p.userProvided.h: r.append(p.dh(x))
            if p.nb != 0: r.append(p.A)
            if p.nbeq != 0: r.append(p.Aeq)
            # TODO: fix it!
            if any([isspmatrix(elem) for elem in r]):
                r = Vstack([(atleast_2d(elem) if elem.ndim < 2 else elem) for elem in r])
            elif len(r)!=0:
                r = vstack(r)
            
            if p.isFDmodel: 
                # TODO: make it more properly
                if isspmatrix(r):
                    R = r.tocsr()
                    R = R[I, J]
                else: 
                    R = r[I, J]
                if isspmatrix(R): 
                    return R.A
                elif isinstance(R, ndarray): 
                    return R
                else: p.err('bug in OpenOpt-ipopt connection, inform OpenOpt developers, type(R) = %s' % type(R))
            if flag:
                #I, J = where(ones(r.shape))  
                return (I, J)
            else:
                if isspmatrix(r): r = r.A
                return r.flatten()


        """ This function might be buggy, """ # // comment by Eric
        nnzh = 0
        def eval_h(lagrange, obj_factor, flag):
            return None



#        def apply_new(x):
#            return True

        nlp = pyipopt.create(nvar, x_L, x_U, ncon, g_L, g_U, nnzj, nnzh, p.f, p.df, eval_g, eval_jac_g)

        if self.optFile == 'auto':
            lines = ['# generated automatically by OpenOpt\n','print_level 0\n']
            lines.append('tol ' + str(p.ftol)+ '\n')
            lines.append('constr_viol_tol ' + str(p.contol)+ '\n')
            lines.append('max_iter ' + str(min(15000, p.maxIter))+ '\n')
            if self.options != '' :
                for s in re.split(',|;', self.options):
                    lines.append(s.strip().replace('=', ' ',  1) + '\n')
            if p.nc == 0:
                lines.append('jac_d_constant yes\n')
            if p.nh == 0:
                lines.append('jac_c_constant yes\n')
            if p.castFrom.lower() in ('lp', 'qp', 'llsp'):
                lines.append('hessian_constant yes\n')


            ipopt_opt_file = open('ipopt.opt', 'w')
            ipopt_opt_file.writelines(lines)
            ipopt_opt_file.close()


        try:
            x, zl, zu, obj  = nlp.solve(p.x0)[:4]
            if p.point(p.xk).betterThan(p.point(x)):
                obj = p.fk
                p.xk = p.xk.copy() # for more safety
            else:
                p.xk, p.fk = x.copy(), obj
            if p.istop == 0: p.istop = 1000
        finally:
            nlp.close()