This file is indexed.

/usr/share/pyshared/openopt/solvers/UkrOpt/lincher_oo.py is in python-openopt 0.38+svn1589-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
__docformat__ = "restructuredtext en"

from numpy import diag, ones, inf, any, copy, sqrt, vstack, concatenate, asarray, nan, where, array, zeros, exp, isfinite
from openopt.kernel.baseSolver import *
from openopt import LP, QP, NLP, LLSP, NSP

from openopt.kernel.ooMisc import WholeRepr2LinConst
#from scipy.optimize import line_search as scipy_optimize_linesearch
#from scipy.optimize.linesearch import line_search as scipy_optimize_linesearch_f
from numpy import arange, sign, hstack
from UkrOptMisc import getDirectionOptimPoint, getConstrDirection
import os

class lincher(baseSolver):
    __name__ = 'lincher'
    __license__ = "BSD"
    __authors__ = "Dmitrey"
    __alg__ = "a linearization-based solver written in Cherkassy town, Ukraine"
    __optionalDataThatCanBeHandled__ = ['A', 'Aeq', 'b', 'beq', 'lb', 'ub', 'c', 'h']

    __isIterPointAlwaysFeasible__ = lambda self, p: p.__isNoMoreThanBoxBounded__()
    iterfcnConnected = True

    def __init__(self): pass

    def __solver__(self, p):
        n = p.n
        x0 = copy(p.x0)
        xPrev = x0.copy()
        xf = x0.copy()
        xk = x0.copy()
        p.xk = x0.copy()

        f0 = p.f(x0)

        fk = f0
        ff = f0
        p.fk = fk

        df0 = p.df(x0)

        #####################################################################


##        #handling box-bounded problems
##        if p.__isNoMoreThanBoxBounded__():
##            for k in range(int(p.maxIter)):
##
##        #end of handling box-bounded problems
        isBB = p.__isNoMoreThanBoxBounded__()
##        isBB = 0
        H = diag(ones(p.n))
        if not p.userProvided.c:
            p.c = lambda x : array([])
            p.dc = lambda x : array([]).reshape(0, p.n)
        if not p.userProvided.h:
            p.h = lambda x : array([])
            p.dh = lambda x : array([]).reshape(0, p.n)

        p.use_subproblem = 'QP'

        #p.use_subproblem = 'LLSP'

        for k in range(p.maxIter+4):
            if isBB:
                f0 = p.f(xk)
                df = p.df(xk)
                direction = -df
                f1 = p.f(xk+direction)
                ind_l = direction<=p.lb-xk
                direction[ind_l] = (p.lb-xk)[ind_l]
                ind_u = direction>=p.ub-xk
                direction[ind_u] = (p.ub-xk)[ind_u]
                ff = p.f(xk + direction)
##                print 'f0', f0, 'f1', f1, 'ff', ff
            else:

                mr = p.getMaxResidual(xk)
                if mr > p.contol: mr_grad = p.getMaxConstrGradient(xk)
                lb = p.lb - xk #- p.contol/2
                ub = p.ub - xk #+ p.contol/2
                c, dc, h, dh, df = p.c(xk), p.dc(xk), p.h(xk), p.dh(xk), p.df(xk)
                A, Aeq = vstack((dc, p.A)), vstack((dh, p.Aeq))
                b = concatenate((-c, p.b-p.matmult(p.A,xk))) #+ p.contol/2
                beq = concatenate((-h, p.beq-p.matmult(p.Aeq,xk)))

                if b.size != 0:
                    isFinite = isfinite(b)
                    ind = where(isFinite)[0]
                    A, b = A[ind], b[ind]
                if beq.size != 0:
                    isFinite = isfinite(beq)
                    ind = where(isFinite)[0]
                    Aeq, beq = Aeq[ind], beq[ind]


                if p.use_subproblem == 'LP': #linear
                    linprob = LP(df, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub=ub)
                    linprob.iprint = -1
                    r2 = linprob.solve('cvxopt_glpk') # TODO: replace lpSolve by autoselect
                    if r2.istop <= 0:
                        p.istop = -12
                        p.msg = "failed to solve LP subproblem"
                        return
                elif p.use_subproblem == 'QP': #quadratic
                    qp = QP(H=H,f=df, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub = ub)
                    qp.iprint = -1
                    r2 = qp.solve('cvxopt_qp') # TODO: replace solver by autoselect
                    #r2 = qp.solve('qld') # TODO: replace solver by autoselect
                    if r2.istop <= 0:
                        for i in range(4):
                            if p.debug: p.warn("iter " + str(k) + ": attempt Num " + str(i) + " to solve QP subproblem has failed")
                            #qp.f += 2*N*sum(qp.A,0)
                            A2 = vstack((A, Aeq, -Aeq))
                            b2 = concatenate((b, beq, -beq)) + pow(10,i)*p.contol
                            qp = QP(H=H,f=df, A=A2, b=b2, iprint = -5)
                            qp.lb = lb - pow(10,i)*p.contol
                            qp.ub = ub + pow(10,i)*p.contol
                            # I guess lb and ub don't matter here
                            try:
                                r2 = qp.solve('cvxopt_qp') # TODO: replace solver by autoselect
                            except:
                                r2.istop = -11
                            if r2.istop > 0: break
                        if r2.istop <= 0:
                            p.istop = -11
                            p.msg = "failed to solve QP subproblem"
                            return
                elif p.use_subproblem == 'LLSP':
                    direction_c = getConstrDirection(p,  xk, regularization = 1e-7)
                else: p.err('incorrect or unknown subproblem')


            if isBB:
                X0 = xk.copy()
                N = 0
                result, newX = chLineSearch(p, X0, direction, N, isBB)
            elif p.use_subproblem != 'LLSP':
                duals = r2.duals
                N = 1.05*abs(duals).sum()
                direction = r2.xf
                X0 = xk.copy()
                result, newX = chLineSearch(p, X0, direction, N, isBB)
            else: # case LLSP
                direction_f = -df
                p2 = NSP(LLSsubprobF, [0.8, 0.8], ftol=0, gtol=0, xtol = 1e-5, iprint = -1)
                p2.args.f =  (xk, direction_f, direction_c, p, 1e20)
                r_subprob = p2.solve('ralg')
                alpha = r_subprob.xf
                newX = xk + alpha[0]*direction_f + alpha[1]*direction_c

#                dw = (direction_f * direction_c).sum()
#                cos_phi = dw/p.norm(direction_f)/p.norm(direction_c)
#                res_0, res_1 = p.getMaxResidual(xk), p.getMaxResidual(xk+1e-1*direction_c)
#                print cos_phi, res_0-res_1

#                res_0 = p.getMaxResidual(xk)
#                optimConstrPoint = getDirectionOptimPoint(p, p.getMaxResidual, xk, direction_c)
#                res_1 = p.getMaxResidual(optimConstrPoint)
#
#                maxConstrLimit = p.contol



                #xk = getDirectionOptimPoint(p, p.f, optimConstrPoint, -optimConstrPoint+xk+direction_f, maxConstrLimit = maxConstrLimit)
                #print 'res_0', res_0, 'res_1', res_1, 'res_2', p.getMaxResidual(xk)
                #xk = getDirectionOptimPoint(p, p.f, xk, direction_f, maxConstrLimit)
                #newX = xk.copy()
                result = 0
#                x_0 = X0.copy()
#                N = j = 0
#                while p.getMaxResidual(x_0) > Residual0 + 0.1*p.contol:
#                    j += 1
#                    x_0 = xk + 0.75**j * (X0-xk)
#                X0 = x_0
#                result, newX = 0, X0
#                print 'newIterResidual = ', p.getMaxResidual(x_0)

            if result != 0:
                p.istop = result
                p.xf = newX
                return

            xk = newX.copy()
            fk = p.f(xk)

            p.xk, p.fk = copy(xk), copy(fk)
            #p._df = p.df(xk)
            ####################
            p.iterfcn()

            if p.istop:
                p.xf = xk
                p.ff = fk
                #p._df = g FIXME: implement me
                return


class lineSearchFunction(object):
    def __init__(self, p, x0, N):
        self.p = p
        self.x0 = x0
        self.N = N

    def __call__(self, x):
        return float(self.p.f(x)+self.N*max(self.p.getMaxResidual(x), 0.999*self.p.contol))

    def gradient_numerical(self, x):
        g = zeros(self.p.n)
        f0 = self.__call__(x)
        for i in range(self.p.n):
            x[i] += self.p.diffInt
            g[i] = self.__call__(x) - f0
            x[i] -= self.p.diffInt
        g /= self.p.diffInt
        return g

    def gradient(self, x):
        N = self.N
        g = self.p.df(x) + N * self.p.getMaxConstrGradient(x)
        return g


def LLSsubprobF(alpha, x, direction_f, direction_c, p, S=1e30):
    x2 = x + alpha[0] * direction_f + alpha[1] * direction_c
    constr = p.getMaxResidual(x2)
    fval = p.f(x2)
    return max(constr-p.contol, 0)*S + fval
#    if constr > p.contol: return S * constr
#    else: return p.f(x2)



def chLineSearch(p, x0, direction, N, isBB):
    lsF = lineSearchFunction(p, x0, N)
    c1, c2 = 1e-4, 0.9
    result = 0
    #ls_solver = 'scipy.optimize.line_search'
    #ls_solver = 'Matthieu.optimizers.StrongWolfePowellRule'
    #ls_solver = 'Matthieu.optimizers.BacktrackingSearch'
    ls_solver = 'Armijo_modified'
##    if p.use_subproblem == 'LLSP':
##        ls_solver = 'Armijo_modified3'
##    else:
##        ls_solver = 'Armijo_modified'


    #debug
##    M, K = 1000000, 4
##    x0 = array(1.)
##    class example():
##        def __init__(self): pass
##        #def __call__(self, x): return M * max(x,array(0.))**K
##        def __call__(self, x): return 1e-5*x
##        def gradient(self, x): return array(1e-5)
##        #def gradient(self, x): return M*K*max(x,array(0.))**(K-1)
##    ff = example()
##    state = {'direction' : array(-5.5), 'gradient': M*K*x0**(K-1)}
##    mylinesearch = line_search.StrongWolfePowellRule(sigma = 0.001)
##    destination = mylinesearch(function = ff, origin = x0, step = array(-5.5), state = state)

    #debug end



    if ls_solver == 'scipy.optimize.line_search':#TODO: old_fval, old_old_fval

        old_fval = p.dotmult(lsF.gradient(x0), direction).sum() # just to make
        old_old_fval = old_fval / 2.0 # alpha0 from scipy line_search 1

        results = scipy_optimize_linesearch(lsF, lsF.gradient, x0, direction, lsF.gradient(x0), old_fval, old_old_fval, c1=c1, c2=c2)
        alpha = results[0]
##        results_f = scipy_optimize_linesearch_f(lsF, lsF.gradient, x0, direction, lsF.gradient(x0), old_fval, old_old_fval, c1=c1, c2=c2)
##        alpha = results_f[0]
        destination = x0+alpha*direction
    elif ls_solver == 'Matthieu.optimizers.BacktrackingSearch':
        #state = {'direction' : direction}
        state = {'direction' : direction, 'gradient': lsF.gradient(x0)}
        mylinesearch = line_search.BacktrackingSearch()
        destination = mylinesearch(function = lsF, origin = x0, step = direction, state = state)

    elif ls_solver == 'Matthieu.optimizers.StrongWolfePowellRule':
        state = {'direction' : direction, 'gradient': lsF.gradient(x0)}
        mylinesearch = line_search.StrongWolfePowellRule()
        destination = mylinesearch(function = lsF, origin = x0, step = direction, state = state)

    elif ls_solver == 'Armijo_modified3':
        alpha,  alpha_min = 1.0, 0.45*p.xtol / p.norm(direction)
        lsF_x0 = lsF(x0)
        C1 = abs(c1 * (p.norm(direction)**2).sum())
        iterValues.r0 = p.getMaxResidual(x0)
        #counter = 1
        while 1:
            print 'stage 1'
            if lsF(x0 + direction*alpha) <= lsF_x0 - alpha * C1 and p.getMaxResidual(x0 + direction*alpha) <= max(p.contol, iterValues.r0):
                assert alpha>=0
                #print counter, C1
                break
            alpha /= 2.0
            #counter += 1
            if alpha < alpha_min:
                if p.debug: p.warn('alpha less alpha_min')
                break
        if alpha == 1.0:
            print 'stage 2'
            K = 1.5
            lsF_prev = lsF_x0
            for i in range(p.maxLineSearch):
                lsF_new = lsF(x0 + K * direction*alpha)
                newConstr = p.getMaxResidual(x0 + K * direction*alpha)
                if lsF_new > lsF_prev or  newConstr > max(p.contol, iterValues.r0):
                    break
                else:
                    alpha *= K
                    lsF_prev = lsF_new
        destination = x0 + direction*alpha

    elif ls_solver == 'Armijo_modified':
        alpha,  alpha_min = 1.0, 0.15*p.xtol / p.norm(direction)
        grad_x0 = lsF.gradient(x0)
        #C1 = abs(c1 * p.dotmult(direction, grad_x0).sum())
        #if p.debug: print p.dotmult(direction, grad_x0).sum(), p.norm(direction)**2
        C1 = abs(c1 * (p.norm(direction)**2).sum())
        lsF_x0 = lsF(x0)
        #counter = 1
        while 1:
##            print 'stage 11'
##            print 'alpha', alpha, 'lsF', lsF(x0 + direction*alpha), 'f', p.f(x0 + direction*alpha), 'maxC', p.getMaxResidual(x0 + direction*alpha)
            if lsF(x0 + direction*alpha) <= lsF_x0 - alpha * C1:
                assert alpha>=0

##                print '11 out: alpha = ', alpha
                break
            alpha /= 2.0
            if alpha < alpha_min:
                if p.debug: p.warn('alpha less alpha_min')
                break

        destination = x0 + direction*alpha
        #TODO: check lb-ub here?

        if alpha == 1.0 and not isBB:
            K = 1.5
            lsF_prev = lsF_x0
            for i in range(p.maxLineSearch):
                x_new = x0 + K * direction*alpha
##                ind_u, ind_l = x_new>p.ub, x_new<p.lb
##                x_new[ind_l] = p.lb[ind_l]
##                x_new[ind_u] = p.ub[ind_u]

                lsF_new = lsF(x_new)
##                print 'stage 22'
##                print  'alpha', K*alpha, 'lsF', lsF_new, 'f', p.f(x0 + K * direction*alpha), 'maxC', p.getMaxResidual(x0 + K * direction*alpha)
                if lsF_new >= lsF_prev:# - K * alpha * C1:
##                    print '22 out: alpha = ', alpha
                    break
                else:
                    destination = x_new
                    alpha *= K
                    lsF_prev = lsF_new


    elif ls_solver == 'Armijo_modified2':
        grad_objFun_x0 = p.df(x0)
        grad_iterValues.r_x0 = p.getMaxConstrGradient(x0)
        C1_objFun = c1 * p.dotmult(direction, grad_objFun_x0).sum()
        C1_constr = c1 * p.dotmult(direction, grad_iterValues.r_x0).sum()
        f0 = p.f(x0)
        f_prev = f0
        allowedConstr_start = max(0.999*p.contol, p.getMaxResidual(x0))
        #currConstr = allowedConstr_start + 1.0
        alpha,  alpha_min = 1.0, 1e-11
        isConstrAccepted = False
        isObjFunAccepted = False

        #debug
##        if p.iter == 100:
##            pass

        while alpha >= alpha_min:
            x_new = x0 + direction*alpha
            if not isConstrAccepted:
                currConstr = p.getMaxResidual(x_new)
                if currConstr > allowedConstr_start + alpha * C1_constr:
                    #print 'case bigger:', currConstr, allowedConstr
                    #allowedConstr = max(0.999*p.contol, min(allowedConstr, currConstr))
                    alpha /= 2.0; continue
                else:
                    AcceptedConstr = max(0.999*p.contol, currConstr)
                    isConstrAccepted = True

            if not isObjFunAccepted:
                currConstr = p.getMaxResidual(x_new)
                #if currConstr > allowedConstr_start + alpha * C1_constr:#min(AcceptedConstr, 0.1*allowedConstr_start):
                #AllowedConstr2 = 1.2 * AcceptedConstr
                if currConstr > p.contol and (currConstr > 1.3*AcceptedConstr or currConstr > allowedConstr_start + alpha * C1_constr):# or currConstr > AllowedConstr2):
                    isObjFunAccepted = True
                    alpha = min(1.0, 2.0*alpha)#i.e. return prev alpha value
                    break

                f_new = p.f(x_new)
                #if f_new > f_prev:
                if f_new > f0 + alpha * C1_objFun:
                    alpha /= 2.0
                    f_prev = f_new
                    continue
                else:
                    isObjFunAccepted = True # and continue
                    break

        #print '!!!!!!!!!', alpha
        #print currConstr, allowedConstr_start, allowedConstr_start + alpha * C1_constr
##            else:
##                #print 'allowedConstr:', allowedConstr, '  currConstr:', currConstr
##                allowedConstr = max(0.999*p.contol, min(allowedConstr, currConstr))
##                print '33'
##                alpha /= 2.0
##                continue
##            elif p.f(x_new) <= f0 - alpha * C1 and currConstr <= allowedConstr:
##               # accept the alpha value
##               assert alpha>=0
##               allowedConstr = max(0.99*p.contol, currConstr)
##               break


        if p.debug and alpha < alpha_min:
            p.warn('alpha less alpha_min')

        if alpha == 1.0:
            K = 1.5
            f_prev = f0
            allowedConstr = allowedConstr_start
            for i in range(p.maxLineSearch):
                x_new = x0 + K*direction*alpha
                f_new = p.f(x_new)
                if f_new > f_prev or p.getMaxResidual(x_new) > allowedConstr:# - K * alpha * C1:
                    break
                else:
                    allowedConstr = max(0.99*p.contol, min(allowedConstr, currConstr))
                    alpha *= K
                    f_new = f_prev
        destination = x0 + direction*alpha
        #print 'alpha:', alpha

    else:
        p.error('unknown line-search optimizer')

    return result, destination