/usr/share/pyshared/pyentropy/maxent.py is in python-pyentropy 0.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 | # This file is part of pyEntropy
#
# pyEntropy is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# pyEntropy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with pyEntropy. If not, see <http://www.gnu.org/licenses/>.
#
# Copyright 2009, 2010 Robin Ince
"""
Module for computing finite-alphabet maximum entropy solutions using a
coordinate transform method
For details of the method see:
Ince, R. A. A., Petersen, R. S., Swan, D. C., Panzeri, S., 2009
"Python for Information Theoretic Analysis of Neural Data",
Frontiers in Neuroinformatics 3:4 doi:10.3389/neuro.11.004.2009
http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11/004.2009/
If you use this code in a published work, please cite the above paper.
The generated transformation matrices for a given set of parameters are
stored to disk. The default location for the cache is a ``.pyentropy``
(``_pyentropy`` on windows) directory in the users home directory. To
override this and use a custom location (for example to share the folder
between users) you can put a configuration file ``.pyentropy.cfg``
(``pyentropy.cfg`` on windows) file in the home directory with the
following format::
[maxent]
cache_dir = /path/to/cache
:func:`pyentropy.maxent.get_config_file()` will show where it is looking for the config
file.
The probability vectors for a finite-alphabet space of ``n`` variables with
``m`` possible values is a length ``m**n-1`` vector ordered such that the
value of the index is equal to the decimal value of the input state
represented, when interpreted as a base m, length n word. eg for n=3,m=3::
P[0] = P(0,0,0)
P[1] = P(0,0,1)
P[2] = P(0,0,2)
P[3] = P(0,1,0)
P[4] = P(0,1,1) etc.
This allows efficient vectorised conversion between probability index and
response word using base2dec, dec2base. The output is in the same format.
"""
import time
import os
import sys
import cPickle
import numpy as np
import scipy as sp
import scipy.io as sio
import scipy.sparse as sparse
import scipy.optimize as opt
# umfpack disabled due to bug in scipy
# http://mail.scipy.org/pipermail/scipy-user/2009-December/023625.html
#try:
#import scikits.umfpack as um
#HAS_UMFPACK = True
#except:
#HAS_UMFPACK = False
HAS_UMFPACK = False
from scipy.sparse.linalg import spsolve, use_solver
use_solver(useUmfpack=False)
from utils import dec2base, base2dec
import ConfigParser
def get_config_file():
"""Get the location and name of the config file for specifying
the data cache dir. You can call this to find out where to put your
config.
"""
if sys.platform.startswith('win'):
cfname = '~/pyentropy.cfg'
else:
cfname = '~/.pyentropy.cfg'
return os.path.expanduser(cfname)
def get_data_dir():
"""Get the data cache dir to use to load and save precomputed matrices"""
# default values
if sys.platform.startswith('win'):
dirname = '~/_pyentropy'
else:
dirname = '~/.pyentropy'
# try to load user override
config = ConfigParser.RawConfigParser()
cf = config.read(get_config_file())
try:
data_dir = os.path.expanduser(config.get('maxent','cache_dir'))
except (ConfigParser.NoSectionError, ConfigParser.NoOptionError):
data_dir = os.path.expanduser(dirname)
# check directory exists
if not os.path.isdir(data_dir):
try:
os.mkdir(data_dir)
except:
print "ERROR: could not create data dir. Please check your " + \
"configuration."
raise
return data_dir
#
# AmariSolve class
#
class AmariSolve:
"""A class for computing maximum-entropy solutions.
When the class is initiliased the coordinate transform matrices are loaded
from disk, if available, or generated.
See module docstring for location of cache directory.
An instance then exposes a solve method which returns the maximum entropy
distribution preserving marginal constraints of the input probability
vector up to a given order k.
This class computed the full transformation matrix and so can compute
solutions for any order.
"""
def __init__(self, n, m, filename='a_', local=False, confirm=True):
"""Setup transformation matrix for given parameter set.
If existing matrix file is found, load the (sparse) transformation
matrix A, otherwise generate it.
:Parameters:
n : int
number of variables in the system
m : int
size of finite alphabet (number of symbols)
filename : {str, None}, optional
filename to load/save (designed to be used by derived classes).
local : {False, True}, optional
If True, then store/load arrays from 'data/' directory in
current working directory. Otherwise use the package data dir
(default ~/.pyentropy or ~/_pyentropy (windows))
Can be overridden through ~/.pyentropy.cfg or ~/pyentropy.cfg
(windows)
confirm : {True, False}, optional
Whether to prompt for confirmation before generating matrix
"""
#if np.mod(m,2) != 1:
# raise ValueError, "m must be odd"
try:
k = self.k
except AttributeError:
self.k = n
self.n = n
self.m = m
self.l = (m-1)/2
# full dimension of probability space
self.fdim = m**n
# dimension of arrays (-1 dof)
self.dim = self.fdim - 1
filename = filename + "n%im%i"%(n,m)
if local:
self.filename = os.path.join(os.getcwd(), 'data', filename)
else:
self.filename = os.path.join(get_data_dir(), filename)
# if file exists load (matrix A)
# must be running in correct directory
if os.path.exists(self.filename+'.mat'):
loaddict = sio.loadmat(self.filename+'.mat')
self.A = loaddict['A'].tocsc()
self.order_idx = loaddict['order_idx'].squeeze()
elif confirm:
inkey = raw_input("Existing .mat file not found..." +
"Generate matrix? (y/n)")
if inkey == 'y':
# else call matrix generation function (and save)
self._generate_matrix()
else:
print "File not found and generation aborted..."
print "Do not use this class instance."
return None
else:
# just generate it without confirmation
self._generate_matrix()
self.B = self.A.T
# umfpack factorisation of matrix
if HAS_UMFPACK:
self._umfpack()
return None
def _umfpack(self):
self.umf = um.UmfpackContext()
self.umf.numeric(self.B)
def _calculate_orders(self):
k = self.k
n = self.n
m = self.m
dim = self.dim
# Calculate the length of each order
self.order_idx = np.zeros(n+2, dtype=int)
self.order_length = np.zeros(n+1, dtype=int)
self.row_counter = 0
for ordi in xrange(n+1):
self.order_length[ordi] = (sp.misc.comb(n, ordi+1, exact=1) *
((m-1)**(ordi+1)))
self.order_idx[ordi] = self.row_counter
self.row_counter += self.order_length[ordi]
self.order_idx[n+1] = dim+1
# Calculate nnz for A
# not needed for lil sparse format
x = (m*np.ones(n))**np.arange(n-1,-1,-1)
x = x[:k]
y = self.order_length[:k]
self.Annz = np.sum(x*y.T)
def _generate_matrix(self):
"""Generate A matrix if required"""
k = self.k
n = self.n
m = self.m
dim = self.dim
self._calculate_orders()
self.A = sparse.dok_matrix((self.order_idx[k],dim))
self.row_counter = 0
for ordi in xrange(k):
self.nterms = m**(n - (ordi+1))
self.terms = dec2base(np.c_[0:self.nterms,], m, n-(ordi+1))
self._recloop((ordi+1), 1, [], [], n, m)
print "Order " + str(ordi+1) + " complete. Time: " + time.ctime()
# save matrix to file
self.A = self.A.tocsc()
savedict = {'A':self.A, 'order_idx':self.order_idx}
sio.savemat(self.filename, savedict)
def _recloop(self, order, depth, alpha, pos, n, m, blocksize=None):
terms = self.terms
A = self.A
if not blocksize:
blocksize = self.nterms
# starting point for position loop
if len(pos)==0:
pos_start = 0
else:
pos_start = pos[-1] + 1
# loop over alphabet
for ai in xrange(1, m):
alpha_new = list(alpha)
alpha_new.append(ai)
# loop over position
for pi in xrange(pos_start, (n-(order-depth))):
pos_new = list(pos)
pos_new.append(pi)
# add columns?
if depth == order:
# special case for highest order
# (can't insert columns into empty terms array)
if order==n:
cols = base2dec(np.atleast_2d(alpha_new),m)[0]-1
A[self.row_counter, cols] = 1
else:
# add columns (insert and add to sparse)
ins = np.tile(alpha_new,(blocksize,1))
temp = terms
for coli in xrange(order):
temp = inscol(temp, np.array(ins[:,coli],ndmin=2).T, pos_new[coli])
cols = (base2dec(temp,m)-1).tolist()
A[self.row_counter, cols] = 1;
self.row_counter += 1
else:
self._recloop(order, depth+1, alpha_new, pos_new, n, m, blocksize=blocksize)
def solve(self,Pr,k,eta_given=False,ic_offset=-0.01, **kwargs):
"""Find maxent distribution for a given order k
:Parameters:
Pr : (fdim,)
probability distribution vector
k : int
Order of interest (marginals up to this order constrained)
eta_given : {False, True}, optional
Set this True if you are passing the marginals in Pr instead of
the probabilities
ic_offset : float, oprtional
Initial condition offset for the numerical optimisation. If you
are having trouble getting convergence, try playing with this.
Usually making it smaller is effective (ie -0.00001)
:Returns:
Psolve : (fdim,)
probability distribution vector of k-th order maximum entropy
solution
"""
if len(Pr.shape) != 1:
raise ValueError, "Input Pr should be a 1D array"
if not eta_given and Pr.size != self.fdim:
raise ValueError, "Input probability vector must have length fdim (m^n)"
if eta_given:
if Pr.size != self.dim:
raise ValueError, "Input eta vector must have length dim (m^n -1)"
else:
if Pr.size != self.fdim:
raise ValueError, "Input probability vector must have length fdim (m^n)"
if not np.allclose(Pr.sum(), 1.0):
raise ValueError, "Input probability vector must sum to 1"
l = self.order_idx[k].astype(int)
theta0 = np.zeros(self.order_idx[-1]-self.order_idx[k]-1)
x0 = np.zeros(l)+ic_offset
sf = self._solvefunc
jacobian = kwargs.get('jacobian',True)
Asmall = self.A[:l,:]
Bsmall = Asmall.T
if eta_given:
eta_sampled = Pr[:l]
else:
eta_sampled = Asmall*Pr[1:]
if jacobian:
self.optout = opt.fsolve(sf, x0, (Asmall,Bsmall,eta_sampled, l),
fprime=self._jacobian, col_deriv=1, full_output=1)
else:
self.optout = opt.fsolve(sf, x0, (Asmall,Bsmall,eta_sampled, l),
full_output=1)
#self.optout = opt.leastsq(sf, x0, (Asmall,Bsmall,eta_sampled),
#full_output=1)
the_k = self.optout[0]
print "order: " + str(k) + \
" ierr: " + str(self.optout[2]) + " - " + self.optout[3]
print "fval: " + str(np.mean(np.abs(self.optout[1]['fvec']))),
# extra debug info for jacobian
print "nfev: %d" % self.optout[1]['nfev'],
try:
print "njev: %d" % self.optout[1]['njev']
except KeyError:
print ""
Psolve = np.zeros(self.fdim)
Psolve[1:] = self._p_from_theta(np.r_[the_k,theta0])
Psolve[0] = 1.0 - Psolve.sum()
return Psolve
def _solvefunc(self, theta_un, Asmall, Bsmall, eta_sampled, l):
b = np.exp(Bsmall*theta_un)
y = eta_sampled - ( (Asmall*b) / (b.sum()+1) )
return y
def _jacobian(self, theta, Asmall, Bsmall, eta_sampled, l):
x = np.exp(Bsmall*theta)
p = Asmall*x
q = x.sum() + 1
J = np.outer(p,p)
xd = sparse.spdiags(x,0,x.size,x.size,format='csc')
qdp = (Asmall * xd) * Bsmall
qdp *= q
J = J - qdp
J /= (q*q)
return J
def _p_from_theta(self, theta):
"""Internal version - stays in dim space (missing p[0])"""
pnorm = lambda p: ( p / (p.sum()+1) )
return pnorm(np.exp(self.A.T*theta))
def p_from_theta(self, theta):
"""Return full ``fdim`` p-vector from ``fdim-1`` length theta"""
p = np.zeros(self.fdim)
p[1:] = self._p_from_theta(theta)
p[0] = 1.0 - p.sum()
return p
def theta_from_p(self, p):
"""Return theta vector from full probaility vector"""
b = np.log(p[1:]) - np.log(p[0])
if HAS_UMFPACK:
# use prefactored matrix
theta = self.umf.solve(um.UMFPACK_A, self.B, b, autoTranspose=True)
else:
theta = spsolve(self.B, b)
# add theta(0) or not?
return theta
def eta_from_p(self, p):
"""Return eta-vector (marginals) from full probability vector"""
return self.A*p[1:]
def inscol(x,h,n):
xs = x.shape
hs = h.shape
if hs[0]==1: # row vector
h=h.T
hs=h.shape
if n==0:
y = np.hstack((h,x))
elif n==xs[1]:
y = np.hstack((x,h))
else:
y = np.hstack((x[:,:n],h,x[:,n:]))
return y
def order1direct(p,a):
"""Compute first order solution directly for testing"""
if p.size != a.fdim:
raise ValueError, "Probability vector doesn't match a.fdim"
# 1st order marginals
marg = a.eta_from_p(p)[:a.order_idx[1]]
# output
p1 = np.zeros(a.fdim)
the1pos = lambda x,v: ((v-1)*a.n)+x
# loop over all probabilities (not p(0))
for i in range(1,a.fdim):
Pword = dec2base(np.atleast_2d(i).T,a.m,a.n)
# loop over each variable
for j in range(a.n):
# this value
x = Pword[0][j]
if x!=0:
# this is a normal non-zero marginal
factor = marg[the1pos(j,x)]
else:
# this is a zero-value marginal
factor = 1 - marg[the1pos(j,np.r_[1:a.m])].sum()
if p1[i]==0:
# first entry
p1[i] = factor
else:
p1[i] *= factor
# normalise
p1[0] = 1.0 - p1.sum()
return p1
|