This file is indexed.

/usr/share/pyshared/openopt/solvers/UkrOpt/interalgCons.py is in python-openopt 0.38+svn1589-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from numpy import empty, where, logical_and, logical_not, take, logical_or, isnan, zeros, log2, isfinite, \
int8, int16, int32, int64, inf, isinf, asfarray, hstack, vstack, prod, all, any, asarray, tile, zeros_like
from interalgLLR import func8, func10
from interalgT import adjustDiscreteVarBounds
from FuncDesigner import oopoint
from FuncDesigner.ooFun import getSmoothNLH
from FuncDesigner.Interval import adjust_lx_WithDiscreteDomain, adjust_ux_WithDiscreteDomain

try:
    from bottleneck import nanargmin, nanmin, nanargmax, nanmax
except ImportError:
    from numpy import nanmin, nanargmin, nanargmax, nanmax
    
def processConstraints(C0, y, e, p, dataType):
    n = p.n
    m = y.shape[0]
    r15 = empty(m, bool)
    nlh = zeros((m, 2*n))
    r15.fill(True)
    DefiniteRange = True
    
    if len(p._discreteVarsNumList):
        adjustDiscreteVarBounds(y, e, p)
        
    for f, r16, r17, tol in C0:
        if p.solver.dataHandling == 'sorted': tol = 0
        
        ip = func10(y, e, p._freeVarsList)
        ip.dictOfFixedFuncs = p.dictOfFixedFuncs
        o, a, definiteRange = func8(ip, f, dataType)
            
        DefiniteRange = logical_and(DefiniteRange, definiteRange)
        o, a  = o.reshape(2*n, m).T, a.reshape(2*n, m).T
        
        if not f.isUncycled:
            r42(o, a)
        
        lf1, lf2, uf1, uf2 = o[:, 0:n], o[:, n:2*n], a[:, 0:n], a[:, n:2*n]
        o_ = where(logical_or(lf1>lf2, isnan(lf1)), lf2, lf1)
        a_ = where(logical_or(uf1>uf2, isnan(uf2)), uf1, uf2)
        om, am = nanmin(o_, 1), nanmax(a_, 1)
        
        ind = logical_and(am >= r16, om  <= r17)
        r15 = logical_and(r15, ind)
        aor20 = a - o
        if dataType in [int8, int16, int32, int64, int]:
            aor20 = asfarray(aor20)
        #aor20[aor20 > 1e200] = 1e200
        a_t,  o_t = a.copy(), o.copy()
        if dataType in [int8, int16, int32, int64, int]:
            a_t,  o_t = asfarray(a_t), asfarray(o_t)
        if r16 == r17:
            val = r17
            a_t[a_t > val + tol] = val + tol
            o_t[o_t < val - tol] = val - tol
            r24 = a_t - o_t
            tmp = r24 / aor20
            tmp[logical_or(isinf(o), isinf(a))] = 1e-10 #  (to prevent inf/inf=nan); TODO: rework it
            
            tmp[r24 == 0.0] = 1.0 # may be encountered if a == o, especially for integer probs
            tmp[tmp<1e-300] = 1e-300 # TODO: improve it
            #nlh += log2(aor20)# TODO: mb use other
            #nlh -= log2(a-r17) + log2(r16-o)
            #nlh += log2((a-r17)/ aor20) + log2((r16-o)/ aor20)
            # TODO: for non-exact interval quality increase nlh while moving from 0.5*(e-y)
            tmp[val > a] = 0
            tmp[val < o] = 0
        elif isfinite(r16) and not isfinite(r17):
            tmp = (a - r16 + tol) / aor20
            
            tmp[logical_and(isinf(o), logical_not(isinf(a)))] = 1e-10 # (to prevent inf/inf=nan); TODO: rework it
            tmp[isinf(a)] = 1-1e-10 # (to prevent inf/inf=nan); TODO: rework it
            
            #tmp = (a - r16) / aor20
            #NEW
#            o_t[o_t < r16 - tol] = r16 - tol
#            #ind = a_t>o
#            #a_t[ind] = o[ind]
#            #o_t[o_t < r16 - tol] = r16 - tol
#            r24 = a - o_t
#            tmp = r24 / aor20
            #tmp = (a - r16) / aor20f
            
            tmp[tmp<1e-300] = 1e-300 # TODO: improve it
            tmp[tmp>1.0] = 1.0
            
            tmp[r16 > a] = 0
            
            #tmp[r16 - tol <= o] = 1
            tmp[r16 <= o] = 1

        elif isfinite(r17) and not isfinite(r16):
            tmp = (r17-a+tol) / aor20
            
            tmp[isinf(o)] = 1-1e-10 # (to prevent inf/inf=nan);TODO: rework it
            tmp[logical_and(isinf(a), logical_not(isinf(o)))] = 1e-10 # (to prevent inf/inf=nan); TODO: rework it
            
            #tmp = (r17-o) / aor20
            #NEW
#            a_t[a_t > r17 + tol] = r17 + tol
#            
#            #r24 = a - r17
#            r24  = a_t - o
#            #r24[r24<0] = 0.0
#            tmp = r24 / aor20
            
            tmp[tmp<1e-300] = 1e-300 # TODO: improve it
            tmp[tmp>1.0] = 1.0
            
            tmp[r17 < o] = 0
            
            #tmp[r17+tol >= a] = 1
            tmp[r17 >= a] = 1

        else:
            p.err('this part of interalg code is unimplemented for double-box-bound constraints yet')
            
        nlh -= log2(tmp) 
        
    ind = where(r15)[0]
    lj = ind.size
    if lj != m:
        y = take(y, ind, axis=0, out=y[:lj])
        e = take(e, ind, axis=0, out=e[:lj])
        nlh = take(nlh, ind, axis=0, out=nlh[:lj])
    return y, e, nlh, None, DefiniteRange, None# indT ; todo: rework it!

def processConstraints2(C0, y, e, p, dataType):
    n = p.n
    m = y.shape[0]
    nlh = zeros((m, 2*n))
    nlh_0 = zeros(m)
    
    DefiniteRange = True
    indT = empty(m, bool)
    indT.fill(False)
    if len(p._discreteVarsNumList):
        adjustDiscreteVarBounds(y, e, p)
    
    for c, f, lb, ub, tol in C0:
        m = y.shape[0] # is changed in the cycle
        if m == 0: 
            return y.reshape(0, n), e.reshape(0, n), nlh.reshape(0, 2*n), None, True, False
            #return y.reshape(0, n), e.reshape(0, n), nlh.reshape(0, 2*n), residual.reshape(0, 2*n), True, False
        
        if p.solver.dataHandling == 'sorted': tol = 0

        New = 1
        
        if New:
#            for v in p._discreteVarsList:
#                adjust_ux_WithDiscreteDomain(e, v)
#                adjust_lx_WithDiscreteDomain(y, v)
            T0, res, DefiniteRange2 = c.nlh(y, e, p, dataType)
            DefiniteRange = logical_and(DefiniteRange, DefiniteRange2)
            # TODO: rework it
            #T0 = -log2(T0)
            assert T0.ndim <= 1
            #T02 = hstack((T0, T0))
            nlh_0 += T0
            
            # TODO: rework it for case len(p._freeVarsList) >> 1
            for j, v in enumerate(p._freeVarsList):
                tmp = res.get(v, None)
                if tmp is None:
                    pass
                else:
                    #tmp = -log2(tmp)
                    nlh[:, n+j] += tmp[:, tmp.shape[1]/2:].flatten() - T0
                    nlh[:, j] += tmp[:, :tmp.shape[1]/2].flatten() - T0
        else:
            domain = oopoint([(v, (y[:, k], e[:, k])) for k, v in enumerate(p._freeVarsList)], skipArrayCast=True)
            domain.isMultiPoint = True
            domain.dictOfFixedFuncs = p.dictOfFixedFuncs
            
            r, r0 = f.iqg(domain, dataType)
            dep = f._getDep().intersection(domain.keys()) # TODO: Improve it
            
            o, a = r0.lb, r0.ub
            
            # using tile to make shape like it was divided into 2 boxes
            # todo: optimize it
            tmp = getSmoothNLH(tile(o, (2, 1)), tile(a, (2, 1)), lb, ub, tol, m, dataType)
            #T02 = tmp
            #tmp, res0 = getNLH(tile(o, (2, 1)), tile(a, (2, 1)), lb, ub, tol, m, zeros((m, 2)), dataType)
            T0 = -log2(tmp[:, tmp.shape[1]/2:].flatten())
            #isFiniteT0 = all(isfinite(T0))        
            for j, v in enumerate(p._freeVarsList):
                if v in dep:
                    o, a = vstack((r[v][0].lb, r[v][1].lb)), vstack((r[v][0].ub, r[v][1].ub))
                    
                    # TODO: 1) FIX IT it for matrix definiteRange
                    # 2) seems like DefiniteRange = (True, True) for any variable is enough for whole range to be defined in the involved node
                    DefiniteRange = logical_and(DefiniteRange, r[v][0].definiteRange)
                    DefiniteRange = logical_and(DefiniteRange, r[v][1].definiteRange)
                    
                    tmp = -log2(getSmoothNLH(o, a, lb, ub, tol, m, dataType))

                    nlh[:, n+j] += tmp[:, tmp.shape[1]/2:].flatten() - T0
                    nlh[:, j] += tmp[:, :tmp.shape[1]/2].flatten() - T0
                    
    #                if isFiniteT0:
    #                    nlh[:, n+j] -= T0
    #                    nlh[:, j] -= T0
                        
                    #nlh[:, n+j] += (tmp[:, tmp.shape[1]/2:]-T0).flatten()
                    #nlh[:, j] += (tmp[:, :tmp.shape[1]/2]-T0).flatten()
                    
        #                residual[:, n+j] += res[:, 0]
        #                residual[:, j] += res[:, 1]
                else:#if not isFiniteT0:
                    #pass
                    # TODO: get rid of it
                    nlh[:, j] += T0.flatten()
                    nlh[:, n+j] += T0.flatten()
        #                residual[:, n+j] += res0[:, 0]
        #                residual[:, j] += res0[:, 0]
    #            if isFiniteT0:
    #                nlh[:, j] += T0.flatten()
    #                nlh[:, n+j] += T0.flatten()

        ind = where(logical_and(any(isfinite(nlh), 1), isfinite(nlh_0)))[0]
        lj = ind.size
        if lj != m:
            y = take(y, ind, axis=0, out=y[:lj])
            e = take(e, ind, axis=0, out=e[:lj])
            nlh = take(nlh, ind, axis=0, out=nlh[:lj])
            nlh_0 = nlh_0[ind]
    #            residual = take(residual, ind, axis=0, out=residual[:lj])
            indT = indT[ind]
            if asarray(DefiniteRange).size != 1: 
                DefiniteRange = take(DefiniteRange, ind, axis=0, out=DefiniteRange[:lj])



        ind = logical_not(isfinite((nlh)))
        if any(ind):
            indT[any(ind, 1)] = True
            ind_l,  ind_u = ind[:, :ind.shape[1]/2], ind[:, ind.shape[1]/2:]
            tmp_l, tmp_u = 0.5 * (y[ind_l] + e[ind_l]), 0.5 * (y[ind_u] + e[ind_u])
            y[ind_l], e[ind_u] = tmp_l, tmp_u
            # TODO: mb implement it
            if len(p._discreteVarsNumList):
                if tmp_l.ndim > 1:
                    adjustDiscreteVarBounds(tmp_l, tmp_u, p)
                else:
                    adjustDiscreteVarBounds(y, e, p)
#                adjustDiscreteVarBounds(y, e, p)
            
            nlh_l, nlh_u = nlh[:, nlh.shape[1]/2:], nlh[:, :nlh.shape[1]/2]
            
            # copy() is used because += and -= operators are involved on nlh in this cycle and probably some other computations
            nlh_l[ind_u], nlh_u[ind_l] = nlh_u[ind_u].copy(), nlh_l[ind_l].copy()        
        
    if New:
        # !! matrix - vector
        nlh += nlh_0.reshape(-1, 1)
        
#    print nlh
#    from numpy import diff
#    print diff(nlh)
    residual = None
    return y, e, nlh, residual, DefiniteRange, indT

#def updateNLH(c, y, e, nlh, p):