This file is indexed.

/usr/share/pyshared/openopt/solvers/Standalone/pymls_oo.py is in python-openopt 0.38+svn1589-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# -*- coding: utf-8 -*-
"""
Created on Thu May 05 20:02:00 2011

@author: Tillsten
"""
#from numpy.linalg import norm
#from numpy import dot, asfarray, atleast_1d,  zeros, ones, int, float64, where, inf
import numpy as np
from openopt.kernel.baseSolver import baseSolver

class pymls(baseSolver):
    __name__ = 'pymls'
    __license__ = "BSD"
    __authors__ = 'Till Stensitzki, based directly on code from qcat from Ola Harkegard (http://research.harkegard.se/)'
    __alg__ = ''
    __info__ = ''
    __optionalDataThatCanBeHandled__ = ['lb', 'ub']

    #__bvls_inf__ = 1e100
    T = np.float64
    __pymls_inf__ = 1e9
    def __init__(self): pass

    def __solver__(self, p):
        T = self.T
        A, b = T(p.C),  T(p.d).copy().reshape(-1, 1)
        lb,  ub = p.lb.copy().reshape(-1, 1), p.ub.copy().reshape(-1, 1)
        lb[lb==-np.inf] = -self.__pymls_inf__
        ub[ub==np.inf] = self.__pymls_inf__
        xf = bounded_lsq(A,b,lb,ub)
        p.xf = p.xk = xf.flatten()



from scipy.linalg import qr
eps=np.finfo(float).eps

def mls(B,v,umin,umax,Wv=None,Wu=None,ud=None,u=None,W=None,imax=100):
    """
mls - Control allocation using minimal least squares.

[u,W,iter] = mls_alloc(B,v,umin,umax,[Wv,Wu,ud,u0,W0,imax])

 Solves the bounded sequential least-squares problem

   min ||Wu(u-ud)||   subj. to   u in M

 where M is the set of control signals solving

   min ||Wv(Bu-v)||   subj. to   umin <= u <= umax

 using a two stage active set method. Wu must be diagonal since the
 problem is reformulated as a minimal least squares problem. The
 implementation does not handle the case of coplanar controls.

  Inputs:
  -------
 B     control effectiveness matrix (k x m)
 v     commanded virtual control (k x 1)
 umin  lower position limits (m x 1)
 umax  upper position limits (m x 1)
 Wv    virtual control weighting matrix (k x k) [I]
 Wu    control weighting matrix (m x m), diagonal [I]
 ud    desired control (m x 1) [0]
 u0    initial point (m x 1)
 W0    initial working set (m x 1) [empty]
 imax  max no. of iterations [100]
 
  Outputs:
  -------
 u     optimal control
 W     optimal active set
 iter  no. of iterations (= no. of changes in the working set + 1)

                           0 if u_i not saturated
 Active set syntax: W_i = -1 if u_i = umin_i
                          +1 if u_i = umax_i

Directly Based on the code from:
     Ola Härkegård, www.control.isy.liu.se/~ola   
    see licsence. 
     
"""

  
 #k = number of virtual controls
 #m = number of variables (actuators)

    k,m=B.shape    
    if u==None:
        u=np.mean(umin+umax,0)[:,None]                
    if W==None:
        W=np.zeros((m,1))
    if ud==None:
        ud=np.zeros((m,1))
    if Wu==None:
        Wu=np.eye(m)
    if Wv==None:
        Wv=np.eye(k)
    
    phase=1
    
    #Reformulate as a minimal least squares problem. See 2002-03-08 (1).    
    A=Wv.dot(B).dot(np.linalg.pinv(Wu))    
    #print B, v
    #A=B    
    b = Wv.dot(v-B.dot(ud))
    #b=v
    #print b
    xmin = (umin-ud)
    xmax = (umax-ud)
    # Compute initial point and residual.
    x = Wu.dot(u-ud)
    #x#=umin-umax
    r = A.dot(x)-b
#    print x.shape, r.shape, b.shape,x,r
    #Determine indeces of free variables
    i_free = W==0    
    m_free = np.sum(i_free)
    
    for i in range(imax):  
        #print 'Iter: ', i 
        if phase==1:
            A_free = A[:,i_free.squeeze()]
            if m_free<=k:                
                if m_free>0:
                    p_free=np.linalg.lstsq(-A_free,r)[0]                
            else:                
                q1,r1=qr(A_free.T)
                p_free=-q1.dot(np.solve(r1.T,r))
            p=np.zeros((m,1))
            p[i_free.squeeze()]=p_free
            
        
        else:            
            i_fixed=np.logical_not(i_free)
            m_fixed=m-m_free
            
            if m_fixed>0:            
                HT=U[i_fixed.squeeze(),:].T                      
                V,Rtot= qr(np.atleast_2d(HT))
                V1=V[:,:m_fixed]
                V2=V[:,m_fixed+1:]
                R=Rtot[:,m_fixed]      
            else:
                V,Rtot=np.array([[]]),np.array([[]])
                V1=V2=R=V.T
            
            s=-V2.T.dot(z)
            pz=V2.dot(s)
            p=U.dot(pz)
            
        x_opt=x+p
        infeasible=np.logical_or(x_opt<xmin,x_opt>xmax)
        if not np.any(infeasible[i_free]):
            x=x_opt
            
            if phase==1:
                r=r+A.dot(p)                
            else:
                z=z+pz
            if phase==1 and m_free>=k:
                phase=2
                Utot, Stot=qr(A.T)
                U=Utot[:,k:]
                z=U.T.dot(x)
                
                
            else:            
                lam=np.zeros((m,1))
                if m_free<m:
                    if phase==1:
                        g=A.T.dot(r)
                        lam=-W*g
                    else:
                        lam[i_fixed]=-W[i_fixed]*np.solve(R,V1.T.dot(z))
                    
                    if np.all(lam>= -eps):
                        u=np.linalg.solve(Wu,x)+ud
                        return u
                
                lambda_neg,i_neg=np.min(lam),np.argmin(lam)
                W[i_neg]=0
                i_free[i_neg]=1
                m_free+=1
        else:
            dist=np.ones((m,1))            
            
            i_min=np.logical_and(i_free,p<0)
            i_max=np.logical_and(i_free,p>0)
            
            
                
            dist[i_min]=(xmin[i_min]-x[i_min])/p[i_min]
            dist[i_max]=(xmax[i_max]-x[i_max])/p[i_max]
                
            
            alpha,i_alpha=np.min(dist),np.argmin(dist)
            
            x = x + alpha*p
            if phase==1:
                r=r+A.dot(alpha*p) #!!                
            else:
                z=z+alpha*pz
            W[i_alpha]=np.sign(p[i_alpha])
            i_free[i_alpha]=0
            m_free-=1
    u=np.linalg.solve(Wu,x)+ud
    return u
    
def bounded_lsq(A,b,lower_lim,upper_lim):
    """
    Minimizes:
    
    |Ax-b|_2 

    for lower_lim<x<upper_lim.
    """
    return mls(A,b,lower_lim,upper_lim)

if __name__=='__main__':
    from numpy.core.umath_tests import matrix_multiply
    import matplotlib.pyplot as plt
    plt.rcParams['font.family']='serif'
    A=np.array([[1,-3],[5,7]])
    b=np.array([[-50],[50]])
    ll=np.array(([[-10],[-10]]))
    ul=np.array(([[10],[10]]))
    
    Ud=np.array(([0,0]))
    gamma=1000
    
    
    x0=bounded_lsq(A,b,ll,ul)
    x=np.linspace(-30,30,500)
    y=np.linspace(-30,30,500)
    
    
    X,Y=np.meshgrid(x,y)
    
    S=np.dstack((X,Y))
    SN=matrix_multiply(S,A.T)
    plt.clf()
   
    plt.contourf(x,y,np.sqrt(((SN-b.T)**2).sum(-1)),30,cmap=plt.cm.PuBu)
    plt.colorbar()
    #plt.axhline(ll[0])
    #plt.axhline(ul[0])
    #plt.axvline(ll[1])
    #plt.axvline(ul[1])
    rect=np.vstack((ll,ul-ll))
    patch=plt.Rectangle(ll,*(ul-ll),facecolor=(0.0,0.,0.,0))
    plt.gca().add_patch(patch)
    plt.annotate("Bounded Min",
                xy=x0, xycoords='data',
                xytext=(-5, 5), textcoords='data',
                arrowprops=dict(arrowstyle="->",
                                connectionstyle="arc3"),
                )
    
    plt.annotate("Lsq Min",
                xy=np.linalg.lstsq(A,b)[0], xycoords='data',
                xytext=(20, 10), textcoords='offset points',
                arrowprops=dict(arrowstyle="->",
                                connectionstyle="arc3"),
                )
                
    plt.scatter(*x0)
    plt.scatter(*np.linalg.lstsq(A,b)[0])
    plt.show()