/usr/share/pyshared/pyNN/neuroml2.py is in python-pynn 0.7.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 | """
PyNN-->NeuroML v2
:copyright: Copyright 2006-2012 by the PyNN team, see AUTHORS.
:license: CeCILL, see LICENSE for details.
This file is based on neuroml.py written by Andrew Davison & has been updated for
NeuroML v2.0 by Padraig Gleeson
"""
'''
For an overview of PyNN & NeuroML interoperability see http://www.neuroml.org/pynn.php
This script is intended to map models sprcified in PyNN on to the equivalent representation in
NeuroML v2.0. A valid NML2 file will be produced containing the cells, populations,
etc. and a LEMS file will be created which imports this file and can run a simple
simulation using the LEMS interpreter, see http://www.neuroml.org/neuroml2.php#libNeuroML
Ideally... this will produce equivalent simulation results when a script is run using:
python myPyNN.py nest
python myPyNN.py neuron
python myPyNN.py neuroml2 (followed by nml2 LEMS_PyNN2NeuroMLv2.xml)
WORK IN PROGRESS! REQUIRES PyNN at tags/0.7.2/
To test this out get the 0.7 PyNN branch from SVN using:
svn co https://neuralensemble.org/svn/PyNN/branch/0.7 pyNN
cd pyNN
sudo python setup.py install
Contact p.gleeson@ucl.ac.uk for more details
Features below depend on using the latest LEMS/libNeuroML code which includes the
nml2 utility and the LEMS definitions of PyNN core models (IF_curr_alpha,
SpikeSourcePoisson, etc.) in PyNN.xml. Get it from
http://sourceforge.net/apps/trac/neuroml/browser/NeuroML2/
Currently supported features:
Generation of valid NeuroML 2 file containing cells & populations & connections
Export of simulation duration & dt & recorded populations in a LEMS file for
running a basic simulation with simple num integration method (so use small dt!)
Cell models impl: IF_curr_alpha, IF_curr_exp, IF_cond_exp, IF_cond_alpha, HH_cond_exp, EIF_cond_exp_isfa_ista, EIF_cond_alpha_isfa_ista
Others: SpikeSourcePoisson, SpikeSourceArray
Export of explicitly created Populations, export of populations created with create()
Export of (instance based) list of conenctions in explicit <connection from=... to=...>
Support for weight & delay on connections
Missing/required:
Other models todo: DCSource, StepCurrentSource, ACSource, NoisyCurrentSource
Need to test >1 cells in a population
Setting of initial values in Populations
Support for populations some of whose cells have has their parameters modified
Synapse dynamics (e.g. STDP) not yet implemented
Desirable TODO:
Generation of SED-ML file with simulation description
Automated tests of equivalence between Neuron & Nest & generated LEMS
'''
from pyNN import common, connectors, standardmodels, core
from pyNN.standardmodels import cells
import numpy
import sys
sys.path.append('/usr/lib/python%s/site-packages/oldxml' % sys.version[:3]) # needed for Ubuntu
import xml.dom.minidom
import logging
logger = logging.getLogger("neuroml2")
neuroml_ns = 'http://www.neuroml.org/schema/neuroml2'
namespace_xsi = "http://www.w3.org/2001/XMLSchema-instance"
neuroml_ver="v2alpha"
neuroml_xsd="http://neuroml.svn.sourceforge.net/viewvc/neuroml/NeuroML2/Schemas/NeuroML2/NeuroML_"+neuroml_ver+".xsd"
simulation_prefix = 'simulation_'
network_prefix = 'network_'
display_prefix = 'display_'
line_prefix = 'line_'
colours = ['#000000','#FF0000','#0000FF','#009b00','#ffc800','#8c6400','#ff00ff','#ffff00','#808080']
strict = False
# ==============================================================================
# Utility classes
# ==============================================================================
class ID(int, common.IDMixin):
"""
Instead of storing ids as integers, we store them as ID objects,
which allows a syntax like:
p[3,4].tau_m = 20.0
where p is a Population object. The question is, how big a memory/performance
hit is it to replace integers with ID objects?
"""
def __init__(self, n):
common.IDMixin.__init__(self)
def get_native_parameters(self):
"""Return a dictionary of parameters for the NeuroML2 cell model."""
return self._cell
def set_native_parameters(self, parameters):
"""Set parameters of the NeuroML2 cell model from a dictionary.
for name, val in parameters.items():
setattr(self._cell, name, val)"""
self._cell = parameters.copy()
# ==============================================================================
# Module-specific functions and classes (not part of the common API)
# ==============================================================================
def build_node(name_, text=None, **attributes):
# we call the node name 'name_' because 'name' is a common attribute name (confused? I am)
node = nml2doc.createElement(name_)
for attr, value in attributes.items():
node.setAttribute(attr, str(value))
if text:
node.appendChild(nml2doc.createTextNode(text))
return node
def build_parameter_node(name, value):
param_node = build_node('parameter', value=value)
if name:
param_node.setAttribute('name', name)
group_node = build_node('group', 'all')
param_node.appendChild(group_node)
return param_node
class IF_base(object):
"""Base class for integrate-and-fire neuron models."""
def build_nodes(self):
cell_type = self.__class__.__name__
logger.debug("Building nodes for "+cell_type)
#cell_node = build_node('component', type=self.__class__.__name__, id=self.label)
cell_node = build_node(cell_type, id=self.label)
for param in self.parameters.keys():
paral_val = str(self.parameters[param])
# TODO why is this broken for a in EIF_cond_exp_isfa_ista????
if "EIF_cond_" in cell_type and param is "a":
paral_val = float(paral_val)
paral_val = paral_val/1000.
logger.debug("Setting param %s to %s"%(param, paral_val))
cell_node.setAttribute(param, str(paral_val))
##TODO remove!!
cell_node.setAttribute('v_init', '-65')
doc_node = build_node('notes', "Component for PyNN %s cell type" % cell_type)
cell_node.appendChild(doc_node)
synapse_nodes = []
if 'cond_exp' in cell_type:
synapse_nodes_e = build_node("expCondSynapse", id="syn_e_"+self.label)
synapse_nodes_e.setAttribute("tau_syn",str(self.parameters["tau_syn_E"]))
synapse_nodes_e.setAttribute("e_rev",str(self.parameters["e_rev_E"]))
synapse_nodes.append(synapse_nodes_e)
synapse_nodes_i = build_node("expCondSynapse", id="syn_i_"+self.label)
synapse_nodes_i.setAttribute("tau_syn",str(self.parameters["tau_syn_I"]))
synapse_nodes_i.setAttribute("e_rev",str(self.parameters["e_rev_I"]))
synapse_nodes.append(synapse_nodes_i)
elif 'cond_alpha' in cell_type:
synapse_nodes_e = build_node("alphaCondSynapse", id="syn_e_"+self.label)
synapse_nodes_e.setAttribute("tau_syn",str(self.parameters["tau_syn_E"]))
synapse_nodes_e.setAttribute("e_rev",str(self.parameters["e_rev_E"]))
synapse_nodes.append(synapse_nodes_e)
synapse_nodes_i = build_node("alphaCondSynapse", id="syn_i_"+self.label)
synapse_nodes_i.setAttribute("tau_syn",str(self.parameters["tau_syn_I"]))
synapse_nodes_i.setAttribute("e_rev",str(self.parameters["e_rev_I"]))
synapse_nodes.append(synapse_nodes_i)
elif 'curr_exp' in cell_type:
synapse_nodes_e = build_node("expCurrSynapse", id="syn_e_"+self.label)
synapse_nodes_e.setAttribute("tau_syn",str(self.parameters["tau_syn_E"]))
synapse_nodes.append(synapse_nodes_e)
synapse_nodes_i = build_node("expCurrSynapse", id="syn_i_"+self.label)
synapse_nodes_i.setAttribute("tau_syn",str(self.parameters["tau_syn_I"]))
synapse_nodes.append(synapse_nodes_i)
elif 'curr_alpha' in cell_type:
synapse_nodes_e = build_node("alphaCurrSynapse", id="syn_e_"+self.label)
synapse_nodes_e.setAttribute("tau_syn",str(self.parameters["tau_syn_E"]))
synapse_nodes.append(synapse_nodes_e)
synapse_nodes_i = build_node("alphaCurrSynapse", id="syn_i_"+self.label)
synapse_nodes_i.setAttribute("tau_syn",str(self.parameters["tau_syn_I"]))
synapse_nodes.append(synapse_nodes_i)
return cell_node, synapse_nodes
class NotImplementedModel(object):
def __init__(self):
if strict:
raise Exception('Cell type %s is not available in NeuroML' % self.__class__.__name__)
def build_nodes(self):
cell_node = build_node(':not_implemented_cell', id=self.label)
doc_node = build_node('notes', "PyNN %s cell type not implemented" % self.__class__.__name__)
cell_node.appendChild(doc_node)
return cell_node, []
# ==============================================================================
# Standard cells
# ==============================================================================
class IF_curr_exp(cells.IF_curr_exp, IF_base):
"""Leaky integrate and fire model with fixed threshold and
decaying-exponential post-synaptic current. (Separate synaptic currents for
excitatory and inhibitory synapses"""
n = 0
translations = standardmodels.build_translations(*[(name, name)
for name in cells.IF_curr_exp.default_parameters])
def __init__(self, parameters):
cells.IF_curr_exp.__init__(self, parameters)
self.label = '%s%d' % (self.__class__.__name__, self.__class__.n)
self.synapse_type = "doub_exp_syn"
self.__class__.n += 1
logger.debug("IF_curr_exp created")
class IF_curr_alpha(cells.IF_curr_alpha, IF_base):
"""Leaky integrate and fire model with fixed threshold and alpha-function-
shaped post-synaptic current."""
n = 0
translations = standardmodels.build_translations(*[(name, name)
for name in cells.IF_curr_alpha.default_parameters])
def __init__(self, parameters):
cells.IF_curr_alpha.__init__(self, parameters)
self.label = '%s%d' % (self.__class__.__name__, self.__class__.n)
self.synapse_type = "doub_exp_syn"
self.__class__.n += 1
logger.debug("IF_curr_alpha created")
class IF_cond_exp(cells.IF_cond_exp, IF_base):
"""Leaky integrate and fire model with fixed threshold and
decaying-exponential post-synaptic conductance."""
n = 0
translations = standardmodels.build_translations(*[(name, name)
for name in cells.IF_cond_exp.default_parameters])
def __init__(self, parameters):
cells.IF_cond_exp.__init__(self, parameters)
self.label = '%s%d' % (self.__class__.__name__, self.__class__.n)
self.synapse_type = "doub_exp_syn"
self.__class__.n += 1
logger.debug("IF_cond_exp created")
class IF_cond_alpha(cells.IF_cond_alpha, IF_base):
"""Leaky integrate and fire model with fixed threshold and alpha-function-
shaped post-synaptic conductance."""
n = 0
translations = standardmodels.build_translations(*[(name, name)
for name in cells.IF_cond_alpha.default_parameters])
def __init__(self, parameters):
cells.IF_cond_alpha.__init__(self, parameters)
self.label = '%s%d' % (self.__class__.__name__, self.__class__.n)
self.synapse_type = "alpha_syn"
self.__class__.n += 1
logger.debug("IF_cond_alpha created")
class EIF_cond_exp_isfa_ista(cells.EIF_cond_exp_isfa_ista, IF_base):
"""Exponential integrate and fire neuron with spike triggered and sub-threshold adaptation currents (isfa, ista reps.) according to:
Brette R and Gerstner W (2005) Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity. J Neurophysiol 94:3637-3642."""
n = 0
translations = standardmodels.build_translations(*[(name, name)
for name in cells.EIF_cond_exp_isfa_ista.default_parameters])
def __init__(self, parameters):
cells.EIF_cond_exp_isfa_ista.__init__(self, parameters)
self.label = '%s%d' % (self.__class__.__name__, self.__class__.n)
self.synapse_type = "exp_syn"
self.__class__.n += 1
logger.debug("EIF_cond_exp_isfa_ista created")
class EIF_cond_alpha_isfa_ista(cells.EIF_cond_alpha_isfa_ista, IF_base):
"""Exponential integrate and fire neuron with spike triggered and sub-threshold adaptation currents (isfa, ista reps.) according to:
Brette R and Gerstner W (2005) Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity. J Neurophysiol 94:3637-3642."""
n = 0
translations = standardmodels.build_translations(*[(name, name)
for name in cells.EIF_cond_alpha_isfa_ista.default_parameters])
def __init__(self, parameters):
cells.EIF_cond_alpha_isfa_ista.__init__(self, parameters)
self.label = '%s%d' % (self.__class__.__name__, self.__class__.n)
self.synapse_type = "alpha_syn"
self.__class__.n += 1
logger.debug("EIF_cond_alpha_isfa_ista created")
class HH_cond_exp(cells.HH_cond_exp, IF_base):
""" Single-compartment Hodgkin-Huxley model."""
n = 0
translations = standardmodels.build_translations(*[(name, name)
for name in cells.HH_cond_exp.default_parameters])
def __init__(self, parameters):
cells.HH_cond_exp.__init__(self, parameters)
self.label = '%s%d' % (self.__class__.__name__, self.__class__.n)
self.synapse_type = "exp_syn"
self.__class__.n += 1
logger.debug("HH_cond_exp created")
class GenericModel(object):
units_to_use = {}
def build_nodes(self):
logger.debug("Building nodes for "+self.__class__.__name__)
model_node = build_node(self.__class__.__name__, id=self.label)
for param in self.parameters.keys():
units = ''
if param in self.units_to_use.keys():
units = self.units_to_use[param]
model_node.setAttribute(param, str(self.parameters[param])+units)
doc_node = build_node('notes', "Component for PyNN %s model type" % self.__class__.__name__)
model_node.appendChild(doc_node)
return model_node, []
class SpikeSourcePoisson(cells.SpikeSourcePoisson, GenericModel):
"""Spike source, generating spikes according to a Poisson process."""
n = 0
translations = standardmodels.build_translations(*[(name, name)
for name in cells.SpikeSourcePoisson.default_parameters])
def __init__(self, parameters):
cells.SpikeSourcePoisson.__init__(self, parameters)
self.label = '%s%d' % (self.__class__.__name__, self.__class__.n)
self.__class__.n += 1
self.units_to_use = {'start':'ms','duration':'ms','rate':'per_s'}
logger.debug("SpikeSourcePoisson created: "+self.label)
class SpikeSourceArray(cells.SpikeSourceArray, GenericModel):
"""Spike source generating spikes at the times given in the spike_times array."""
n = 0
translations = standardmodels.build_translations(*[(name, name)
for name in cells.SpikeSourceArray.default_parameters])
def __init__(self, parameters):
cells.SpikeSourceArray.__init__(self, parameters)
self.label = '%s%d' % (self.__class__.__name__, self.__class__.n)
self.__class__.n += 1
logger.debug("SpikeSourceArray created: "+self.label)
def build_nodes(self):
logger.debug("Building nodes for "+self.__class__.__name__)
model_node = build_node('spikeArray', id=self.label)
#doc_node = build_node('notes', "Component for PyNN %s model type" % self.__class__.__name__)
#model_node.appendChild(doc_node)
for spike in self.parameters['spike_times']:
spike_node = build_node('spike', time="%fms"%spike)
model_node.appendChild(spike_node)
return model_node, []
# ==============================================================================
# Functions for simulation set-up and control
# ==============================================================================
def setup(timestep=0.1, min_delay=0.1, max_delay=0.1, debug=False,**extra_params):
logger.debug("setup() called, extra_params = "+str(extra_params))
"""
Should be called at the very beginning of a script.
extra_params contains any keyword arguments that are required by a given
simulator but not by others.
"""
global nml2doc, nml2file, lemsdoc, lemsfile, lemsNode, nml_id, population_holder, projection_holder, input_holder, cell_holder, channel_holder, neuromlNode, strict, dt
population_holder = []
projection_holder = []
input_holder = []
cell_holder = []
if not extra_params.has_key('file'):
nml2file = "PyNN2NeuroMLv2.nml"
else:
nml2file = extra_params['file']
nml_id = nml2file.split('.')[0]
if isinstance(nml2file, basestring):
nml2file = open(nml2file, 'w')
if 'strict' in extra_params:
strict = extra_params['strict']
dt = timestep
nml2doc = xml.dom.minidom.Document()
neuromlNode = nml2doc.createElementNS(neuroml_ns,'neuroml')
neuromlNode.setAttribute("xmlns",neuroml_ns)
neuromlNode.setAttribute('xmlns:xsi',namespace_xsi)
neuromlNode.setAttribute('xsi:schemaLocation',neuroml_ns+" "+neuroml_xsd)
neuromlNode.setAttribute('id',nml_id)
nml2doc.appendChild(neuromlNode)
lemsdoc = xml.dom.minidom.Document()
lemsNode = lemsdoc.createElement('Lems')
lemsdoc.appendChild(lemsNode)
drNode = build_node('DefaultRun',component=simulation_prefix+nml_id)
lemsNode.appendChild(drNode)
coreNml2Files = ["NeuroMLCoreDimensions.xml","PyNN.xml","Networks.xml","Simulation.xml"]
for f in coreNml2Files:
incNode = build_node('Include', file="NeuroML2CoreTypes/"+f)
lemsNode.appendChild(incNode)
incNode = build_node('Include', file=nml2file.name)
lemsNode.appendChild(incNode)
global simNode, displayNode
simNode = build_node('Simulation', id=simulation_prefix+nml_id, step=str(dt)+"ms", target=network_prefix+nml_id)
lemsNode.appendChild(simNode)
displayNode = build_node('Display',id="display_0",title="Recording of PyNN model run in LEMS", timeScale="1ms")
simNode.appendChild(displayNode)
lemsfile = "LEMS_"+nml_id+".xml"
if isinstance(lemsfile, basestring):
lemsfile = open(lemsfile, 'w')
return 0
def end(compatible_output=True):
"""Do any necessary cleaning up before exiting."""
global nml2doc, nml2file, neuromlNode, nml_id
for cellNode in cell_holder:
neuromlNode.appendChild(cellNode)
network_node = build_node('network', id=network_prefix+nml_id)
neuromlNode.appendChild(network_node)
for holder in population_holder, projection_holder, input_holder:
for node in holder:
network_node.appendChild(node)
# Write the files
logger.debug("Writing NeuroML 2 structure to: "+nml2file.name)
nml2file.write(nml2doc.toprettyxml())
nml2file.close()
logger.debug("Writing LEMS file to: "+lemsfile.name)
lemsfile.write(lemsdoc.toprettyxml())
lemsfile.close()
print("\nThe file: "+lemsfile.name+" has been generated. This can be executed with libNeuroML utility nml2 (which wraps the LEMS Interpreter), i.e.")
print("\n nml2 "+lemsfile.name)
print("\nFor more details see: http://www.neuroml.org/neuroml2.php#libNeuroML\n")
def run(simtime):
"""Run the simulation for simtime ms."""
global simNode
simNode.setAttribute('length', str(simtime)+"ms")
def get_min_delay():
return 0.0
common.get_min_delay = get_min_delay
def num_processes():
return 1
common.num_processes = num_processes
def rank():
return 0
common.rank = rank
# ==============================================================================
# High-level API for creating, connecting and recording from populations of
# neurons.
# ==============================================================================
class Population(common.Population):
"""
An array of neurons all of the same type. `Population' is used as a generic
term intended to include layers, columns, nuclei, etc., of cells.
"""
n = 0
def __init__(self, size, cellclass, cellparams=None, structure=None,
label=None):
__doc__ = common.Population.__doc__
common.Population.__init__(self, size, cellclass, cellparams, structure, label)
###simulator.initializer.register(self)
def _create_cells(self, cellclass, cellparams, n):
"""
Create a population of neurons all of the same type.
`cellclass` -- a PyNN standard cell
`cellparams` -- a dictionary of cell parameters.
`n` -- the number of cells to create
"""
global population_holder, cell_holder, channel_holder
assert n > 0, 'n must be a positive integer'
self.celltype = cellclass(cellparams)
Population.n += 1
self.celltype.label = 'cell_%s' % (self.label)
population_node = build_node('population', id=self.label, component=self.celltype.label, size=self.size)
#celltype_node = build_node('cell_type', self.celltype.label)
instances_node = build_node('instances', size=self.size)
for i in range(self.size):
x, y, z = self.positions[:, i]
instance_node = build_node('instance', id=i)
instance_node.appendChild( build_node('location', x=x, y=y, z=z) )
instances_node.appendChild(instance_node)
#population_node.appendChild(node)
population_holder.append(population_node)
cell_node, synapse_nodes = self.celltype.build_nodes()
cell_holder.append(cell_node)
for syn_node in synapse_nodes:
cell_holder.append(syn_node)
# Add all channels first, then all synapses
'''
for channel_node in channel_list:
channel_holder_node.insertBefore(channel_node , channel_holder_node.firstChild)
for synapse_node in synapse_list:
channel_holder_node.appendChild(synapse_node)'''
self.first_id = 0
self.last_id = self.size-1
self.all_cells = numpy.array([ID(id) for id in range(self.first_id, self.last_id+1)], dtype=ID)
self._mask_local = numpy.ones_like(self.all_cells).astype(bool)
self.first_id = self.all_cells[0]
self.last_id = self.all_cells[-1]
for id in self.all_cells:
id.parent = self
id._cell = self.celltype.parameters.copy()
#self.local_cells = self.all_cells
def _set_initial_value_array(self, variable, value):
logger.debug("Population %s having %s initialised to: %s"%(self.label, variable, value))
# TODO: use this in generated XML for component...
if variable is 'v':
self.celltype.parameters['v_init'] = value
def _record(self, variable, record_from=None, rng=None, to_file=True):
"""
Private method called by record() and record_v().
"""
global simNode, displayNode, color
#displayNode = build_node('Display',id=display_prefix+self.label,title="Recording of "+variable+" in "+self.label, timeScale="1ms")
#simNode.appendChild(displayNode)
scale = "1"
#if variable == 'v': scale = "1mV"
colour = colours[displayNode.childNodes.length%len(colours)]
for i in range(self.size):
lineNode = build_node('Line',
id=line_prefix+self.label,
scale=scale,
color=colour,
quantity="%s[%i]/%s"%(self.label,i,variable),
save="%s_%i_%s_nml2.dat"%(self.label,i,variable))
displayNode.appendChild(lineNode)
def meanSpikeCount(self):
return -1
def printSpikes(self, file, gather=True, compatible_output=True):
pass
def print_v(self, file, gather=True, compatible_output=True):
pass
'''
class AllToAllConnector(connectors.AllToAllConnector):
def connect(self, projection):
connectivity_node = build_node('connectivity_pattern')
connectivity_node.appendChild( build_node('all_to_all',
allow_self_connections=int(self.allow_self_connections)) )
return connectivity_node
class OneToOneConnector(connectors.OneToOneConnector):
def connect(self, projection):
connectivity_node = build_node('connectivity_pattern')
connectivity_node.appendChild( build_node('one_to_one') )
return connectivity_node
class FixedProbabilityConnector(connectors.FixedProbabilityConnector):
def connect(self, projection):
connectivity_node = build_node('connectivity_pattern')
connectivity_node.appendChild( build_node('fixed_probability',
probability=self.p_connect,
allow_self_conections=int(self.allow_self_connections)) )
return connectivity_node
'''
FixedProbabilityConnector = connectors.FixedProbabilityConnector
AllToAllConnector = connectors.AllToAllConnector
OneToOneConnector = connectors.OneToOneConnector
CSAConnector = connectors.CSAConnector
class FixedNumberPreConnector(connectors.FixedNumberPreConnector):
def connect(self, projection):
if hasattr(self, "n"):
connectivity_node = build_node('connectivity_pattern')
connectivity_node.appendChild( build_node('per_cell_connection',
num_per_source=self.n,
direction="PreToPost",
allow_self_connections = int(self.allow_self_connections)) )
return connectivity_node
else:
raise Exception('Connection with variable connection number not implemented.')
class FixedNumberPostConnector(connectors.FixedNumberPostConnector):
def connect(self, projection):
if hasattr(self, "n"):
connectivity_node = build_node('connectivity_pattern')
connectivity_node.appendChild( build_node('per_cell_connection',
num_per_source=self.n,
direction="PostToPre",
allow_self_connections = int(self.allow_self_connections)) )
return connectivity_node
else:
raise Exception('Connection with variable connection number not implemented.')
class FromListConnector(connectors.FromListConnector):
def connect(self, projection):
connections_node = build_node('connections')
for i in xrange(len(self.conn_list)):
src, tgt, weight, delay = self.conn_list[i][:]
src = self.pre[tuple(src)]
tgt = self.post[tuple(tgt)]
connection_node = build_node('connection', id=i)
connection_node.appendChild( build_node('pre', cell_id=src) )
connection_node.appendChild( build_node('post', cell_id=tgt) )
connection_node.appendChild( build_node('properties', internal_delay=delay, weight=weight) )
connections_node.appendChild(connection_node)
return connections_node
class FromFileConnector(connectors.FromFileConnector):
def connect(self, projection):
# now open the file...
f = open(self.filename,'r',10000)
lines = f.readlines()
f.close()
# We read the file and gather all the data in a list of tuples (one per line)
input_tuples = []
for line in lines:
single_line = line.rstrip()
src, tgt, w, d = single_line.split("\t", 4)
src = "[%s" % src.split("[",1)[1]
tgt = "[%s" % tgt.split("[",1)[1]
input_tuples.append((eval(src), eval(tgt), float(w), float(d)))
f.close()
self.conn_list = input_tuples
FromListConnector.connect(projection)
class Projection(common.Projection):
"""
A container for all the connections of a given type (same synapse type and
plasticity mechanisms) between two populations, together with methods to set
parameters of those connections, including of plasticity mechanisms.
"""
n = 0
def __init__(self, presynaptic_population, postsynaptic_population,
method,
source=None, target=None, synapse_dynamics=None,
label=None, rng=None):
"""
presynaptic_population and postsynaptic_population - Population objects.
source - string specifying which attribute of the presynaptic cell signals action potentials
target - string specifying which synapse on the postsynaptic cell to connect to
If source and/or target are not given, default values are used.
method - a Connector object, encapsulating the algorithm to use for
connecting the neurons.
synapse_dynamics - a `SynapseDynamics` object specifying which
synaptic plasticity mechanisms to use.
rng - specify an RNG object to be used by the Connector.
"""
global projection_holder
common.Projection.__init__(self, presynaptic_population, postsynaptic_population,
method, source, target, synapse_dynamics, label, rng)
self.label = self.label or 'Projection%d' % Projection.n
connection_method = method
if target:
self.synapse_type = target
else:
self.synapse_type = "ExcitatorySynapse"
synapseComponent = "syn_"
if self.synapse_type is "ExcitatorySynapse" or self.synapse_type is "excitatory":
self.targetPort = "spike_in_E"
synapseComponent = synapseComponent +"e_"
elif self.synapse_type is "InhibitorySynapse" or self.synapse_type is "inhibitory":
self.targetPort = "spike_in_I"
synapseComponent = synapseComponent +"i_"
else:
self.targetPort = "spike_in"
synapseComponent = synapseComponent +"cell_"+postsynaptic_population.label
self.connection_manager = ConnectionManager(self.synapse_type,
synapse_model=None,
parent=self)
self.connections = self.connection_manager
## Create connections
method.connect(self)
logger.debug("init in Projection, %s, pre: %s, post %s"%(self.label, presynaptic_population.label, postsynaptic_population.label))
#projection_node = build_node('projection', id=self.label)
for connection in self.connection_manager.connections:
connection_node = build_node('synapticConnectionWD',
to='%s[%i]'%(postsynaptic_population.label,connection[1]),
synapse=synapseComponent)
connection_node.setAttribute("from",'%s[%i]'%(presynaptic_population.label,connection[0]))
connection_node.setAttribute("weight",str(connection[3][0]))
connection_node.setAttribute("delay",str(connection[4][0])+"ms")
projection_holder.append(connection_node)
'''
projection_node.appendChild( build_node('source', self.pre.label) )
projection_node.appendChild( build_node('target', self.post.label) )
synapse_node = build_node('synapse_props')
synapse_node.appendChild( build_node('synapse_type', self.synapse_type) )
synapse_node.appendChild( build_node('default_values', internal_delay=5, weight=1, threshold=-20) )
projection_node.appendChild(synapse_node)
projection_node.appendChild( connection_method.connect(self) )
'''
projection_holder.append(connection_node)
Projection.n += 1
def saveConnections(self, filename, gather=True, compatible_output=True):
pass
def __len__(self):
return 0 # needs implementing properly
class ConnectionManager(object):
"""
Manage synaptic connections, providing methods for creating, listing,
accessing individual connections.
Based on ConnectionManager in moose/simulator.py
"""
def __init__(self, synapse_type, synapse_model=None, parent=None):
"""
Create a new ConnectionManager.
`parent` -- the parent `Projection`
"""
assert parent is not None
self.connections = []
self.parent = parent
self.synapse_type = synapse_type
self.synapse_model = synapse_model
def connect(self, source, targets, weights, delays):
"""
Connect a neuron to one or more other neurons with a static connection.
`source` -- the ID of the pre-synaptic cell.
`targets` -- a list/1D array of post-synaptic cell IDs, or a single ID.
`weight` -- a list/1D array of connection weights, or a single weight.
Must have the same length as `targets`.
`delays` -- a list/1D array of connection delays, or a single delay.
Must have the same length as `targets`.
"""
if not isinstance(source, int) or source < 0:
errmsg = "Invalid source ID: %s" % (source)
raise errors.ConnectionError(errmsg)
if not core.is_listlike(targets):
targets = [targets]
##############weights = weights*1000.0 # scale units
if isinstance(weights, float):
weights = [weights]
if isinstance(delays, float):
delays = [delays]
assert len(targets) > 0
# need to scale weights for appropriate units
for target, weight, delay in zip(targets, weights, delays):
if target.local:
if not isinstance(target, common.IDMixin):
raise errors.ConnectionError("Invalid target ID: %s" % target)
#TODO record weights
'''
if self.synapse_type == "excitatory":
synapse_object = target._cell.esyn
elif self.synapse_type == "inhibitory":
synapse_object = target._cell.isyn
else:
synapse_object = getattr(target._cell, self.synapse_type)
###############source._cell.source.connect('event', synapse_object, 'synapse')
synapse_object.n_incoming_connections += 1
index = synapse_object.n_incoming_connections - 1
synapse_object.setWeight(index, weight)
synapse_object.setDelay(index, delay)'''
index=0
self.connections.append((source, target, index, weights, delays))
def set(self, name, value):
"""
Set connection attributes for all connections in this manager.
`name` -- attribute name
`value` -- the attribute numeric value, or a list/1D array of such
values of the same length as the number of local connections,
or a 2D array with the same dimensions as the connectivity
matrix (as returned by `get(format='array')`).
"""
#TODO: allow this!!
#for conn in self.connections:
#???
# ==============================================================================
# Low-level API for creating, connecting and recording from individual neurons
# ==============================================================================
create = common.build_create(Population)
connect = common.build_connect(Projection, FixedProbabilityConnector)
set = common.set
initialize = common.initialize
####record = common.build_record('spikes', simulator)
####record_v = common.build_record('v', simulator)
####record_gsyn = common.build_record('gsyn', simulator)
def record(source, filename):
"""Record spikes to a file. source can be an individual cell or a list of
cells."""
logger.debug("Being asked to record spikes of %s to %s"%(source, filename))
def record_v(source, filename):
"""Record membrane potential to a file. source can be an individual cell or
a list of cells."""
logger.debug("Being asked to record v of %s to %s"%(source, filename))
global simNode, displayNode, color
scale = "1"
colour = colours[displayNode.childNodes.length%len(colours)]
for i in range(source.size):
lineNode = build_node('Line',
id=line_prefix+source.label,
scale=scale,
color=colour,
quantity="%s[%i]/%s"%(source.label,i,'v'),
save="%s_%i_%s_nml2.dat"%(source.label,i,'v'))
displayNode.appendChild(lineNode)
def record_gsyn(source, filename):
"""Record gsyn."""
print "Being asked to record gsyn of %s to %s"%(source, filename)
# ==============================================================================
## to reimplement in simulator.py...
min_delay = 0.0
max_delay = 1e12
def get_min_delay():
"""Return the minimum allowed synaptic delay."""
return min_delay
def get_max_delay():
"""Return the maximum allowed synaptic delay."""
return max_delay
common.get_min_delay = get_min_delay
common.get_max_delay = get_max_delay
|