This file is indexed.

/usr/share/pyshared/openopt/solvers/UkrOpt/interalgMisc.py is in python-openopt 0.38+svn1589-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
from numpy import tile, isnan, array, atleast_1d, asarray, logical_and, all, searchsorted, logical_or, any, nan, isinf, \
arange, vstack, inf, where, logical_not, take, argmax, argmin, min, abs, hstack, empty, insert, isfinite, append, atleast_2d, \
prod, logical_xor, argsort, asfarray
from interalgLLR import *

try:
    from bottleneck import nanargmin, nanmin, nanargmax, nanmax
except ImportError:
    from numpy import nanmin, nanargmin, nanargmax, nanmax

       
#    o = hstack([r[v][0].lb for v in vv] + [r[v][1].lb for v in vv])
#    a = hstack([r[v][0].ub for v in vv] + [r[v][1].ub for v in vv])
#    definiteRange = hstack([r[v][0].definiteRange for v in vv] + [r[v][1].definiteRange for v in vv])
#    # TODO: rework all(definiteRange)
#    return o, a, all(definiteRange)

def r14(p, nlhc, residual, definiteRange, y, e, vv, asdf1, C, r40, itn, g, nNodes,  \
         r41, fTol, Solutions, varTols, _in, dataType, \
         maxNodes, _s, indTC, xRecord):

    isSNLE = p.probType in ('NLSP', 'SNLE')
    
    maxSolutions, solutions, coords = Solutions.maxNum, Solutions.solutions, Solutions.coords
    if len(p._discreteVarsNumList):
        adjustDiscreteVarBounds(y, e, p)
    
    if itn == 0: 
        # TODO: change for constrained probs
        _s = atleast_1d(inf)
    
    o, a, r41 = r45(y, e, vv, p, asdf1, dataType, r41, nlhc)
    fo_prev = float(0 if isSNLE else min((r41, r40 - (fTol if maxSolutions == 1 else 0))))
    if fo_prev > 1e300:
        fo_prev = 1e300
    y, e, o, a, _s, nlhc, residual = func7(y, e, o, a, _s, nlhc, residual)    
    
    if y.size == 0:
        return _in, g, fo_prev, _s, Solutions, xRecord, r41, r40
    
    nodes = func11(y, e, nlhc, indTC, residual, o, a, _s, p)
    #nodes, g = func9(nodes, fo_prev, g, p)
    #y, e = func4(y, e, o, a, fo)
    

    if p.solver.dataHandling == 'raw':
        
        tmp = o.copy()
        tmp[tmp > fo_prev] = -inf
        M = atleast_1d(nanmax(tmp, 1))
        for i, node in enumerate(nodes):
            node.th_key = M[i]
            
        if not isSNLE:
            for node in nodes:
                node.fo = fo_prev       
        if nlhc is not None:
            for i, node in enumerate(nodes): node.tnlhf = node.nlhf + node.nlhc
        else:
            for i, node in enumerate(nodes): node.tnlhf = node.nlhf # TODO: improve it
            
        an = hstack((nodes, _in))
        
        #tnlh_fixed = vstack([node.tnlhf for node in an])
        tnlh_fixed_local = vstack([node.tnlhf for node in nodes])#tnlh_fixed[:len(nodes)]

        tmp = a.copy()
        
        tmp[tmp>fo_prev] = fo_prev

        tnlh_curr = tnlh_fixed_local - log2(tmp - o)
        tnlh_curr_best = nanmin(tnlh_curr, 1)
        for i, node in enumerate(nodes):
            node.tnlh_curr = tnlh_curr[i]
            node.tnlh_curr_best = tnlh_curr_best[i]
        
        # TODO: use it instead of code above
        #tnlh_curr = tnlh_fixed_local - log2(where() - o)
    else:
        tnlh_curr = None
    
    # TODO: don't calculate PointVals for zero-p regions
    PointVals, PointCoords = getr4Values(vv, y, e, tnlh_curr, asdf1, C, p.contol, dataType, p) 

    if PointVals.size != 0:
        xk, Min = r2(PointVals, PointCoords, dataType)
    else: # all points have been removed by func7
        xk = p.xk
        Min = nan

    if r40 > Min:
        r40 = Min
        xRecord = xk.copy()# TODO: is copy required?
    if r41 > Min:
        r41 = Min
    
    fo = float(0 if isSNLE else min((r41, r40 - (fTol if maxSolutions == 1 else 0))))
        
    if p.solver.dataHandling == 'raw':
        
        if fo == inf or isSNLE:
            tnlh_curr = vstack([node.tnlhf for node in an])#tnlh_fixed
        else:
            if fo != fo_prev:
                fos = array([node.fo for node in an])
                
                #prev
                #ind_update = where(fos > fo + 0.01* fTol)[0]
                
                #new
                th_keys = array([node.th_key for node in an])
                delta_fos = fos - fo
                ind_update = where(10 * delta_fos > fos - th_keys)[0]
                
                nodesToUpdate = an[ind_update]
                update_nlh = True if ind_update.size != 0 else False
#                  print 'o MB:', float(o_tmp.nbytes) / 1e6
#                  print 'percent:', 100*float(ind_update.size) / len(an) 
                if update_nlh:
#                    from time import time
#                    tt = time()
                    updateNodes(nodesToUpdate, fo)
#                    if not hasattr(p, 'Time'):
#                        p.Time = time() - tt
#                    else:
#                        p.Time += time() - tt
                        
            tmp = asarray([node.key for node in an])
            r10 = where(tmp > fo)[0]
            if r10.size != 0:
                mino = [an[i].key for i in r10]
                mmlf = nanmin(asarray(mino))
                g = nanmin((g, mmlf))
                #an = an[where(logical_not(ind0))[0]]

        NN = atleast_1d([node.tnlh_curr_best for node in an])
        r10 = logical_or(isnan(NN), NN == inf)
       
        if any(r10):
            ind = where(logical_not(r10))[0]
            an = an[ind]
            #tnlh = take(tnlh, ind, axis=0, out=tnlh[:ind.size])
            #NN = take(NN, ind, axis=0, out=NN[:ind.size])
            NN = NN[ind]

        if not isSNLE or p.maxSolutions == 1:
            astnlh = argsort(NN)
            an = an[astnlh]
    
    else: #if p.solver.dataHandling == 'sorted':
        if isSNLE and p.maxSolutions != 1: 
            an = hstack((nodes, _in))
        else:
            nodes.sort(key = lambda obj: obj.key)

            if len(_in) == 0:
                an = nodes
            else:
                arr1 = [node.key for node in _in]
                arr2 = [node.key for node in nodes]
                r10 = searchsorted(arr1, arr2)
                an = insert(_in, r10, nodes)
#                if p.debug:
#                    arr = array([node.key for node in an])
#                    #print arr[0]
#                    assert all(arr[1:]>= arr[:-1])

        
    if maxSolutions != 1:
        Solutions = r46(o, a, PointCoords, PointVals, fTol, varTols, Solutions)
        
        p._nObtainedSolutions = len(solutions)
        if p._nObtainedSolutions > maxSolutions:
            solutions = solutions[:maxSolutions]
            p.istop = 0
            p.msg = 'user-defined maximal number of solutions (p.maxSolutions = %d) has been exeeded' % p.maxSolutions
            return an, g, fo, None, Solutions, xRecord, r41, r40
    
    #p.iterfcn(xk, Min)
    p.iterfcn(xRecord, r40)
    if p.istop != 0: 
        return an, g, fo, None, Solutions, xRecord, r41, r40
    if isSNLE and maxSolutions == 1 and Min <= fTol:
        # TODO: rework it for nonlinear systems with non-bound constraints
        p.istop, p.msg = 1000, 'required solution has been obtained'
        return an, g, fo, None, Solutions, xRecord, r41, r40
    
#    print 'p.iter:', p.iter
#    print '1:', len(an)
#    print min([node.key for node in an])
#    print 'p.iter:',p.iter, 'fo:', fo, 'g:', g
#    print 'min(keys):', min([node.key for node in an])
    an, g = func9(an, fo, g, p)
#    print 'g_new:', g
#    print '2:', len(an)

    nn = maxNodes#1 if asdf1.isUncycled and all(isfinite(o)) and p._isOnlyBoxBounded and not p.probType.startswith('MI') else maxNodes
    
    an, g = func5(an, nn, g, p)
    nNodes.append(len(an))

    return an, g, fo, _s, Solutions, xRecord, r41, r40


def r46(o, a, PointCoords, PointVals, fTol, varTols, Solutions):
    solutions, coords = Solutions.solutions, Solutions.coords
    n = o.shape[1] / 2
    
    #L1, L2 = o[:, :n], o[:, n:]
    #omin = where(logical_or(L1 > L2, isnan(L1)), L2, L1)
    #r5Ind =  where(logical_and(PointVals < fTol, nanmax(omin, 1) == 0.0))[0]
    
    r5Ind =  where(PointVals < fTol)[0]

    r5 = PointCoords[r5Ind]
    
    for c in r5:
        if len(solutions) == 0 or not any(all(abs(c - coords) < varTols, 1)): 
            solutions.append(c)
            #coords = asarray(solutions)
            Solutions.coords = append(Solutions.coords, c.reshape(1, -1), 0)
            
    return Solutions


def r45(y, e, vv, p, asdf1, dataType, r41, nlhc):
    Case = p.solver.intervalObtaining

    if Case == 1:
        ip = func10(y, e, vv)
        #o, a = func8(ip, asdf1 + 1e10*p._cons_obj if p._cons_obj is not None else asdf1, dataType)
        o, a, definiteRange = func8(ip, asdf1, dataType)
    elif Case == 2:
#        o2, a2, definiteRange2 = func82(y, e, vv, asdf1 + p._cons_obj if p._cons_obj is not None else asdf1, dataType)
#        o, a, definiteRange = o2, a2, definiteRange2
        f = asdf1 
        o, a, definiteRange = func82(y, e, vv, f, dataType, p)
    elif Case == 3:
        # Used for debug
        ip = func10(y, e, vv)
        o, a, definiteRange = func8(ip, asdf1, dataType)
        
        f = asdf1
        o2, a2, definiteRange2 = func82(y, e, vv, f, dataType, p)
        from numpy import allclose
        lf, lf2 = o.copy(), o2.copy()
        lf[isnan(lf)] = 0.123
        lf2[isnan(lf2)] = 0.123
        if not allclose(lf, lf2, atol=1e-10):
            raise 0
        uf, uf2 = a.copy(), a2.copy()
        uf[isnan(uf)] = 0.123
        uf2[isnan(uf2)] = 0.123
        if not allclose(uf, uf2, atol=1e-10):
            raise 0
    
    if p.debug and any(a + 1e-15 < o):  
        p.warn('interval lower bound exceeds upper bound, it seems to be FuncDesigner kernel bug')
    if p.debug and any(logical_xor(isnan(o), isnan(a))):
        p.err('bug in FuncDesigner intervals engine')
    
    m, n = e.shape
    o, a = o.reshape(2*n, m).T, a.reshape(2*n, m).T

    if asdf1.isUncycled and p.probType not in ('SNLE', 'NLSP') and not p.probType.startswith('MI') \
    and len(p._discreteVarsList)==0:# for SNLE fo = 0
        # TODO: 
        # handle constraints with restricted domain and matrix definiteRange
        
        if all(definiteRange):
            # TODO: if o has at least one -inf => prob is unbounded
            tmp1 = o[nlhc==0] if nlhc is not None else o
            if tmp1.size != 0:
                tmp1 = nanmin(tmp1)
                
                ## to prevent roundoff issues ##
                tmp1 += 1e-14*abs(tmp1)
                if tmp1 == 0: tmp1 = 1e-300 
                ######################
                
                r41 = nanmin((r41, tmp1)) 
    else:
        pass
        
    return o, a, r41

def updateNodes(nodesToUpdate, fo):
    if len(nodesToUpdate) == 0: return
    a_tmp = array([node.a for node in nodesToUpdate])
    Tmp = a_tmp
    Tmp[Tmp>fo] = fo                

    o_tmp = array([node.o for node in nodesToUpdate])
    Tmp -= o_tmp
    
    tnlh_all_new =  - log2(Tmp)
    
    del Tmp, a_tmp
    
    tnlh_all_new += vstack([node.tnlhf for node in nodesToUpdate])#tnlh_fixed[ind_update]
    
    tnlh_curr_best = nanmin(tnlh_all_new, 1)

    o_tmp[o_tmp > fo] = -inf
    M = atleast_1d(nanmax(o_tmp, 1))
    for j, node in enumerate(nodesToUpdate): 
        node.fo = fo
        node.tnlh_curr = tnlh_all_new[j]
        node.tnlh_curr_best = tnlh_curr_best[j]
        node.th_key = M[j]

#    return tnlh_all_new, tnlh_curr_best, M


#from multiprocessing import Pool
#from numpy import array_split
#def updateNodes(nodesToUpdate, fo, p):
#    if p.nProc == 1:
#        Chunks = [nodesToUpdate]
#        result = [updateNodesEngine((nodesToUpdate, fo))]
#    else:
#        Chunks = array_split(nodesToUpdate, p.nProc)
#        if not hasattr(p, 'pool'):
#            p.pool = Pool(processes = p.nProc)
#        #result = p.pool.imap(updateNodesEngine, [(c, fo) for c in Chunks])
#        result = p.pool.map(updateNodesEngine, [(c, fo) for c in Chunks])
#    for i, elem in enumerate(result):
#        if elem is None: continue
#        tnlh_all_new, tnlh_curr_best, M = elem
#        for j, node in enumerate(Chunks[i]): 
#            node.fo = fo
#            node.tnlh_curr = tnlh_all_new[j]
#            node.tnlh_curr_best = tnlh_curr_best[j]
#            node.th_key = M[j]