/usr/share/pyshared/pyentropy/systems.py is in python-pyentropy 0.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 | # This file is part of pyEntropy
#
# pyEntropy is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# pyEntropy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with pyEntropy. If not, see <http://www.gnu.org/licenses/>.
#
# Copyright 2009, 2010 Robin Ince
from __future__ import division
import numpy as np
from utils import (prob, _probcount, decimalise, pt_bayescount,
nsb_entropy, dec2base, ent, malog2)
class BaseSystem:
"""Base functionality for entropy calculations common to all systems"""
def _calc_ents(self, method, sampling, methods):
"""Main entropy calculation function for non-QE methods"""
self._sample(method=sampling)
pt = (method == 'pt') or ('pt' in methods)
plugin = (method == 'plugin') or ('plugin' in methods)
nsb = (method == 'nsb') or ('nsb' in methods)
calc = self.calc
if (pt or plugin):
self._calc_pt_plugin(pt)
if nsb:
self._calc_nsb()
if 'HshXY' in calc:
#TODO: not so efficient since samples PY again
sh = self._sh_instance()
sh.calculate_entropies(method=method,
sampling=sampling,
methods=methods, calc=['HXY'])
if pt:
self.H_pt['HshXY'] = sh.H_pt['HXY']
if nsb:
self.H_nsb['HshXY'] = sh.H_nsb['HXY']
if plugin or pt:
self.H_plugin['HshXY'] = sh.H_plugin['HXY']
if 'HshX' in calc:
sh = self._shX_instance()
sh.calculate_entropies(method=method,
sampling=sampling,
methods=methods, calc=['HX'])
if pt:
self.H_pt['HshX'] = sh.H_pt['HX']
if nsb:
self.H_nsb['HshX'] = sh.H_nsb['HX']
if plugin or pt:
self.H_plugin['HshX'] = sh.H_plugin['HX']
if method == 'plugin':
self.H = self.H_plugin
elif method == 'pt':
self.H = self.H_pt
elif method == 'nsb':
self.H = self.H_nsb
def _calc_pt_plugin(self, pt):
"""Calculate direct entropies and apply PT correction if required """
calc = self.calc
pt_corr = lambda R: (R-1)/(2*self.N*np.log(2))
self.H_plugin = {}
if pt: self.H_pt = {}
# compute basic entropies
if 'HX' in calc:
H = ent(self.PX)
self.H_plugin['HX'] = H
if pt:
self.H_pt['HX'] = H + pt_corr(pt_bayescount(self.PX, self.N))
if 'HY' in calc:
H = ent(self.PY)
self.H_plugin['HY'] = H
if pt:
self.H_pt['HY'] = H + pt_corr(pt_bayescount(self.PY, self.N))
if 'HXY' in calc:
H = (self.PY * ent(self.PXY)).sum()
self.H_plugin['HXY'] = H
if pt:
for y in xrange(self.Y_dim):
H += pt_corr(pt_bayescount(self.PXY[:,y], self.Ny[y]))
self.H_pt['HXY'] = H
if 'SiHXi' in calc:
H = ent(self.PXi).sum()
self.H_plugin['SiHXi'] = H
if pt:
for x in xrange(self.X_n):
H += pt_corr(pt_bayescount(self.PXi[:,x],self.N))
self.H_pt['SiHXi'] = H
if 'HiXY' in calc:
H = (self.PY * ent(self.PXiY)).sum()
self.H_plugin['HiXY'] = H
if pt:
for x in xrange(self.X_n):
for y in xrange(self.Y_dim):
H += pt_corr(pt_bayescount(self.PXiY[:,x,y],self.Ny[y]))
self.H_pt['HiXY'] = H
if 'HiX' in calc:
H = ent(self.PiX)
self.H_plugin['HiX'] = H
if pt:
# no PT correction for HiX
self.H_pt['HiX'] = H
if 'ChiX' in calc:
H = -(self.PX*malog2(np.ma.array(self.PiX,copy=False,
mask=(self.PiX<=np.finfo(np.float).eps)))).sum(axis=0)
self.H_plugin['ChiX'] = H
if pt:
# no PT correction for ChiX
self.H_pt['ChiX'] = H
# for adelman style I(k;spike) (bits/spike)
if 'HXY1' in calc:
if self.Y_m != 2:
raise ValueError, \
"HXY1 calculation only makes sense for spike data, ie Y_m = 2"
H = ent(self.PXY[:,1])
self.H_plugin['HXY1'] = H
if pt:
self.H_pt['HXY1'] = H + pt_corr(pt_bayescount(self.PXY[:,1],self.Ny[1]))
if 'ChiXY1' in calc:
if self.Y_m != 2:
raise ValueError, \
"ChiXY1 calculation only makes sense for spike data, ie Y_m = 2"
H = -np.ma.array(self.PXY[:,1]*np.log2(self.PX),copy=False,
mask=(self.PX<=np.finfo(np.float).eps)).sum()
self.H_plugin['ChiXY1'] = H
if pt:
# no PT for ChiXY1
self.H_pt['ChiXY1'] = H
def _calc_nsb(self):
"""Calculate NSB corrected entropy"""
calc = self.calc
# TODO: 1 external program call if all y have same number of trials
self.H_nsb = {}
if 'HX' in calc:
H = nsb_entropy(self.PX, self.N, self.X_dim)[0] / np.log(2)
self.H_nsb['HX'] = H
if 'HY' in calc:
H = nsb_entropy(self.PY, self.N, self.Y_dim)[0] / np.log(2)
self.H_nsb['HY'] = H
if 'HXY' in calc:
H = 0.0
for y in xrange(self.Y_dim):
H += self.PY[y] * nsb_entropy(self.PXY[:,y], self.Ny[y], self.X_dim)[0] \
/ np.log(2)
self.H_nsb['HXY'] = H
if 'SiHXi' in calc:
# TODO: can easily use 1 call here
H = 0.0
for i in xrange(self.X_n):
H += nsb_entropy(self.PXi[:,i], self.N, self.X_m)[0] / np.log(2)
self.H_nsb['SiHXi'] = H
if 'HiXY' in calc:
H = 0.0
for i in xrange(self.X_n):
for y in xrange(self.Y_dim):
H += self.PY[y] * nsb_entropy(self.PXiY[:,i,y], self.Ny[y], self.X_m)[0] / np.log(2)
self.H_nsb['HiXY'] = H
if 'HiX' in calc:
H = nsb_entropy(self.PiX, self.N, self.X_dim)[0] / np.log(2)
self.H_nsb['HiX'] = H
def calculate_entropies(self, method='plugin', sampling='naive',
calc=['HX','HXY'], **kwargs):
"""Calculate entropies of the system.
:Parameters:
method : {'plugin', 'pt', 'qe', 'nsb'}
Bias correction method to use
sampling : {'naive', 'kt', 'beta:x'}, optional
Sampling method to use. 'naive' is the standard histrogram method.
'beta:x' is for an add-constant beta estimator, with beta value
following the colon eg 'beta:0.01' [1]_. 'kt' is for the
Krichevsky-Trofimov estimator [2]_, which is equivalent to
'beta:0.5'.
calc : list of strs
List of entropy values to calculate from ('HX', 'HY', 'HXY',
'SiHXi', 'HiX', 'HshX', 'HiXY', 'HshXY', 'ChiX', 'HXY1','ChiXY1')
:Keywords:
qe_method : {'plugin', 'pt', 'nsb'}, optional
Method argument to be passed for QE calculation ('pt', 'nsb').
Allows combination of QE with other corrections.
methods : list of strs, optional
If present, method argument will be ignored, and all corrections
in the list will be calculated. Use to comparing results of
different methods with one calculation pass.
:Returns:
self.H : dict
Dictionary of computed values.
self.H_method : dict
Dictionary of computed values using 'method'.
Notes
-----
* If the PT method is chosen with outputs 'HiX' or 'ChiX' no bias
correction will be performed for these terms.
References
----------
.. [1] T. Schurmann and P. Grassberger, "Entropy estimation of
symbol sequences," Chaos,vol. 6, no. 3, pp. 414--427, 1996.
.. [2] R. Krichevsky and V. Trofimov, "The performance of universal
encoding," IEEE Trans. Information Theory, vol. 27, no. 2,
pp. 199--207, Mar. 1981.
"""
self.calc = calc
self.methods = kwargs.get('methods',[])
for m in (self.methods + [method]):
if m not in ('plugin','pt','qe','nsb'):
raise ValueError, 'Unknown correction method : '+str(m)
methods = self.methods
# allocate memory for requested calculations
if any([c in calc for c in ['HXY','HiXY','HY']]):
# need Py for any conditional entropies
self.PY = np.zeros(self.Y_dim)
if any([c in calc for c in ['HX','HshX','ChiX','ChiXY1']]):
self.PX = np.zeros(self.X_dim)
if ('HiX' in calc) or ('ChiX' in calc):
self.PiX = np.zeros(self.X_dim)
if any([c in calc for c in ['HXY','HXY1','ChiXY1']]):
self.PXY = np.zeros((self.X_dim,self.Y_dim))
if 'SiHXi' in calc:
self.PXi = np.zeros((self.X_m,self.X_n))
if ('HiXY' in calc) or ('HiX' in calc):
self.PXiY = np.zeros((self.X_m,self.X_n,self.Y_dim))
if 'HshXY' in calc:
self.Xsh = np.zeros(self.X.shape,dtype=np.int)
if (method == 'qe') or ('qe' in methods):
# default to plugin method if not specified
qe_method = kwargs.get('qe_method','plugin')
if qe_method == 'qe':
raise ValueError, "Can't use qe for qe_method!"
self._qe_ent(qe_method,sampling,methods)
if method == 'qe':
self.H = self.H_qe
else:
self._calc_ents(method, sampling, methods)
def I(self, corr=None):
"""Convenience function to compute mutual information
Must have already computed required entropies ['HX', 'HXY']
:Parameters:
corr : str, optional
If provided use the entropies from this correction rather than
the default values in self.H
"""
try:
if corr is not None:
H = getattr(self,'H_%s'%corr)
else:
H = self.H
I = H['HX'] - H['HXY']
except (KeyError, AttributeError):
print "Error: must have computed HX and HXY for" + \
"mutual information"
return
return I
def Ish(self, corr=None):
"""Convenience function to compute shuffled mutual information
estimate
Must have already computed required entropies
['HX', 'HiXY', 'HshXY', 'HXY']
:Parameters:
corr : str, optional
If provided use the entropies from this correction rather than
the default values in self.H
"""
try:
if corr is not None:
H = getattr(self,'H_%s'%corr)
else:
H = self.H
I = H['HX'] - H['HiXY'] + H['HshXY'] - H['HXY']
except (KeyError, AttributeError):
print "Error: must have computed HX, HiXY, HshXY and HXY" + \
"for shuffled mutual information estimator"
return
return I
def Ishush(self, corr=None):
"""Convenience function to compute full shuffled mutual information
estimate
Must have already computed required entropies
['HX', 'SiHXi', 'HshX', 'HiXY', 'HshXY', 'HXY']
:Parameters:
corr : str, optional
If provided use the entropies from this correction rather than
the default values in self.H
"""
try:
if corr is not None:
H = getattr(self,'H_%s'%corr)
else:
H = self.H
I = (H['HX'] - H['HshX'] + H['SiHXi'] -
H['HiXY'] + H['HshXY'] - H['HXY'])
except (KeyError, AttributeError):
print "Error: must have computed HX, HshX, SiHXi, " + \
"HiXY, HshXY and HXY for shuffled mutual information estimator"
return
return I
def pola_decomp(self):
"""Convenience function for Pola breakdown"""
I = {}
try:
I['lin'] = self.H['SiHXi'] - self.H['HiXY']
I['sig-sim'] = self.H['HiX'] - self.H['SiHXi']
I['cor-ind'] = -self.H['HiX'] + self.H['ChiX']
I['cor-dep'] = self.Ish() - self.H['ChiX'] + self.H['HiXY']
except (KeyError, AttributeError):
print "Error: must compute SiHXi, HiXY, HiX, ChiX and Ish for Pola breakdown"
return I
def Ispike(self):
"""Adelman (2003) style information per spike """
try:
I = self.H['ChiXY1'] - self.H['HXY1']
except (KeyError, AttributeError):
print "Error: must compute ChiXY1, HXY1 for Ispike"
return
return I
def _qe_ent(self, qe_method, sampling, methods):
"""General Quadratic Extrapolation Function"""
calc = self.calc
self._qe_prep()
N = self.N
N2 = N/2.0
N4 = N/4.0
# full length
# add on methods to do everything (other than qe) with this one call
self._calc_ents(qe_method,sampling,methods)
H1 = np.array([v for k,v in sorted(self.H.iteritems())])
# half length
H2 = np.zeros(H1.shape)
half_slices = [(2,0), (2,1)]
for sl in half_slices:
sys = self._subsampled_instance(sl)
sys.calculate_entropies(method=qe_method, sampling=sampling, calc=calc)
H2 += np.array([v for k,v in sorted(sys.H.iteritems())])
del sys
H2 = H2 / 2.0
# quarter length
H4 = np.zeros(H1.shape)
quarter_slices = [(4,0), (4,1), (4,2), (4,3)]
for sl in quarter_slices:
sys = self._subsampled_instance(sl)
sys.calculate_entropies(method=qe_method, sampling=sampling, calc=calc)
H4 += np.array([v for k,v in sorted(sys.H.iteritems())])
del sys
H4 = H4 / 4.0
# interpolation
Hqe = np.zeros(H1.size)
for i in xrange(H1.size):
Hqe[i] = np.polyfit([N4,N2,N],
[N4*N4*H4[i], N2*N2*H2[i], N*N*H1[i]], 2)[0]
keys = [k for k,v in sorted(self.H_plugin.iteritems())]
self.H_qe = dict(zip(keys, Hqe))
class DiscreteSystem(BaseSystem):
"""Class to hold probabilities and calculate entropies of
a discrete stochastic system.
:Attributes:
PXY : (X_dim, Y_dim)
Conditional probability vectors on decimalised space P(X|Y).
``PXY[:,i]`` is X probability distribution conditional on ``Y==i``.
PX : (X_dim,)
Unconditional decimalised X probability.
PY : (Y_dim,)
Unconditional decimalised Y probability.
PXi : (X_m, X_n)
Unconditional probability distributions for individual X components.
``PXi[i,j] = P(X_i==j)``
PXiY : (X_m, X_n, Y_dim)
Conditional probability distributions for individual X compoenents.
``PXiY[i,j,k] = P(X_i==j | Y==k)``
PiX : (X_dim,)
``Pind(X) = <Pind(X|y)>_y``
"""
def __init__(self, X, X_dims, Y, Y_dims, qe_shuffle=True):
"""Check and assign inputs.
:Parameters:
X : (X_n, t) int array
Array of measured input values. X_n variables in X space, t trials
X_dims : tuple (n, m)
Dimension of X (input) space; length n, base m words
Y : (Y_n, t) int array
Array of corresponding measured output values. Y_n variables in Y
space, t trials
Y_dims : tuple (n ,m)
Dimension of Y (output) space; length n, base m words
qe_shuffle : {True, False}, optional
Set to False if trials already in random order, to skip shuffling
step in QE. Leave as True if trials have structure (ie one stimuli
after another).
"""
self.X_dims = X_dims
self.Y_dims = Y_dims
self.X_n = X_dims[0]
self.X_m = X_dims[1]
self.Y_n = Y_dims[0]
self.Y_m = Y_dims[1]
self.X_dim = self.X_m ** self.X_n
self.Y_dim = self.Y_m ** self.Y_n
self.X = np.atleast_2d(X)
self.Y = np.atleast_2d(Y)
self._check_inputs(self.X, self.Y)
self.N = self.X.shape[1]
self.Ny = np.zeros(self.Y_dim)
self.qe_shuffle = qe_shuffle
self.sampled = False
self.calc = []
def _sample(self, method='naive'):
"""Sample probabilities of system.
Parameters
----------
method : {'naive', 'beta:x', 'kt'}, optional
Sampling method to use. 'naive' is the standard histrogram method.
'beta:x' is for an add-constant beta estimator, with beta value
following the colon eg 'beta:0.01' [1]_. 'kt' is for the
Krichevsky-Trofimov estimator [2]_, which is equivalent to
'beta:0.5'.
References
----------
.. [1] T. Schurmann and P. Grassberger, "Entropy estimation of
symbol sequences," Chaos,vol. 6, no. 3, pp. 414--427, 1996.
.. [2] R. Krichevsky and V. Trofimov, "The performance of universal
encoding," IEEE Trans. Information Theory, vol. 27, no. 2,
pp. 199--207, Mar. 1981.
"""
calc = self.calc
# decimalise
if any([c in calc for c in ['HXY','HX']]):
if self.X_n > 1:
d_X = decimalise(self.X, self.X_n, self.X_m)
else:
# make 1D
d_X = self.X.reshape(self.X.size)
if any([c in calc for c in ['HiX','HiXY','HXY','HY']]):
if self.Y_n > 1:
d_Y = decimalise(self.Y, self.Y_n, self.Y_m)
else:
# make 1D
d_Y = self.Y.reshape(self.Y.size)
# unconditional probabilities
if ('HX' in calc) or ('ChiX' in calc):
self.PX = prob(d_X, self.X_dim, method=method)
"""test docstring fpr PX"""
if any([c in calc for c in ['HXY','HiX','HiXY','HY']]):
self.PY = prob(d_Y, self.Y_dim, method=method)
if 'SiHXi' in calc:
for i in xrange(self.X_n):
self.PXi[:,i] = prob(self.X[i,:], self.X_m, method=method)
# conditional probabilities
if any([c in calc for c in ['HiXY','HXY','HshXY']]):
for i in xrange(self.Y_dim):
indx = np.where(d_Y==i)[0]
self.Ny[i] = indx.size
if 'HXY' in calc:
# output conditional ensemble
oce = d_X[indx]
if oce.size == 0:
print 'Warning: Null output conditional ensemble for ' + \
'output : ' + str(i)
else:
self.PXY[:,i] = prob(oce, self.X_dim, method=method)
if any([c in calc for c in ['HiX','HiXY','HshXY']]):
for j in xrange(self.X_n):
# output conditional ensemble for a single variable
oce = self.X[j,indx]
if oce.size == 0:
print 'Warning: Null independent output conditional ensemble for ' + \
'output : ' + str(i) + ', variable : ' + str(j)
else:
self.PXiY[:,j,i] = prob(oce, self.X_m, method=method)
if 'HshXY' in calc:
# shuffle
#np.random.shuffle(oce)
shfoce = np.random.permutation(oce)
self.Xsh[j,indx] = shfoce
# Pind(X) = <Pind(X|Y)>_y
if ('HiX' in calc) or ('ChiX' in calc):
# construct joint distribution
words = dec2base(np.atleast_2d(np.r_[0:self.X_dim]).T,self.X_m,self.X_n)
PiXY = np.zeros((self.X_dim, self.Y_dim))
PiXY = self.PXiY[words,np.r_[0:self.X_n]].prod(axis=1)
# average over Y
self.PiX = np.dot(PiXY,self.PY)
self.sampled = True
def _check_inputs(self, X, Y):
if (not np.issubdtype(X.dtype, np.int)) \
or (not np.issubdtype(Y.dtype, np.int)):
raise ValueError, "Inputs must be of integer type"
if (X.max() >= self.X_m) or (X.min() < 0):
raise ValueError, "X values must be in [0, X_m)"
if (Y.max() >= self.Y_m) or (Y.min() < 0):
raise ValueError, "Y values must be in [0, Y_m)"
if (X.shape[0] != self.X_n):
raise ValueError, "X.shape[0] must equal X_n"
if (Y.shape[0] != self.Y_n):
raise ValueError, "Y.shape[0] must equal Y_n"
if (Y.shape[1] != X.shape[1]):
raise ValueError, "X and Y must contain same number of trials"
def _sh_instance(self):
"""Return shuffled instance"""
# do it like this to allow easy inheritence
return DiscreteSystem(self.Xsh, self.X_dims, self.Y, self.Y_dims)
def _shX_instance(self):
"""Return shuffled instance"""
# do it like this to allow easy inheritence
# unconditional shuffle
Xsh_un = np.zeros_like(self.X)
for i in range(self.X_n):
shindx = np.random.permutation(self.X.shape[1])
Xsh_un[i,:] = self.X[i,shindx]
return DiscreteSystem(Xsh_un, self.X_dims, self.Y, self.Y_dims)
def _qe_prep(self):
"""QE Preparation"""
if self.qe_shuffle:
# need to shuffle to ensure even stimulus distribution for QE
shuffle = np.random.permutation(self.N)
# fancy indexing makes a copy
self.X = self.X[:,shuffle]
self.Y = self.Y[:,shuffle]
# ensure trials is a multiple of 4 for easy QE
rem = np.mod(self.X.shape[1],4)
if rem != 0:
self.X = self.X[:,:-rem]
self.Y = self.Y[:,:-rem]
self.N = self.X.shape[1]
def _subsampled_instance(self, sub):
"""Return subsampled instance for QE
sub : tuple (df, i)
red - reduction factor (2, 4)
i - interval
"""
Nred = self.N / sub[0]
sl = slice(sub[1]*Nred,(sub[1]+1)*Nred)
return DiscreteSystem(self.X[:,sl], self.X_dims,
self.Y[:,sl], self.Y_dims)
class SortedDiscreteSystem(DiscreteSystem):
"""Class to hold probabilities and calculate entropies of a discrete
stochastic system when the inputs are available already sorted
by stimulus.
:Attributes:
PXY : (X_dim, Y_dim)
Conditional probability vectors on decimalised space P(X|Y).
``PXY[:,i]`` is X probability distribution conditional on ``Y==i``.
PX : (X_dim,)
Unconditional decimalised X probability.
PY : (Y_dim,)
Unconditional decimalised Y probability.
PXi : (X_m, X_n)
Unconditional probability distributions for individual X components.
``PXi[i,j] = P(X_i==j)``
PXiY : (X_m, X_n, Y_dim)
Conditional probability distributions for individual X compoenents.
``PXiY[i,j,k] = P(X_i==j | Y==k)``
PiX : (X_dim,)
``Pind(X) = <Pind(X|y)>_y``
"""
def __init__(self, X, X_dims, Y_m, Ny):
"""Check and assign inputs.
:Parameters:
X : (X_n, t) int array
Array of measured input values. X_n variables in X space, t trials
X_dims : tuple (n,m)
Dimension of X (input) space; length n, base m words
Y_m : int
Finite alphabet size of single variable Y
Ny : (Y_m,) int array
Array of number of trials available for each stimulus. This should
be ordered the same as the order of X w.r.t. stimuli.
Y_t.sum() = X.shape[1]
"""
self.X_dims = X_dims
self.X_n = X_dims[0]
self.X_m = X_dims[1]
self.Y_m = Y_m
self.X_dim = self.X_m ** self.X_n
self.Y_dim = self.Y_m
self.X = np.atleast_2d(X)
self.Ny = Ny.astype(float)
self.N = self.X.shape[1]
self._check_inputs()
self.sampled = False
self.qe_shuffle = True
self.calc = []
def _check_inputs(self):
if (not np.issubdtype(self.X.dtype, np.int)):
raise ValueError, "Inputs must be of integer type"
if (self.X.max() >= self.X_m) or (self.X.min() < 0):
raise ValueError, "X values must be in [0, X_m)"
if (self.X.shape[0] != self.X_n):
raise ValueError, "X.shape[0] must equal X_n"
if (self.Ny.size != self.Y_m):
raise ValueError, "Ny must contain Y_m elements"
if (self.Ny.sum() != self.N):
raise ValueError, "Ny.sum() must equal number of X input trials"
def _sample(self, method='naive'):
"""Sample probabilities of system.
Parameters
----------
method : {'naive', 'beta:x', 'kt'}, optional
Sampling method to use. 'naive' is the standard histrogram method.
'beta:x' is for an add-constant beta estimator, with beta value
following the colon eg 'beta:0.01' [1]_. 'kt' is for the
Krichevsky-Trofimov estimator [2]_, which is equivalent to
'beta:0.5'.
References
----------
.. [1] T. Schurmann and P. Grassberger, "Entropy estimation of
symbol sequences," Chaos,vol. 6, no. 3, pp. 414--427, 1996.
.. [2] R. Krichevsky and V. Trofimov, "The performance of universal
encoding," IEEE Trans. Information Theory, vol. 27, no. 2,
pp. 199--207, Mar. 1981.
"""
calc = self.calc
# decimalise
if any([c in calc for c in ['HXY','HX']]):
if self.X_n > 1:
d_X = decimalise(self.X, self.X_n, self.X_m)
else:
# make 1D
d_X = self.X.reshape(self.X.size)
# unconditional probabilities
if ('HX' in calc) or ('ChiX' in calc):
self.PX = prob(d_X, self.X_dim, method=method)
if any([c in calc for c in ['HXY','HiX','HiXY','HY']]):
self.PY = _probcount(self.Ny,self.N,method)
if 'SiHXi' in calc:
for i in xrange(self.X_n):
self.PXi[:,i] = prob(self.X[i,:], self.X_m, method=method)
# conditional probabilities
if any([c in calc for c in ['HiXY','HXY','HshXY']]):
sstart=0
for i in xrange(self.Y_dim):
send = sstart+self.Ny[i]
indx = slice(sstart,send)
sstart = send
if 'HXY' in calc:
# output conditional ensemble
oce = d_X[indx]
if oce.size == 0:
print 'Warning: Null output conditional ensemble for ' + \
'output : ' + str(i)
else:
self.PXY[:,i] = prob(oce, self.X_dim, method=method)
if any([c in calc for c in ['HiX','HiXY','HshXY']]):
for j in xrange(self.X_n):
# output conditional ensemble for a single variable
oce = self.X[j,indx]
if oce.size == 0:
print 'Warning: Null independent output conditional ensemble for ' + \
'output : ' + str(i) + ', variable : ' + str(j)
else:
self.PXiY[:,j,i] = prob(oce, self.X_m, method=method)
if 'HshXY' in calc:
# shuffle
#np.random.shuffle(oce)
shfoce = np.random.permutation(oce)
self.Xsh[j,indx] = shfoce
# Pind(X) = <Pind(X|Y)>_y
if ('HiX' in calc) or ('ChiX' in calc):
# construct joint distribution
words = dec2base(np.atleast_2d(np.r_[0:self.X_dim]).T,self.X_m,self.X_n)
PiXY = np.zeros((self.X_dim, self.Y_dim))
PiXY = self.PXiY[words,np.r_[0:self.X_n]].prod(axis=1)
# average over Y
self.PiX = np.dot(PiXY,self.PY)
self.sampled = True
def _sh_instance(self):
"""Return shuffled instance"""
return SortedDiscreteSystem(self.Xsh, self.X_dims, self.Y_m, self.Ny)
def _shX_instance(self):
"""Return shuffled instance"""
# unconditional shuffle
Xsh_un = np.zeros_like(self.X)
for i in range(self.X_n):
shindx = np.random.permutation(self.X.shape[1])
Xsh_un[i,:] = self.X[i,shindx]
return SortedDiscreteSystem(Xsh_un, self.X_dims, self.Y_m, self.Ny)
def _qe_prep(self):
"""QE Preparation"""
if self.qe_shuffle:
# need to shuffle to ensure even stimulus distribution for QE
sstart = 0
oldX = self.X
self.X = np.zeros_like(oldX)
for i in xrange(self.Y_m):
send = sstart + int(self.Ny[i])
shuffle = np.random.permutation(int(self.Ny[i]))
self.X[:,sstart:send] = oldX[:,sstart+shuffle]
sstart = send
def _subsampled_instance(self, sub):
"""Return subsampled instance for QE
sub : tuple (df, i)
red - reduction factor (2, 4)
i - interval
"""
# reduce each Y data set
slices = []
Ny_new = np.floor(self.Ny/sub[0]).astype(int)
sstart = 0
for i in xrange(self.Y_m):
send = sstart + int(self.Ny[i])
sl = slice(sstart + (sub[1] * Ny_new[i]),
sstart + ((sub[1]+1) * Ny_new[i]))
slices.append(sl)
sstart = send
X_new = self.X[:,np.r_[tuple(slices)]]
return SortedDiscreteSystem(X_new, self.X_dims,
self.Y_m, Ny_new)
|