This file is indexed.

/usr/share/pyshared/openopt/solvers/UkrOpt/gsubg_oo.py is in python-openopt 0.38+svn1589-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
from numpy import diag, array, sqrt,  eye, ones, inf, any, copy, zeros, dot, where, all, tile, sum, nan, isfinite, float64, isnan, log10, \
max, sign, array_equal, nonzero, ix_, arctan, pi, logical_not, logical_and, atleast_2d, matrix, delete, empty, ndarray, \
logical_and, logical_not
from numpy.linalg import norm, solve, LinAlgError

from openopt.kernel.baseSolver import *
from openopt.kernel.Point import Point
from openopt.kernel.setDefaultIterFuncs import *
from openopt.solvers.UkrOpt.UkrOptMisc import getBestPointAfterTurn
from openopt.solvers.UkrOpt.PolytopProjection import PolytopProjection

class gsubg(baseSolver):
    __name__ = 'gsubg'
    __license__ = "BSD"
    __authors__ = "Dmitrey"
    __alg__ = "Nikolay G. Zhurbenko generalized epsilon-subgradient"
    __optionalDataThatCanBeHandled__ = ['A', 'Aeq', 'b', 'beq', 'lb', 'ub', 'c', 'h']
    iterfcnConnected = True
    _canHandleScipySparse = True

    #gsubg default parameters
    h0 = 1.0
    hmult = 0.5
    T = float64
    
    showLS = False
    show_hs = False
    showRes = False
    show_nnan = False
    doBackwardSearch = True
    new_bs = True
    approach = 'all active'
    zhurb = 100
    sigma = 1e-3
    dual = True
    ls_direction = 'simple'
    qpsolver = 'cvxopt_qp'
    ns = 15
    dilation = 'auto'
    addASG = False

    def __init__(self): pass
    def __solver__(self, p):
        assert self.approach == 'all active'
        if not p.isUC: p.warn('Handling of constraints is not implemented properly for the solver %s yet' % self.__name__)
        
        dilation = self.dilation
        assert dilation in ('auto', True, False, 0, 1)
        if dilation == 'auto': 
            dilation = False
            #dilation = True if p.n < 150 else False
            p.debugmsg('%s: autoselect set dilation to %s' %(self.__name__, dilation))
        if dilation:
            from Dilation import Dilation
            D = Dilation(p)
        
#        LB, UB = p.lb, p.ub
#        fin_lb = isfinite(LB)
#        fin_ub = isfinite(UB)
#        ind_lb = where(fin_lb)[0]
#        ind_ub = where(fin_ub)[0]
#        ind_only_lb = where(logical_and(fin_lb, logical_not(fin_ub)))[0]
#        ind_only_ub = where(logical_and(fin_ub, logical_not(fin_lb)))[0]
#        ind_bb = where(logical_and(fin_ub, fin_lb))[0]
#        lb_val = LB[ind_only_lb]
#        ub_val = UB[ind_only_ub]
#        dist_lb_ub = UB[ind_bb] - LB[ind_bb]
#        double_dist_lb_ub = 2 * dist_lb_ub
#        ub_bb = UB[ind_bb]
#        doubled_ub_bb = 2 * ub_bb
#        def Point(x):
#            z = x.copy()
#            z[ind_only_lb] = abs(x[ind_only_lb]-lb_val) + lb_val
#            z[ind_only_ub] = ub_val - abs(x[ind_only_ub]-ub_val) 
#            
#            ratio = x[ind_bb] / double_dist_lb_ub
#            z1 = x[ind_bb] - array(ratio, int) * double_dist_lb_ub
#            ind = where(z1>ub_bb)[0]
#            z1[ind] = doubled_ub_bb - z1[ind]
#            z[ind_bb] = z1
#            #raise 0
#            return p.point(z)
        Point = lambda x: p.point(x)
        
        h0 = self.h0

        T = self.T
        # alternatively instead of alp=self.alp etc you can use directly self.alp etc

        n = p.n
        x0 = p.x0
        
        if p.nbeq == 0 or any(abs(p._get_AeqX_eq_Beq_residuals(x0))>p.contol): # TODO: add "or Aeqconstraints(x0) out of contol"
            x0[x0<p.lb] = p.lb[x0<p.lb]
            x0[x0>p.ub] = p.ub[x0>p.ub]
        
        hs = asarray(h0, T)
        ls_arr = []

        """                         Nikolay G. Zhurbenko generalized epsilon-subgradient engine                           """
        bestPoint = Point(asarray(copy(x0), T))
        bestFeasiblePoint = None if not bestPoint.isFeas(True) else bestPoint
        prevIter_best_ls_point = bestPoint
        best_ls_point = bestPoint
        iterStartPoint = bestPoint
        prevIter_bestPointAfterTurn = bestPoint
        bestPointBeforeTurn = None
        g = bestPoint._getDirection(self.approach)
        g1 = iterStartPoint._getDirection(self.approach, currBestFeasPoint = bestFeasiblePoint)
        if not any(g) and all(isfinite(g)):
            # TODO: create ENUMs
            p.istop = 14 if bestPoint.isFeas(False) else -14
            p.msg = 'move direction has all-zero coords'
            return

        HS = []
        LS = []
        
        # TODO: add possibility to handle f_opt if known instead of fTol
        #fTol = 1.0
        if p.fTol is None:
            p.warn("""The solver requres user-supplied fTol (objective function tolerance); 
            since you have not provided it value, 15*ftol = %0.1e will be used""" % (15*p.ftol))
            p.fTol = 15 * p.ftol
        fTol_start = p.fTol/2.0
        fTol = fTol_start
        
        subGradientNorms, points, values, isConstraint, epsilons, inactive, normedSubGradients, normed_values = [], [], [], [], [], [], [], []
        StoredInfo = [subGradientNorms, points, values, isConstraint, epsilons, inactive, normedSubGradients, normed_values]
        nMaxVec = self.zhurb
        nVec = 0
        ns = 0
        #ScalarProducts = empty((10, 10))
        maxQPshoutouts = 15
        
        
        """                           gsubg main cycle                                    """
        itn = -1
        while True:
            itn += 1
            # TODO: change inactive data removing 
            # TODO: change inner cycle condition
            # TODO: improve 2 points obtained from backward line search
            koeffs = None
            
            while ns < self.ns:
                
                ns += 1
                nAddedVectors = 0
                projection = None
                F0 = asscalar(bestFeasiblePoint.f() - fTol_start) if bestFeasiblePoint is not None else nan
                
                #iterStartPoint = prevIter_best_ls_point
                if bestPointBeforeTurn is None:
                    sh = schedule = [bestPoint]
                    #x = iterStartPoint.x
                else:
                    sh = [point1, point2] if point1.betterThan(point2, altLinInEq=True, bestFeasiblePoint = bestFeasiblePoint) else [point2, point1]
                    #sh = [iterStartPoint, bestPointBeforeTurn, bestPointAfterTurn]
                    #sh.sort(cmp = lambda point1, point2: -1+2*int(point1.betterThan(point2, altLinInEq=True, bestFeasiblePoint = bestFeasiblePoint)))
                    iterStartPoint = sh[-1]
                    schedule = [point for point in sh if id(point.x) != id(points[-1])]
                    #x = iterStartPoint.x.copy()
                    #x = 0.5*(point1.x+point2.x) 
                #print 'len(schedule):', len(schedule)
                
                
                x = iterStartPoint.x.copy()
                #print 'itn:', itn, 'ns:', ns, 'x:', x, 'hs:', hs
#                if itn != 0:
#                    Xdist = norm(prevIter_best_ls_point.x-bestPointAfterTurn.x)
#                    if hs < 0.25*Xdist :
#                        hs = 0.25*Xdist
                
                
                iterInitialDataSize = len(values)
                for point in schedule:
                    if (point.sum_of_all_active_constraints()>p.contol / 10 or not isfinite(point.f())) and any(point.sum_of_all_active_constraints_gradient()):
                        #print '111111'
#                    if not point.isFeas(True):
                        # TODO: use old-style w/o the arg "currBestFeasPoint = bestFeasiblePoint"
                        #tmp = point._getDirection(self.approach, currBestFeasPoint = bestFeasiblePoint)
                        nVec += 1
                        tmp = point.sum_of_all_active_constraints_gradient()#, currBestFeasPoint = bestFeasiblePoint)
                        if not isinstance(tmp, ndarray) or isinstance(tmp, matrix):
                            tmp = tmp.A.flatten()
                        n_tmp = norm(tmp)
                        assert n_tmp != 0.0
                        normedSubGradients.append(tmp/n_tmp)
                        subGradientNorms.append(n_tmp)
                        val = point.sum_of_all_active_constraints()
                        values.append(asscalar(val))
                        normed_values.append(asscalar(val/n_tmp))
                        #epsilons.append(asscalar(val / n_tmp - dot(point.x, tmp)/n_tmp**2))
                        epsilons.append(asscalar((val + dot(point.x, tmp))/n_tmp))
                        #epsilons.append(asscalar(val - dot(point.x, tmp))/n_tmp)
                        #epsilons.append(asscalar(val))
                        isConstraint.append(True)
                        points.append(point.x)
                        inactive.append(0)
                        nAddedVectors += 1                    
                    if bestFeasiblePoint is not None and isfinite(point.f()):
                        #print '222222'
                        tmp = point.df()
                        if not isinstance(tmp, ndarray) or isinstance(tmp, matrix):
                            tmp = tmp.A
                        tmp = tmp.flatten()
                        n_tmp = norm(tmp)
                        if n_tmp < p.gtol:
                            p._df = n_tmp # TODO: change it 
                            p.iterfcn(point)
                            return
                        nVec += 1
                        normedSubGradients.append(tmp/n_tmp)
                        subGradientNorms.append(n_tmp)
                        val = point.f()
                        values.append(asscalar(val))
                        normed_values.append(asscalar(val/n_tmp))
                        epsilons.append(asscalar((val + dot(point.x, tmp))/n_tmp))
                        isConstraint.append(False)
                        points.append(point.x)
                        inactive.append(0)
                        nAddedVectors += 1       
                if self.addASG and itn != 0 and Projection is not None:
                    tmp = Projection
                    if not isinstance(tmp, ndarray) or isinstance(tmp, matrix):
                        tmp = tmp.A
                    tmp = tmp.flatten()
                    n_tmp = norm(tmp)

                    nVec += 1
                    normedSubGradients.append(tmp/n_tmp)
                    subGradientNorms.append(n_tmp)
                    val = ProjectionVal
                    #val = n_tmp*(1-1e-7) # to prevent small numerical errors accumulation
                    values.append(asscalar(val))
                    normed_values.append(asscalar(val/n_tmp))# equals to 0
                    epsilons.append(asscalar((val + dot(prevIterPoint.x, tmp))/n_tmp))
                    
                    if not p.isUC: p.pWarn('addASG is not ajusted with constrained problems handling yet')
                    isConstraint.append(False if p.isUC else True)
                    
                    points.append(prevIterPoint.x)
                    inactive.append(0)
                    nAddedVectors += 1       
                        
#                    else:
#                        p.err('bug in %s, inform openopt developers' % self.__name__)
                        
                indToBeRemovedBySameAngle = []
                
                valDistances1 = asfarray(normed_values)
                valDistances2 = asfarray([(0 if isConstraint[i] else -F0) for i in range(nVec)]) / asfarray(subGradientNorms)
                valDistances3 = asfarray([dot(x-points[i], vec) for i, vec in enumerate(normedSubGradients)])
                
                valDistances = valDistances1 + valDistances2 + valDistances3

                
                #valDistances4 = asfarray([(0 if isConstraint[i] else -F0) for i in range(nVec)]) / asfarray(subGradientNorms)
                
                #valDistancesForExcluding = valDistances1 + valDistances3 + valDistances4 # with constraints it may yield different result vs valDistances
                
#                if p.debug: p.debugmsg('valDistances: ' + str(valDistances))
                if iterInitialDataSize != 0:
                    for j in range(nAddedVectors):
                        ind = -1-j
                        scalarProducts = dot(normedSubGradients, normedSubGradients[ind])
                        IND = where(scalarProducts > 1 - self.sigma)[0]
                        if IND.size != 0:
                            _case = 1
                            if _case == 1:
                                mostUseful = argmax(valDistances[IND])
                                IND = delete(IND, mostUseful)
                                indToBeRemovedBySameAngle +=IND.tolist()
                            else:
                                indToBeRemovedBySameAngle += IND[:-1].tolist()

                indToBeRemovedBySameAngle = list(set(indToBeRemovedBySameAngle)) # TODO: simplify it
                indToBeRemovedBySameAngle.sort(reverse=True)

                if p.debug: p.debugmsg('indToBeRemovedBySameAngle: ' + str(indToBeRemovedBySameAngle) + ' from %d'  %nVec)
                if indToBeRemovedBySameAngle == range(nVec-1, nVec-nAddedVectors-1, -1) and ns > 5:
#                    print 'ns =', ns, 'hs =', hs, 'iterStartPoint.f():', iterStartPoint.f(), 'prevInnerCycleIterStartPoint.f()', prevInnerCycleIterStartPoint.f(), \
#                    'diff:', iterStartPoint.f()-prevInnerCycleIterStartPoint.f()
                    
                    #raise 0
                    p.istop = 17
                    p.msg = 'all new subgradients have been removed due to the angle threshold'
                    return
                                
                #print 'added:', nAddedVectors,'current lenght:', len(values), 'indToBeRemoved:', indToBeRemoved
                
                valDistances = valDistances.tolist()
                valDistances2 = valDistances2.tolist()
                for ind in indToBeRemovedBySameAngle:# TODO: simplify it
                    for List in StoredInfo + [valDistances, valDistances2]:
                        del List[ind]
                nVec -= len(indToBeRemovedBySameAngle)
               
                if nVec > nMaxVec:
                    for List in StoredInfo + [valDistances, valDistances2]:
                        del List[:-nMaxVec]
                    assert len(StoredInfo[-1]) == nMaxVec
                    nVec = nMaxVec
                    
                valDistances = asfarray(valDistances)
                valDistances2 = asfarray(valDistances2)
                
                #F = 0.0

                
                indActive = where(valDistances >= 0)[0]
                m = len(indActive)
                product = None

                #print('fTol: %f   m: %d   ns: %d' %(fTol, m, ns))
                #raise 0
                if p.debug: p.debugmsg('fTol: %f     ns: %d' %(fTol, ns))
                Projection = None
                if nVec > 1:
                    normalizedSubGradients = asfarray(normedSubGradients)
                    product = dot(normalizedSubGradients, normalizedSubGradients.T)
                    
                    #best_QP_Point = None
                    
                    #maxQPshoutouts = 1
                    
                    for j in range(maxQPshoutouts if bestFeasiblePoint is not None else 1):
                        F = asscalar(bestFeasiblePoint.f() - fTol * 5**j) if bestFeasiblePoint is not None else nan
                        valDistances2_modified = asfarray([(0 if isConstraint[i] else -F) for i in range(nVec)]) / asfarray(subGradientNorms)
                        ValDistances = valDistances +  valDistances2_modified - valDistances2
                        
                        # DEBUG!!!!!!!!!
                        #ValDistances = array([0, -1])
                        #ValDistances = valDistances
                        # DEBUG END!!!!!!!!!
                
                        # !!!!!!!!!!!!!            TODO: analitical solution for m==2
                        new = 0
                        if nVec == 2 and new:
                            a, b = normedSubGradients[0]*ValDistances[0], normedSubGradients[1]*ValDistances[1]
                            a2, b2, ab = (a**2).sum(), (b**2).sum(), dot(a, b)
                            beta = a2 * (ab-b2) / (ab**2 - a2 * b2)
                            alpha = b2 * (ab-a2) / (ab**2 - a2 * b2)
                            g1 = alpha * a + beta * b
                        else:
                            #projection, koeffs = PolytopProjection(product, asfarray(ValDistances), isProduct = True)   
                            #print 'before PolytopProjection'
                            koeffs = PolytopProjection(product, asfarray(ValDistances), isProduct = True, solver = self.qpsolver)
#                            assert all(isfinite(koeffs))
                            #print koeffs
                            #print 'after PolytopProjection'
                            projection = dot(normalizedSubGradients.T, koeffs).flatten()
                            
                            #print 'norm(projection):', norm(projection)
                            
                            #raise 0
#                            from openopt import QP
#                            p2 = QP(diag(ones(n)), zeros(n), A=-asfarray(normedSubGradients), b=-ValDistances)
#                            projection = p2.solve('cvxopt_qp', iprint=-1).xf
#                            print 'proj:', projection
#                            if itn != 0: raise 0
                            #if ns > 3: raise 0
                            threshold = 1e-9 # for to prevent small numerical issues
                            if j == 0 and any(dot(normalizedSubGradients, projection) < ValDistances * (1-threshold*sign(ValDistances)) - threshold):
                                p.istop = 16
                                p.msg = 'optimal solution wrt required fTol has been obtained'
                                return
                                
                            #p.debugmsg('g1 shift: %f' % norm(g1/norm(g1)-projection/norm(projection)))
                            g1 = projection
                            if j == 0: 
                                Projection = projection
                                ProjectionVal = sum(koeffs*asfarray(ValDistances))
                            #hs = 0.4*norm(g1)
                            M = norm(koeffs, inf)
                            # TODO: remove the cycles
                            indActive = where(koeffs >= M / 1e7)[0]
                            for k in indActive.tolist():
                                inactive[k] = 0
                        NewPoint = Point(x - g1)
                        #print 'isBetter:', NewPoint.betterThan(p.point(x), altLinInEq=True, bestFeasiblePoint = bestFeasiblePoint)

                        if j == 0 or NewPoint.betterThan(best_QP_Point, altLinInEq=True, bestFeasiblePoint = bestFeasiblePoint): 
                            best_proj = g1
                            best_QP_Point = NewPoint
                        else:
                            g1 = best_proj
                            break
                            
                    maxQPshoutouts = max((j+2, 1))
                    #print 'opt j:', j, 'nVec:', nVec
                    #Xdist = norm(projection1)
    #                if hs < 0.25*Xdist :
    #                    hs = 0.25*Xdist

                else:
                    g1 = iterStartPoint._getDirection(self.approach, currBestFeasPoint = bestFeasiblePoint)
                    
                if any(isnan(g1)):
                    p.istop = 900
                    return                 
                
                if dilation and len(sh) == 2:
                    point = sh[0] if dot(iterStartPoint._getDirection(self.approach), sh[0]._getDirection(self.approach)) < 0 else sh[1]
                    D.updateDilationMatrix(iterStartPoint._getDirection(self.approach) - point._getDirection(self.approach), alp = 1.2)
                    g1 = D.getDilatedVector(g1)
                    #g1 = tmp
                
                
                if any(g1): 
                    g1 /= p.norm(g1)
                else:
                    p.istop = 103 if Point(x).isFeas(False) else -103
                    #raise 0
                    return
                #hs = 1 

                """                           Forward line search                          """

                bestPointBeforeTurn = iterStartPoint
                
                hs_cumsum = 0
                hs_start = hs
                if not isinstance(g1, ndarray) or isinstance(g1, matrix):
                    g1 = g1.A
                
                g1 = g1.flatten()
                
                hs_mult = 4.0
                for ls in range(p.maxLineSearch):
                    
#                    if ls > 20:
#                        hs_mult = 2.0
#                    elif ls > 10:
#                        hs_mult = 1.5
#                    elif ls > 2:
#                        hs_mult = 1.05
                    
                    assert all(isfinite(g1))
                    assert all(isfinite(x))
                    assert isfinite(hs)
                    x -= hs * g1
                    hs *= hs_mult
                    hs_cumsum += hs

                    newPoint = Point(x) #if ls == 0 else iterStartPoint.linePoint(hs_cumsum/(hs_cumsum-hs), oldPoint) #  TODO: take ls into account?
                    
                    if self.show_nnan: p.info('ls: %d nnan: %d' % (ls, newPoint.__nnan__()))
                    
                    if ls == 0:
                        oldPoint = iterStartPoint#prevIter_best_ls_point#prevIterPoint
                        oldoldPoint = oldPoint
                    assert all(isfinite(oldPoint.x))    
                    #if not self.checkTurnByGradient:
                    
                    #TODO: create routine for modifying bestFeasiblePoint
                    if newPoint.isFeas(False) and (bestFeasiblePoint is None or newPoint.f() > bestFeasiblePoint.f()):
                        bestFeasiblePoint = newPoint
                            
                    if newPoint.betterThan(oldPoint, altLinInEq=True, bestFeasiblePoint = bestFeasiblePoint):
                        if newPoint.betterThan(bestPoint, altLinInEq=True): bestPoint = newPoint
                        oldoldPoint = oldPoint
                        #assert dot(oldoldPoint._getDirection(self.approach), g1)>= 0
                        oldPoint, newPoint = newPoint,  None
                    else:
                        bestPointBeforeTurn = oldoldPoint
                        if not itn % 4: 
                            for fn in ['_lin_ineq', '_lin_eq']:
                                if hasattr(newPoint, fn): delattr(newPoint, fn)
                        break

                #assert norm(oldoldPoint.x -newPoint.x) > 1e-17
                hs /= hs_mult
                if ls == p.maxLineSearch-1:
                    p.istop,  p.msg = IS_LINE_SEARCH_FAILED,  'maxLineSearch (' + str(p.maxLineSearch) + ') has been exceeded'
                    return

                p.debugmsg('ls_forward: %d' %ls)
                """                          Backward line search                          """
                maxLS = 500 #if ls == 0 else 5
                maxDeltaF = p.ftol / 16.0#fTol/4.0 #p.ftol / 16.0
                maxDeltaX = p.xtol / 2.0 #if m < 2 else hs / 16.0#Xdist/16.0
                
                ls_backward = 0
                    
                #DEBUG
#                print '!!!!1:', isPointCovered(oldoldPoint, newPoint, bestFeasiblePoint, fTol), '<<<'
#                print '!!!!2:', isPointCovered(newPoint, oldoldPoint, bestFeasiblePoint, fTol), '<<<'
#                print '!!!!3:', isPointCovered(iterStartPoint, newPoint, bestFeasiblePoint, fTol), '<<<'
#                print '!!!!4:', isPointCovered(newPoint, iterStartPoint, bestFeasiblePoint, fTol), '<<<'
#                raise 0
                #DEBUG END
                
                #assert p.isUC
                maxRecNum = 400#4+int(log2(norm(oldoldPoint.x-newPoint.x)/p.xtol)) 
                #assert dot(oldoldPoint.df(), newPoint.df()) < 0
                #assert sign(dot(oldoldPoint.df(), g1)) != sign(dot(newPoint.df(), g1))
                point1, point2, nLSBackward = LocalizedSearch(oldoldPoint, newPoint, bestFeasiblePoint, fTol, p, maxRecNum, self.approach)
                
                
                #assert sign(dot(point1.df(), g1)) != sign(dot(point2.df(), g1))
                best_ls_point = point1 if point1.betterThan(point2, altLinInEq=True, bestFeasiblePoint = bestFeasiblePoint) else point2

#                if self.doBackwardSearch:
#                    #print '----------------!!!!!!!!  norm(oldoldPoint - newPoint)', norm(oldoldPoint.x -newPoint.x)
#                    isOverHalphPi = True
#                    if isOverHalphPi:
#                        best_ls_point,  bestPointAfterTurn, ls_backward = \
#                        getBestPointAfterTurn(oldoldPoint, newPoint, maxLS = maxLS, maxDeltaF = p.ftol / 2.0, #sf = func, 
#                                            maxDeltaX = p.xtol / 2.0, altLinInEq = True, new_bs = True, checkTurnByGradient = True)
#                        #assert ls_backward != -7
#                    else:
#                        best_ls_point,  bestPointAfterTurn, ls_backward = \
#                        getBestPointAfterTurn(oldoldPoint, newPoint, maxLS = maxLS, maxDeltaF = p.ftol / 2.0, sf = func,  \
#                                            maxDeltaX = p.xtol / 2.0, altLinInEq = True, new_bs = True, checkTurnByGradient = True)       
#
#                    #assert best_ls_point is not iterStartPoint
#                    g1 = bestPointAfterTurn._getDirection(self.approach, currBestFeasPoint = bestFeasiblePoint)
##                    best_ls_point,  bestPointAfterTurn, ls_backward = \
##                    getBestPointAfterTurn(oldoldPoint, newPoint, maxLS = maxLS, maxDeltaF = maxDeltaF, sf = func,  \
##                                          maxDeltaX = maxDeltaX, altLinInEq = True, new_bs = True, checkTurnByGradient = True)
#                p.debugmsg('ls_backward: %d' % ls_backward)
#                if bestPointAfterTurn.betterThan(best_ls_point, altLinInEq=True, bestFeasiblePoint = bestFeasiblePoint):
#                    best_ls_point = bestPointAfterTurn
                if oldoldPoint.betterThan(best_ls_point, altLinInEq=True, bestFeasiblePoint = bestFeasiblePoint):
                    best_ls_point_with_start = oldoldPoint
                else:
                    best_ls_point_with_start = best_ls_point
                # TODO: extract last point from backward search, that one is better than iterPoint
                if best_ls_point.betterThan(bestPoint, altLinInEq=True): bestPoint = best_ls_point

                if best_ls_point.isFeas(True) and (bestFeasiblePoint is None or best_ls_point.betterThan(bestFeasiblePoint, altLinInEq=True, bestFeasiblePoint = bestFeasiblePoint)):
                    bestFeasiblePoint = best_ls_point

    #            print 'ls_backward', ls_backward

    #            if ls_backward < -4:
    #                fTol /= 2.0
    #            elif ls > 4:
    #                fTol *= 2.0
    #                
    #            print 'fTol:', fTol
                
                """                                 Updating hs                                 """
                step_x = p.norm(best_ls_point.x - prevIter_best_ls_point.x)
                step_f = abs(best_ls_point.f() - prevIter_best_ls_point.f())
                HS.append(hs_start)
                assert ls >= 0
                LS.append(ls)
                p.debugmsg('hs before: %0.1e' % hs)
#                if itn > 3:
#                    mean_ls = (3*LS[-1] + 2*LS[-2]+LS[-3]) / 6.0
#                    j0 = 3.3
#                    #print 'mean_ls:', mean_ls
#                    #print 'ls_backward:', ls_backward
#                    if mean_ls > j0:
#                        hs = (mean_ls - j0 + 1)**0.5 * hs_start
#                    else:
#                        #hs = hs_start / 16.0
#                        if (ls == 0 and ls_backward == -maxLS) or self.zhurb!=0:
#                            shift_x = step_x / p.xtol
#                            shift_f = step_f / p.ftol
#    #                        print 'shift_x: %e    shift_f: %e' %(shift_x, shift_f)
#                            RD = log10(shift_x+1e-100)
#                            if best_ls_point.isFeas(True) or prevIter_best_ls_point.isFeas(True):
#                                RD = min((RD, log10(shift_f + 1e-100)))
#                            #print 'RD:', RD
#                            if RD > 1.0:
#                                mp = (0.5, (ls/j0) ** 0.5, 1 - 0.2*RD)
#                                hs *= max(mp)

                prev_hs = hs
                if step_x != 0: 
                    hs = 0.5*step_x                  
#                elif ls  == 0 and nLSBackward > 4:
#                    hs /= 4.0
#                elif ls > 3:
#                    hs *= 2.0
                else:
                    hs = max((hs / 10.0,  p.xtol/2.0))
                
                #if koeffs is not None: hs = sum(koeffs)
                
                p.debugmsg('hs after: %0.1e' % hs)
                    #hs = max((p.xtol/100, 0.5*step_x))
                #print 'step_x:', step_x, 'new_hs:', hs, 'prev_hs:', prev_hs, 'ls:', ls, 'nLSBackward:', nLSBackward

                #if hs < p.xtol/4: hs = p.xtol/4
                
                """                            Handling iterPoints                            """
                   

                if itn == 0:
                    p.debugmsg('hs: ' + str(hs))
                    p.debugmsg('ls: ' + str(ls))
                if self.showLS: p.info('ls: ' + str(ls))
                if self.show_hs: p.info('hs: ' + str(hs))
                if self.show_nnan: p.info('nnan: ' + str(best_ls_point.__nnan__()))
                if self.showRes:
                    r, fname, ind = best_ls_point.mr(True)
                    p.info(fname+str(ind))
                    

                
                #print '^^^^1:>>', iterStartPoint.f(), '2:>>', best_ls_point_with_start.f()
                
                
                #hs = max((norm(best_ls_point_with_start.x-iterStartPoint.x)/2, 64*p.xtol))

                #if p.debug: assert p.isUC

                
                prevInnerCycleIterStartPoint = iterStartPoint
                
                #if ns > 3: raise 0
                if best_ls_point_with_start.betterThan(iterStartPoint, altLinInEq=True, bestFeasiblePoint = bestFeasiblePoint):
                    #raise 0
                    ns = 0
                    iterStartPoint = best_ls_point_with_start
                    break
                else:
                    iterStartPoint = best_ls_point_with_start
                

                

#                if id(best_ls_point_with_start) != id(iterStartPoint): 
#                    print 'new iter point'
#                    assert iterStartPoint.f() != best_ls_point_with_start.f()
#                    if best_ls_point_with_start.betterThan(iterStartPoint, altLinInEq=True, bestFeasiblePoint = bestFeasiblePoint):
#                        #hs = norm(best_ls_point_with_start.x-iterStartPoint.x)/16#max(p.xtol, norm(best_ls_point_with_start.x-iterStartPoint.x)/160.0)
#                        ns = 0
#                        
#                        assert not iterStartPoint.betterThan(best_ls_point_with_start)
#                        
#                        iterStartPoint = best_ls_point_with_start
#                        
#                        assert p.isUC
#                        if iterStartPoint.f() - best_ls_point_with_start.f() > fTol :                        
#                            break

#                    else:
#                        raise 0
                # !!!! TODO: has it to be outside the loop?
                
            # "while ns" loop end
            
            isOverHalphPi = product is not None and any(product[indActive].flatten() <= 0)

            if ns == self.ns and isOverHalphPi:
                p.istop = 16
                p.msg = 'Max linesearch directions number has been exceeded'
                best_ls_point = best_ls_point_with_start

            """                Some final things for gsubg main cycle                """
            prevIter_best_ls_point = best_ls_point_with_start
            prevIterPoint = iterStartPoint
            
            
            # TODO: mb move it inside inner loop
            if koeffs is not None:
                indInactive = where(koeffs < M / 1e7)[0]
                for k in indInactive.tolist():
                    inactive[k] += 1
                indInactiveToBeRemoved = where(asarray(inactive) > 5)[0].tolist()                    
#                print ('indInactiveToBeRemoved:'+ str(indInactiveToBeRemoved) + ' from' + str(nVec))
                if p.debug: p.debugmsg('indInactiveToBeRemoved:'+ str(indInactiveToBeRemoved) + ' from' + str(nVec))
                if len(indInactiveToBeRemoved) != 0: # elseware error in current Python 2.6
                    indInactiveToBeRemoved.reverse()# will be sorted in descending order
                    nVec -= len(indInactiveToBeRemoved)
                    for j in indInactiveToBeRemoved:
                        for List in StoredInfo:# + [valDistances.tolist()]:
                            del List[j]     

                
            """                               Call OO iterfcn                                """
            if hasattr(p, '_df'): delattr(p, '_df')
            if best_ls_point.isFeas(False) and hasattr(best_ls_point, '_df'): 
                p._df = best_ls_point.df().copy()           
            assert all(isfinite(best_ls_point.x))
#            print '--------------'
#            print norm(best_ls_point.x-p.xk)
            #if norm(best_ls_point.x-p.xk) == 0: raise 0
            
            cond_same_point = array_equal(best_ls_point.x, p.xk)
            p.iterfcn(best_ls_point)
            #p.iterfcn(bestPointBeforeTurn)

            """                             Check stop criteria                           """

            if cond_same_point and not p.istop:
                #raise 0
                p.istop = 14
                p.msg = 'X[k-1] and X[k] are same'
                p.stopdict[SMALL_DELTA_X] = True
                return
            
            s2 = 0
            if p.istop and not p.userStop:
                if p.istop not in p.stopdict: p.stopdict[p.istop] = True # it's actual for converters, TODO: fix it
                if SMALL_DF in p.stopdict:
                    if best_ls_point.isFeas(False): s2 = p.istop
                    p.stopdict.pop(SMALL_DF)
                if SMALL_DELTA_F in p.stopdict:
                    # TODO: implement it more properly
                    if best_ls_point.isFeas(False) and prevIter_best_ls_point.f() != best_ls_point.f(): s2 = p.istop
                    p.stopdict.pop(SMALL_DELTA_F)
                if SMALL_DELTA_X in p.stopdict:
                    if best_ls_point.isFeas(False) or not prevIter_best_ls_point.isFeas(False) or cond_same_point: s2 = p.istop
                    p.stopdict.pop(SMALL_DELTA_X)
#                if s2 and (any(isnan(best_ls_point.c())) or any(isnan(best_ls_point.h()))) \
#                and not p.isNaNInConstraintsAllowed\
#                and not cond_same_point:
#                    s2 = 0
                    
                if not s2 and any(p.stopdict.values()):
                    for key,  val in p.stopdict.iteritems():
                        if val == True:
                            s2 = key
                            break
                p.istop = s2
                
                for key,  val in p.stopdict.iteritems():
                    if key < 0 or key in set([FVAL_IS_ENOUGH, USER_DEMAND_STOP, BUTTON_ENOUGH_HAS_BEEN_PRESSED]):
                        #p.iterfcn(bestPoint)
                        return
            """                                If stop required                                """
            
            if p.istop:
                    #p.iterfcn(bestPoint)
                    return

isPointCovered2 = lambda pointWithSubGradient, pointToCheck, bestFeasiblePoint, fTol, contol:\
    pointWithSubGradient.f() - bestFeasiblePoint.f() + 0.75*fTol > dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient.df())

def isPointCovered3(pointWithSubGradient, pointToCheck, bestFeasiblePoint, fTol, contol):
    if bestFeasiblePoint is not None \
    and pointWithSubGradient.f() - bestFeasiblePoint.f() + 0.75*fTol > dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient.df()):
        return True
    if not pointWithSubGradient.isFeas(True) and \
    pointWithSubGradient.mr_alt(bestFeasPoint = bestFeasiblePoint) + 1e-15 > \
    dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient._getDirection('all active', currBestFeasPoint = bestFeasiblePoint)):
        return True
    return False

def isPointCovered4(pointWithSubGradient, pointToCheck, bestFeasiblePoint, fTol, contol):
    #print 'isFeas:', pointWithSubGradient.isFeas(True)
    
#    if pointWithSubGradient.sum_of_all_active_constraints() != 0 and any(pointWithSubGradient.sum_of_all_active_constraints_gradient()):
#        return pointWithSubGradient.sum_of_all_active_constraints() + 0.75*contol > \
#            dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient.sum_of_all_active_constraints_gradient())
#    
#    return pointWithSubGradient.f() - bestFeasiblePoint.f() + 0.75*fTol > dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient.df()) 
    
##############################
    if pointWithSubGradient.isFeas(True):
        # assert bestFeasiblePoint is not None 
        return pointWithSubGradient.f() - bestFeasiblePoint.f() + 0.75*fTol > dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient.df()) 
    
    elif pointWithSubGradient.sum_of_all_active_constraints() + 0.75*contol > \
    dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient.sum_of_all_active_constraints_gradient()):
        return True
        #return pointWithSubGradient.f() - bestFeasiblePoint.f() + 0.75*fTol > dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient.df()) 
    return False
    
#    return pointWithSubGradient.mr_alt(bestFeasiblePoint = bestFeasiblePoint) + 0.25*contol > \
#        dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient._getDirection('all active', currBestFeasPoint = bestFeasiblePoint))
######################
#    
#    if bestFeasiblePoint is not None \
#    and pointWithSubGradient.f() - bestFeasiblePoint.f() + 0.75*fTol > dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient.df()): return True
#    
#    return pointWithSubGradient.mr_alt(bestFeasiblePoint = bestFeasiblePoint) + 0.25*contol > \
#            dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient._getDirection('all active', currBestFeasPoint = bestFeasiblePoint))
######################
#    isFeas = pointWithSubGradient.isFeas(True)
#    if isFeas:
#        return pointWithSubGradient.f() - bestFeasiblePoint.f() + 0.75*fTol > dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient.df())
#    else:
#        return pointWithSubGradient.mr_alt(bestFeasiblePoint = bestFeasiblePoint) + 0.25*contol > \
#            dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient._getDirection('all active', currBestFeasPoint = bestFeasiblePoint))
######################
#    isCoveredByConstraints = pointWithSubGradient.mr_alt(bestFeasiblePoint = bestFeasiblePoint) + 0.25*contol > \
#            dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient._getDirection('all active', currBestFeasPoint = bestFeasiblePoint)) \
#            if not pointWithSubGradient.isFeas(True) else True
#    
#    isCoveredByObjective = pointWithSubGradient.f() - bestFeasiblePoint.f() + 0.75*fTol > dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient.df())\
#    if bestFeasiblePoint is not None else True
#    
#    return isCoveredByConstraints and isCoveredByObjective
######################
#    if not pointWithSubGradient.isFeas(True):
#        return True if  pointWithSubGradient.mr_alt(bestFeasiblePoint = bestFeasiblePoint) + 0.25*contol > \
#            dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient._getDirection('all active', currBestFeasPoint = bestFeasiblePoint)) else False
#            #, currBestFeasPoint = bestFeasiblePoint)):
#        
#    if pointWithSubGradient.f() - bestFeasiblePoint.f() + 0.75*fTol > dot(pointWithSubGradient.x - pointToCheck.x, pointWithSubGradient.df()):
#        # if pointWithSubGradient is feas (i.e. not 1st case) than bestFeasiblePoint is not None
#        return True
#        
#    return False

isPointCovered = isPointCovered4

def LocalizedSearch(point1, point2, bestFeasiblePoint, fTol, p, maxRecNum, approach):
#    bestFeasiblePoint = None
    contol = p.contol
    for i in range(maxRecNum):
        if p.debug:
            p.debugmsg('req num: %d from %d' % (i, maxRecNum))

        new = 0
        if new:
            if point1.betterThan(point2, altLinInEq=True, bestFeasiblePoint = bestFeasiblePoint) and isPointCovered(point2, point1, bestFeasiblePoint, fTol) \
            or point2.betterThan(point1, altLinInEq=True, bestFeasiblePoint = bestFeasiblePoint) and isPointCovered(point1, point2, bestFeasiblePoint, fTol):
                break
        else:
            isPoint1Covered = isPointCovered(point2, point1, bestFeasiblePoint, fTol, contol)
            isPoint2Covered = isPointCovered(point1, point2, bestFeasiblePoint, fTol, contol)
            #print 'isPoint1Covered:', isPoint1Covered, 'isPoint2Covered:', isPoint2Covered
            if isPoint1Covered and isPoint2Covered:# and i != 0:
                break
        
        # TODO: prevent small numerical errors accumulation
        point = point1.linePoint(0.5, point2)
        #point = p.point((point1.x + point2.x)/2.0) 
        
        
        if point.isFeas(False) and (bestFeasiblePoint is None or bestFeasiblePoint.f() > point.f()):
            bestFeasiblePoint = point
        
        #if p.debug: assert p.isUC
        if dot(point._getDirection(approach, currBestFeasPoint = bestFeasiblePoint), point1.x-point2.x) < 0:
            point2 = point
        else:
            point1 = point
            
    return point1, point2, i
    
        
######################33
    #                    from scipy.sparse import eye
    #                    from openopt import QP            
    #                    projection2 = QP(eye(p.n, p.n), zeros_like(x), A=polyedr, b = -valDistances).solve('cvxopt_qp', iprint = -1).xf
    #                    g1 = projection2