This file is indexed.

/usr/share/pyshared/quantities/constants/_codata.py is in python-quantities 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# THIS FILE IS AUTOMATICALLY GENERATED
# ANY CHANGES MADE HERE WILL BE LOST

physical_constants = {}

physical_constants['{220} lattice spacing of silicon'] = {'value': 192.0155762e-12, 'precision': 0.0000050e-12, 'units': 'm'}
physical_constants['alpha particle-electron mass ratio'] = {'value': 7294.2995365, 'precision': 0.0000031, 'units': ''}
physical_constants['alpha particle mass'] = {'value': 6.64465620e-27, 'precision': 0.00000033e-27, 'units': 'kg'}
physical_constants['alpha particle mass energy equivalent'] = {'value': 5.97191917e-10, 'precision': 0.00000030e-10, 'units': 'J'}
physical_constants['alpha particle mass energy equivalent in MeV'] = {'value': 3727.379109, 'precision': 0.000093, 'units': 'MeV'}
physical_constants['alpha particle mass in u'] = {'value': 4.001506179127, 'precision': 0.000000000062, 'units': 'u'}
physical_constants['alpha particle molar mass'] = {'value': 4.001506179127e-3, 'precision': 0.000000000062e-3, 'units': 'kg*mol**-1'}
physical_constants['alpha particle-proton mass ratio'] = {'value': 3.97259968951, 'precision': 0.00000000041, 'units': ''}
physical_constants['Angstrom star'] = {'value': 1.00001498e-10, 'precision': 0.00000090e-10, 'units': 'm'}
physical_constants['atomic mass constant'] = {'value': 1.660538782e-27, 'precision': 0.000000083e-27, 'units': 'kg'}
physical_constants['atomic mass constant energy equivalent'] = {'value': 1.492417830e-10, 'precision': 0.000000074e-10, 'units': 'J'}
physical_constants['atomic mass constant energy equivalent in MeV'] = {'value': 931.494028, 'precision': 0.000023, 'units': 'MeV'}
physical_constants['atomic mass unit-electron volt relationship'] = {'value': 931.494028e6, 'precision': 0.000023e6, 'units': 'eV'}
physical_constants['atomic mass unit-hartree relationship'] = {'value': 3.4231777149e7, 'precision': 0.0000000049e7, 'units': 'E_h'}
physical_constants['atomic mass unit-hertz relationship'] = {'value': 2.2523427369e23, 'precision': 0.0000000032e23, 'units': 'Hz'}
physical_constants['atomic mass unit-inverse meter relationship'] = {'value': 7.513006671e14, 'precision': 0.000000011e14, 'units': 'm**-1'}
physical_constants['atomic mass unit-joule relationship'] = {'value': 1.492417830e-10, 'precision': 0.000000074e-10, 'units': 'J'}
physical_constants['atomic mass unit-kelvin relationship'] = {'value': 1.0809527e13, 'precision': 0.0000019e13, 'units': 'K'}
physical_constants['atomic mass unit-kilogram relationship'] = {'value': 1.660538782e-27, 'precision': 0.000000083e-27, 'units': 'kg'}
physical_constants['atomic unit of 1st hyperpolarizability'] = {'value': 3.206361533e-53, 'precision': 0.000000081e-53, 'units': 'C**3*m**3*J**-2'}
physical_constants['atomic unit of 2nd hyperpolarizability'] = {'value': 6.23538095e-65, 'precision': 0.00000031e-65, 'units': 'C**4*m**4*J**-3'}
physical_constants['atomic unit of action'] = {'value': 1.054571628e-34, 'precision': 0.000000053e-34, 'units': 'J*s'}
physical_constants['atomic unit of charge'] = {'value': 1.602176487e-19, 'precision': 0.000000040e-19, 'units': 'C'}
physical_constants['atomic unit of charge density'] = {'value': 1.081202300e12, 'precision': 0.000000027e12, 'units': 'C*m**-3'}
physical_constants['atomic unit of current'] = {'value': 6.62361763e-3, 'precision': 0.00000017e-3, 'units': 'A'}
physical_constants['atomic unit of electric dipole moment'] = {'value': 8.47835281e-30, 'precision': 0.00000021e-30, 'units': 'C*m'}
physical_constants['atomic unit of electric field'] = {'value': 5.14220632e11, 'precision': 0.00000013e11, 'units': 'V*m**-1'}
physical_constants['atomic unit of electric field gradient'] = {'value': 9.71736166e21, 'precision': 0.00000024e21, 'units': 'V*m**-2'}
physical_constants['atomic unit of electric polarizability'] = {'value': 1.6487772536e-41, 'precision': 0.0000000034e-41, 'units': 'C**2*m**2*J**-1'}
physical_constants['atomic unit of electric potential'] = {'value': 27.21138386, 'precision': 0.00000068, 'units': 'V'}
physical_constants['atomic unit of electric quadrupole moment'] = {'value': 4.48655107e-40, 'precision': 0.00000011e-40, 'units': 'C*m**2'}
physical_constants['atomic unit of energy'] = {'value': 4.35974394e-18, 'precision': 0.00000022e-18, 'units': 'J'}
physical_constants['atomic unit of force'] = {'value': 8.23872206e-8, 'precision': 0.00000041e-8, 'units': 'N'}
physical_constants['atomic unit of length'] = {'value': 0.52917720859e-10, 'precision': 0.00000000036e-10, 'units': 'm'}
physical_constants['atomic unit of magnetic dipole moment'] = {'value': 1.854801830e-23, 'precision': 0.000000046e-23, 'units': 'J*T**-1'}
physical_constants['atomic unit of magnetic flux density'] = {'value': 2.350517382e5, 'precision': 0.000000059e5, 'units': 'T'}
physical_constants['atomic unit of magnetizability'] = {'value': 7.891036433e-29, 'precision': 0.000000027e-29, 'units': 'J*T**-2'}
physical_constants['atomic unit of mass'] = {'value': 9.10938215e-31, 'precision': 0.00000045e-31, 'units': 'kg'}
physical_constants['atomic unit of momentum'] = {'value': 1.992851565e-24, 'precision': 0.000000099e-24, 'units': 'kg*m*s**-1'}
physical_constants['atomic unit of permittivity'] = {'value': 1.112650056e-10, 'precision': 0, 'units': 'F*m**-1'}
physical_constants['atomic unit of time'] = {'value': 2.418884326505e-17, 'precision': 0.000000000016e-17, 'units': 's'}
physical_constants['atomic unit of velocity'] = {'value': 2.1876912541e6, 'precision': 0.0000000015e6, 'units': 'm*s**-1'}
physical_constants['Avogadro constant'] = {'value': 6.02214179e23, 'precision': 0.00000030e23, 'units': 'mol**-1'}
physical_constants['Bohr magneton'] = {'value': 927.400915e-26, 'precision': 0.000023e-26, 'units': 'J*T**-1'}
physical_constants['Bohr magneton in eV/T'] = {'value': 5.7883817555e-5, 'precision': 0.0000000079e-5, 'units': 'eV*T**-1'}
physical_constants['Bohr magneton in Hz/T'] = {'value': 13.99624604e9, 'precision': 0.00000035e9, 'units': 'Hz*T**-1'}
physical_constants['Bohr magneton in inverse meters per tesla'] = {'value': 46.6864515, 'precision': 0.0000012, 'units': 'm**-1*T**-1'}
physical_constants['Bohr magneton in K/T'] = {'value': 0.6717131, 'precision': 0.0000012, 'units': 'K*T**-1'}
physical_constants['Bohr radius'] = {'value': 0.52917720859e-10, 'precision': 0.00000000036e-10, 'units': 'm'}
physical_constants['Boltzmann constant'] = {'value': 1.3806504e-23, 'precision': 0.0000024e-23, 'units': 'J*K**-1'}
physical_constants['Boltzmann constant in eV/K'] = {'value': 8.617343e-5, 'precision': 0.000015e-5, 'units': 'eV*K**-1'}
physical_constants['Boltzmann constant in Hz/K'] = {'value': 2.0836644e10, 'precision': 0.0000036e10, 'units': 'Hz*K**-1'}
physical_constants['Boltzmann constant in inverse meters per kelvin'] = {'value': 69.50356, 'precision': 0.00012, 'units': 'm**-1*K**-1'}
physical_constants['characteristic impedance of vacuum'] = {'value': 376.730313461, 'precision': 0, 'units': 'ohm'}
physical_constants['classical electron radius'] = {'value': 2.8179402894e-15, 'precision': 0.0000000058e-15, 'units': 'm'}
physical_constants['Compton wavelength'] = {'value': 2.4263102175e-12, 'precision': 0.0000000033e-12, 'units': 'm'}
physical_constants['Compton wavelength over 2 pi'] = {'value': 386.15926459e-15, 'precision': 0.00000053e-15, 'units': 'm'}
physical_constants['conductance quantum'] = {'value': 7.7480917004e-5, 'precision': 0.0000000053e-5, 'units': 'S'}
physical_constants['conventional value of Josephson constant'] = {'value': 483597.9e9, 'precision': 0, 'units': 'Hz*V**-1'}
physical_constants['conventional value of von Klitzing constant'] = {'value': 25812.807, 'precision': 0, 'units': 'ohm'}
physical_constants['Cu x unit'] = {'value': 1.00207699e-13, 'precision': 0.00000028e-13, 'units': 'm'}
physical_constants['deuteron-electron magnetic moment ratio'] = {'value': -4.664345537e-4, 'precision': 0.000000039e-4, 'units': ''}
physical_constants['deuteron-electron mass ratio'] = {'value': 3670.4829654, 'precision': 0.0000016, 'units': ''}
physical_constants['deuteron g factor'] = {'value': 0.8574382308, 'precision': 0.0000000072, 'units': ''}
physical_constants['deuteron magnetic moment'] = {'value': 0.433073465e-26, 'precision': 0.000000011e-26, 'units': 'J*T**-1'}
physical_constants['deuteron magnetic moment to Bohr magneton ratio'] = {'value': 0.4669754556e-3, 'precision': 0.0000000039e-3, 'units': ''}
physical_constants['deuteron magnetic moment to nuclear magneton ratio'] = {'value': 0.8574382308, 'precision': 0.0000000072, 'units': ''}
physical_constants['deuteron mass'] = {'value': 3.34358320e-27, 'precision': 0.00000017e-27, 'units': 'kg'}
physical_constants['deuteron mass energy equivalent'] = {'value': 3.00506272e-10, 'precision': 0.00000015e-10, 'units': 'J'}
physical_constants['deuteron mass energy equivalent in MeV'] = {'value': 1875.612793, 'precision': 0.000047, 'units': 'MeV'}
physical_constants['deuteron mass in u'] = {'value': 2.013553212724, 'precision': 0.000000000078, 'units': 'u'}
physical_constants['deuteron molar mass'] = {'value': 2.013553212724e-3, 'precision': 0.000000000078e-3, 'units': 'kg*mol**-1'}
physical_constants['deuteron-neutron magnetic moment ratio'] = {'value': -0.44820652, 'precision': 0.00000011, 'units': ''}
physical_constants['deuteron-proton magnetic moment ratio'] = {'value': 0.3070122070, 'precision': 0.0000000024, 'units': ''}
physical_constants['deuteron-proton mass ratio'] = {'value': 1.99900750108, 'precision': 0.00000000022, 'units': ''}
physical_constants['deuteron rms charge radius'] = {'value': 2.1402e-15, 'precision': 0.0028e-15, 'units': 'm'}
physical_constants['electric constant'] = {'value': 8.854187817e-12, 'precision': 0, 'units': 'F*m**-1'}
physical_constants['electron charge to mass quotient'] = {'value': -1.758820150e11, 'precision': 0.000000044e11, 'units': 'C*kg**-1'}
physical_constants['electron-deuteron magnetic moment ratio'] = {'value': -2143.923498, 'precision': 0.000018, 'units': ''}
physical_constants['electron-deuteron mass ratio'] = {'value': 2.7244371093e-4, 'precision': 0.0000000012e-4, 'units': ''}
physical_constants['electron g factor'] = {'value': -2.0023193043622, 'precision': 0.0000000000015, 'units': ''}
physical_constants['electron gyromagnetic ratio'] = {'value': 1.760859770e11, 'precision': 0.000000044e11, 'units': 's**-1*T**-1'}
physical_constants['electron gyromagnetic ratio over 2 pi'] = {'value': 28024.95364, 'precision': 0.00070, 'units': 'MHz*T**-1'}
physical_constants['electron magnetic moment'] = {'value': -928.476377e-26, 'precision': 0.000023e-26, 'units': 'J*T**-1'}
physical_constants['electron magnetic moment anomaly'] = {'value': 1.15965218111e-3, 'precision': 0.00000000074e-3, 'units': ''}
physical_constants['electron magnetic moment to Bohr magneton ratio'] = {'value': -1.00115965218111, 'precision': 0.00000000000074, 'units': ''}
physical_constants['electron magnetic moment to nuclear magneton ratio'] = {'value': -1838.28197092, 'precision': 0.00000080, 'units': ''}
physical_constants['electron mass'] = {'value': 9.10938215e-31, 'precision': 0.00000045e-31, 'units': 'kg'}
physical_constants['electron mass energy equivalent'] = {'value': 8.18710438e-14, 'precision': 0.00000041e-14, 'units': 'J'}
physical_constants['electron mass energy equivalent in MeV'] = {'value': 0.510998910, 'precision': 0.000000013, 'units': 'MeV'}
physical_constants['electron mass in u'] = {'value': 5.4857990943e-4, 'precision': 0.0000000023e-4, 'units': 'u'}
physical_constants['electron molar mass'] = {'value': 5.4857990943e-7, 'precision': 0.0000000023e-7, 'units': 'kg*mol**-1'}
physical_constants['electron-muon magnetic moment ratio'] = {'value': 206.7669877, 'precision': 0.0000052, 'units': ''}
physical_constants['electron-muon mass ratio'] = {'value': 4.83633171e-3, 'precision': 0.00000012e-3, 'units': ''}
physical_constants['electron-neutron magnetic moment ratio'] = {'value': 960.92050, 'precision': 0.00023, 'units': ''}
physical_constants['electron-neutron mass ratio'] = {'value': 5.4386734459e-4, 'precision': 0.0000000033e-4, 'units': ''}
physical_constants['electron-proton magnetic moment ratio'] = {'value': -658.2106848, 'precision': 0.0000054, 'units': ''}
physical_constants['electron-proton mass ratio'] = {'value': 5.4461702177e-4, 'precision': 0.0000000024e-4, 'units': ''}
physical_constants['electron-tau mass ratio'] = {'value': 2.87564e-4, 'precision': 0.00047e-4, 'units': ''}
physical_constants['electron to alpha particle mass ratio'] = {'value': 1.37093355570e-4, 'precision': 0.00000000058e-4, 'units': ''}
physical_constants['electron to shielded helion magnetic moment ratio'] = {'value': 864.058257, 'precision': 0.000010, 'units': ''}
physical_constants['electron to shielded proton magnetic moment ratio'] = {'value': -658.2275971, 'precision': 0.0000072, 'units': ''}
physical_constants['electron volt'] = {'value': 1.602176487e-19, 'precision': 0.000000040e-19, 'units': 'J'}
physical_constants['electron volt-atomic mass unit relationship'] = {'value': 1.073544188e-9, 'precision': 0.000000027e-9, 'units': 'u'}
physical_constants['electron volt-hartree relationship'] = {'value': 3.674932540e-2, 'precision': 0.000000092e-2, 'units': 'E_h'}
physical_constants['electron volt-hertz relationship'] = {'value': 2.417989454e14, 'precision': 0.000000060e14, 'units': 'Hz'}
physical_constants['electron volt-inverse meter relationship'] = {'value': 8.06554465e5, 'precision': 0.00000020e5, 'units': 'm**-1'}
physical_constants['electron volt-joule relationship'] = {'value': 1.602176487e-19, 'precision': 0.000000040e-19, 'units': 'J'}
physical_constants['electron volt-kelvin relationship'] = {'value': 1.1604505e4, 'precision': 0.0000020e4, 'units': 'K'}
physical_constants['electron volt-kilogram relationship'] = {'value': 1.782661758e-36, 'precision': 0.000000044e-36, 'units': 'kg'}
physical_constants['elementary charge'] = {'value': 1.602176487e-19, 'precision': 0.000000040e-19, 'units': 'C'}
physical_constants['elementary charge over h'] = {'value': 2.417989454e14, 'precision': 0.000000060e14, 'units': 'A*J**-1'}
physical_constants['Faraday constant'] = {'value': 96485.3399, 'precision': 0.0024, 'units': 'C*mol**-1'}
physical_constants['Faraday constant for conventional electric current'] = {'value': 96485.3401, 'precision': 0.0048, 'units': 'C_90*mol**-1'}
physical_constants['Fermi coupling constant'] = {'value': 1.16637e-5, 'precision': 0.00001e-5, 'units': 'GeV**-2'}
physical_constants['fine-structure constant'] = {'value': 7.2973525376e-3, 'precision': 0.0000000050e-3, 'units': ''}
physical_constants['first radiation constant'] = {'value': 3.74177118e-16, 'precision': 0.00000019e-16, 'units': 'W*m**2'}
physical_constants['first radiation constant for spectral radiance'] = {'value': 1.191042759e-16, 'precision': 0.000000059e-16, 'units': 'W*m**2*sr**-1'}
physical_constants['hartree-atomic mass unit relationship'] = {'value': 2.9212622986e-8, 'precision': 0.0000000042e-8, 'units': 'u'}
physical_constants['hartree-electron volt relationship'] = {'value': 27.21138386, 'precision': 0.00000068, 'units': 'eV'}
physical_constants['Hartree energy'] = {'value': 4.35974394e-18, 'precision': 0.00000022e-18, 'units': 'J'}
physical_constants['Hartree energy in eV'] = {'value': 27.21138386, 'precision': 0.00000068, 'units': 'eV'}
physical_constants['hartree-hertz relationship'] = {'value': 6.579683920722e15, 'precision': 0.000000000044e15, 'units': 'Hz'}
physical_constants['hartree-inverse meter relationship'] = {'value': 2.194746313705e7, 'precision': 0.000000000015e7, 'units': 'm**-1'}
physical_constants['hartree-joule relationship'] = {'value': 4.35974394e-18, 'precision': 0.00000022e-18, 'units': 'J'}
physical_constants['hartree-kelvin relationship'] = {'value': 3.1577465e5, 'precision': 0.0000055e5, 'units': 'K'}
physical_constants['hartree-kilogram relationship'] = {'value': 4.85086934e-35, 'precision': 0.00000024e-35, 'units': 'kg'}
physical_constants['helion-electron mass ratio'] = {'value': 5495.8852765, 'precision': 0.0000052, 'units': ''}
physical_constants['helion mass'] = {'value': 5.00641192e-27, 'precision': 0.00000025e-27, 'units': 'kg'}
physical_constants['helion mass energy equivalent'] = {'value': 4.49953864e-10, 'precision': 0.00000022e-10, 'units': 'J'}
physical_constants['helion mass energy equivalent in MeV'] = {'value': 2808.391383, 'precision': 0.000070, 'units': 'MeV'}
physical_constants['helion mass in u'] = {'value': 3.0149322473, 'precision': 0.0000000026, 'units': 'u'}
physical_constants['helion molar mass'] = {'value': 3.0149322473e-3, 'precision': 0.0000000026e-3, 'units': 'kg*mol**-1'}
physical_constants['helion-proton mass ratio'] = {'value': 2.9931526713, 'precision': 0.0000000026, 'units': ''}
physical_constants['hertz-atomic mass unit relationship'] = {'value': 4.4398216294e-24, 'precision': 0.0000000064e-24, 'units': 'u'}
physical_constants['hertz-electron volt relationship'] = {'value': 4.13566733e-15, 'precision': 0.00000010e-15, 'units': 'eV'}
physical_constants['hertz-hartree relationship'] = {'value': 1.519829846006e-16, 'precision': 0.000000000010e-16, 'units': 'E_h'}
physical_constants['hertz-inverse meter relationship'] = {'value': 3.335640951e-9, 'precision': 0, 'units': 'm**-1'}
physical_constants['hertz-joule relationship'] = {'value': 6.62606896e-34, 'precision': 0.00000033e-34, 'units': 'J'}
physical_constants['hertz-kelvin relationship'] = {'value': 4.7992374e-11, 'precision': 0.0000084e-11, 'units': 'K'}
physical_constants['hertz-kilogram relationship'] = {'value': 7.37249600e-51, 'precision': 0.00000037e-51, 'units': 'kg'}
physical_constants['inverse fine-structure constant'] = {'value': 137.035999679, 'precision': 0.000000094, 'units': ''}
physical_constants['inverse meter-atomic mass unit relationship'] = {'value': 1.3310250394e-15, 'precision': 0.0000000019e-15, 'units': 'u'}
physical_constants['inverse meter-electron volt relationship'] = {'value': 1.239841875e-6, 'precision': 0.000000031e-6, 'units': 'eV'}
physical_constants['inverse meter-hartree relationship'] = {'value': 4.556335252760e-8, 'precision': 0.000000000030e-8, 'units': 'E_h'}
physical_constants['inverse meter-hertz relationship'] = {'value': 299792458, 'precision': 0, 'units': 'Hz'}
physical_constants['inverse meter-joule relationship'] = {'value': 1.986445501e-25, 'precision': 0.000000099e-25, 'units': 'J'}
physical_constants['inverse meter-kelvin relationship'] = {'value': 1.4387752e-2, 'precision': 0.0000025e-2, 'units': 'K'}
physical_constants['inverse meter-kilogram relationship'] = {'value': 2.21021870e-42, 'precision': 0.00000011e-42, 'units': 'kg'}
physical_constants['inverse of conductance quantum'] = {'value': 12906.4037787, 'precision': 0.0000088, 'units': 'ohm'}
physical_constants['Josephson constant'] = {'value': 483597.891e9, 'precision': 0.012e9, 'units': 'Hz*V**-1'}
physical_constants['joule-atomic mass unit relationship'] = {'value': 6.70053641e9, 'precision': 0.00000033e9, 'units': 'u'}
physical_constants['joule-electron volt relationship'] = {'value': 6.24150965e18, 'precision': 0.00000016e18, 'units': 'eV'}
physical_constants['joule-hartree relationship'] = {'value': 2.29371269e17, 'precision': 0.00000011e17, 'units': 'E_h'}
physical_constants['joule-hertz relationship'] = {'value': 1.509190450e33, 'precision': 0.000000075e33, 'units': 'Hz'}
physical_constants['joule-inverse meter relationship'] = {'value': 5.03411747e24, 'precision': 0.00000025e24, 'units': 'm**-1'}
physical_constants['joule-kelvin relationship'] = {'value': 7.242963e22, 'precision': 0.000013e22, 'units': 'K'}
physical_constants['joule-kilogram relationship'] = {'value': 1.112650056e-17, 'precision': 0, 'units': 'kg'}
physical_constants['kelvin-atomic mass unit relationship'] = {'value': 9.251098e-14, 'precision': 0.000016e-14, 'units': 'u'}
physical_constants['kelvin-electron volt relationship'] = {'value': 8.617343e-5, 'precision': 0.000015e-5, 'units': 'eV'}
physical_constants['kelvin-hartree relationship'] = {'value': 3.1668153e-6, 'precision': 0.0000055e-6, 'units': 'E_h'}
physical_constants['kelvin-hertz relationship'] = {'value': 2.0836644e10, 'precision': 0.0000036e10, 'units': 'Hz'}
physical_constants['kelvin-inverse meter relationship'] = {'value': 69.50356, 'precision': 0.00012, 'units': 'm**-1'}
physical_constants['kelvin-joule relationship'] = {'value': 1.3806504e-23, 'precision': 0.0000024e-23, 'units': 'J'}
physical_constants['kelvin-kilogram relationship'] = {'value': 1.5361807e-40, 'precision': 0.0000027e-40, 'units': 'kg'}
physical_constants['kilogram-atomic mass unit relationship'] = {'value': 6.02214179e26, 'precision': 0.00000030e26, 'units': 'u'}
physical_constants['kilogram-electron volt relationship'] = {'value': 5.60958912e35, 'precision': 0.00000014e35, 'units': 'eV'}
physical_constants['kilogram-hartree relationship'] = {'value': 2.06148616e34, 'precision': 0.00000010e34, 'units': 'E_h'}
physical_constants['kilogram-hertz relationship'] = {'value': 1.356392733e50, 'precision': 0.000000068e50, 'units': 'Hz'}
physical_constants['kilogram-inverse meter relationship'] = {'value': 4.52443915e41, 'precision': 0.00000023e41, 'units': 'm**-1'}
physical_constants['kilogram-joule relationship'] = {'value': 8.987551787e16, 'precision': 0, 'units': 'J'}
physical_constants['kilogram-kelvin relationship'] = {'value': 6.509651e39, 'precision': 0.000011e39, 'units': 'K'}
physical_constants['lattice parameter of silicon'] = {'value': 543.102064e-12, 'precision': 0.000014e-12, 'units': 'm'}
physical_constants['Loschmidt constant (273.15 K, 101.325 kPa)'] = {'value': 2.6867774e25, 'precision': 0.0000047e25, 'units': 'm**-3'}
physical_constants['magnetic constant'] = {'value': 12.566370614e-7, 'precision': 0, 'units': 'N*A**-2'}
physical_constants['magnetic flux quantum'] = {'value': 2.067833667e-15, 'precision': 0.000000052e-15, 'units': 'Wb'}
physical_constants['molar gas constant'] = {'value': 8.314472, 'precision': 0.000015, 'units': 'J*mol**-1*K**-1'}
physical_constants['molar mass constant'] = {'value': 1e-3, 'precision': 0, 'units': 'kg*mol**-1'}
physical_constants['molar mass of carbon-12'] = {'value': 12e-3, 'precision': 0, 'units': 'kg*mol**-1'}
physical_constants['molar Planck constant'] = {'value': 3.9903126821e-10, 'precision': 0.0000000057e-10, 'units': 'J*s*mol**-1'}
physical_constants['molar Planck constant times c'] = {'value': 0.11962656472, 'precision': 0.00000000017, 'units': 'J*m*mol**-1'}
physical_constants['molar volume of ideal gas (273.15 K, 100 kPa)'] = {'value': 22.710981e-3, 'precision': 0.000040e-3, 'units': 'm**3*mol**-1'}
physical_constants['molar volume of ideal gas (273.15 K, 101.325 kPa)'] = {'value': 22.413996e-3, 'precision': 0.000039e-3, 'units': 'm**3*mol**-1'}
physical_constants['molar volume of silicon'] = {'value': 12.0588349e-6, 'precision': 0.0000011e-6, 'units': 'm**3*mol**-1'}
physical_constants['Mo x unit'] = {'value': 1.00209955e-13, 'precision': 0.00000053e-13, 'units': 'm'}
physical_constants['muon Compton wavelength'] = {'value': 11.73444104e-15, 'precision': 0.00000030e-15, 'units': 'm'}
physical_constants['muon Compton wavelength over 2 pi'] = {'value': 1.867594295e-15, 'precision': 0.000000047e-15, 'units': 'm'}
physical_constants['muon-electron mass ratio'] = {'value': 206.7682823, 'precision': 0.0000052, 'units': ''}
physical_constants['muon g factor'] = {'value': -2.0023318414, 'precision': 0.0000000012, 'units': ''}
physical_constants['muon magnetic moment'] = {'value': -4.49044786e-26, 'precision': 0.00000016e-26, 'units': 'J*T**-1'}
physical_constants['muon magnetic moment anomaly'] = {'value': 1.16592069e-3, 'precision': 0.00000060e-3, 'units': ''}
physical_constants['muon magnetic moment to Bohr magneton ratio'] = {'value': -4.84197049e-3, 'precision': 0.00000012e-3, 'units': ''}
physical_constants['muon magnetic moment to nuclear magneton ratio'] = {'value': -8.89059705, 'precision': 0.00000023, 'units': ''}
physical_constants['muon mass'] = {'value': 1.88353130e-28, 'precision': 0.00000011e-28, 'units': 'kg'}
physical_constants['muon mass energy equivalent'] = {'value': 1.692833510e-11, 'precision': 0.000000095e-11, 'units': 'J'}
physical_constants['muon mass energy equivalent in MeV'] = {'value': 105.6583668, 'precision': 0.0000038, 'units': 'MeV'}
physical_constants['muon mass in u'] = {'value': 0.1134289256, 'precision': 0.0000000029, 'units': 'u'}
physical_constants['muon molar mass'] = {'value': 0.1134289256e-3, 'precision': 0.0000000029e-3, 'units': 'kg*mol**-1'}
physical_constants['muon-neutron mass ratio'] = {'value': 0.1124545167, 'precision': 0.0000000029, 'units': ''}
physical_constants['muon-proton magnetic moment ratio'] = {'value': -3.183345137, 'precision': 0.000000085, 'units': ''}
physical_constants['muon-proton mass ratio'] = {'value': 0.1126095261, 'precision': 0.0000000029, 'units': ''}
physical_constants['muon-tau mass ratio'] = {'value': 5.94592e-2, 'precision': 0.00097e-2, 'units': ''}
physical_constants['natural unit of action'] = {'value': 1.054571628e-34, 'precision': 0.000000053e-34, 'units': 'J*s'}
physical_constants['natural unit of action in eV s'] = {'value': 6.58211899e-16, 'precision': 0.00000016e-16, 'units': 'eV*s'}
physical_constants['natural unit of energy'] = {'value': 8.18710438e-14, 'precision': 0.00000041e-14, 'units': 'J'}
physical_constants['natural unit of energy in MeV'] = {'value': 0.510998910, 'precision': 0.000000013, 'units': 'MeV'}
physical_constants['natural unit of length'] = {'value': 386.15926459e-15, 'precision': 0.00000053e-15, 'units': 'm'}
physical_constants['natural unit of mass'] = {'value': 9.10938215e-31, 'precision': 0.00000045e-31, 'units': 'kg'}
physical_constants['natural unit of momentum'] = {'value': 2.73092406e-22, 'precision': 0.00000014e-22, 'units': 'kg*m*s**-1'}
physical_constants['natural unit of momentum in MeV/c'] = {'value': 0.510998910, 'precision': 0.000000013, 'units': 'MeV/c'}
physical_constants['natural unit of time'] = {'value': 1.2880886570e-21, 'precision': 0.0000000018e-21, 'units': 's'}
physical_constants['natural unit of velocity'] = {'value': 299792458, 'precision': 0, 'units': 'm*s**-1'}
physical_constants['neutron Compton wavelength'] = {'value': 1.3195908951e-15, 'precision': 0.0000000020e-15, 'units': 'm'}
physical_constants['neutron Compton wavelength over 2 pi'] = {'value': 0.21001941382e-15, 'precision': 0.00000000031e-15, 'units': 'm'}
physical_constants['neutron-electron magnetic moment ratio'] = {'value': 1.04066882e-3, 'precision': 0.00000025e-3, 'units': ''}
physical_constants['neutron-electron mass ratio'] = {'value': 1838.6836605, 'precision': 0.0000011, 'units': ''}
physical_constants['neutron g factor'] = {'value': -3.82608545, 'precision': 0.00000090, 'units': ''}
physical_constants['neutron gyromagnetic ratio'] = {'value': 1.83247185e8, 'precision': 0.00000043e8, 'units': 's**-1*T**-1'}
physical_constants['neutron gyromagnetic ratio over 2 pi'] = {'value': 29.1646954, 'precision': 0.0000069, 'units': 'MHz*T**-1'}
physical_constants['neutron magnetic moment'] = {'value': -0.96623641e-26, 'precision': 0.00000023e-26, 'units': 'J*T**-1'}
physical_constants['neutron magnetic moment to Bohr magneton ratio'] = {'value': -1.04187563e-3, 'precision': 0.00000025e-3, 'units': ''}
physical_constants['neutron magnetic moment to nuclear magneton ratio'] = {'value': -1.91304273, 'precision': 0.00000045, 'units': ''}
physical_constants['neutron mass'] = {'value': 1.674927211e-27, 'precision': 0.000000084e-27, 'units': 'kg'}
physical_constants['neutron mass energy equivalent'] = {'value': 1.505349505e-10, 'precision': 0.000000075e-10, 'units': 'J'}
physical_constants['neutron mass energy equivalent in MeV'] = {'value': 939.565346, 'precision': 0.000023, 'units': 'MeV'}
physical_constants['neutron mass in u'] = {'value': 1.00866491597, 'precision': 0.00000000043, 'units': 'u'}
physical_constants['neutron molar mass'] = {'value': 1.00866491597e-3, 'precision': 0.00000000043e-3, 'units': 'kg*mol**-1'}
physical_constants['neutron-muon mass ratio'] = {'value': 8.89248409, 'precision': 0.00000023, 'units': ''}
physical_constants['neutron-proton magnetic moment ratio'] = {'value': -0.68497934, 'precision': 0.00000016, 'units': ''}
physical_constants['neutron-proton mass ratio'] = {'value': 1.00137841918, 'precision': 0.00000000046, 'units': ''}
physical_constants['neutron-tau mass ratio'] = {'value': 0.528740, 'precision': 0.000086, 'units': ''}
physical_constants['neutron to shielded proton magnetic moment ratio'] = {'value': -0.68499694, 'precision': 0.00000016, 'units': ''}
physical_constants['Newtonian constant of gravitation'] = {'value': 6.67428e-11, 'precision': 0.00067e-11, 'units': 'm**3*kg**-1*s**-2'}
physical_constants['Newtonian constant of gravitation over h-bar c'] = {'value': 6.70881e-39, 'precision': 0.00067e-39, 'units': '(GeV/c**2)**-2'}
physical_constants['nuclear magneton'] = {'value': 5.05078324e-27, 'precision': 0.00000013e-27, 'units': 'J*T**-1'}
physical_constants['nuclear magneton in eV/T'] = {'value': 3.1524512326e-8, 'precision': 0.0000000045e-8, 'units': 'eV*T**-1'}
physical_constants['nuclear magneton in inverse meters per tesla'] = {'value': 2.542623616e-2, 'precision': 0.000000064e-2, 'units': 'm**-1*T**-1'}
physical_constants['nuclear magneton in K/T'] = {'value': 3.6582637e-4, 'precision': 0.0000064e-4, 'units': 'K*T**-1'}
physical_constants['nuclear magneton in MHz/T'] = {'value': 7.62259384, 'precision': 0.00000019, 'units': 'MHz*T**-1'}
physical_constants['Planck constant'] = {'value': 6.62606896e-34, 'precision': 0.00000033e-34, 'units': 'J*s'}
physical_constants['Planck constant in eV s'] = {'value': 4.13566733e-15, 'precision': 0.00000010e-15, 'units': 'eV*s'}
physical_constants['Planck constant over 2 pi'] = {'value': 1.054571628e-34, 'precision': 0.000000053e-34, 'units': 'J*s'}
physical_constants['Planck constant over 2 pi in eV s'] = {'value': 6.58211899e-16, 'precision': 0.00000016e-16, 'units': 'eV*s'}
physical_constants['Planck constant over 2 pi times c in MeV fm'] = {'value': 197.3269631, 'precision': 0.0000049, 'units': 'MeV*fm'}
physical_constants['Planck length'] = {'value': 1.616252e-35, 'precision': 0.000081e-35, 'units': 'm'}
physical_constants['Planck mass'] = {'value': 2.17644e-8, 'precision': 0.00011e-8, 'units': 'kg'}
physical_constants['Planck mass energy equivalent in GeV'] = {'value': 1.220892e19, 'precision': 0.000061e19, 'units': 'GeV'}
physical_constants['Planck temperature'] = {'value': 1.416785e32, 'precision': 0.000071e32, 'units': 'K'}
physical_constants['Planck time'] = {'value': 5.39124e-44, 'precision': 0.00027e-44, 'units': 's'}
physical_constants['proton charge to mass quotient'] = {'value': 9.57883392e7, 'precision': 0.00000024e7, 'units': 'C*kg**-1'}
physical_constants['proton Compton wavelength'] = {'value': 1.3214098446e-15, 'precision': 0.0000000019e-15, 'units': 'm'}
physical_constants['proton Compton wavelength over 2 pi'] = {'value': 0.21030890861e-15, 'precision': 0.00000000030e-15, 'units': 'm'}
physical_constants['proton-electron mass ratio'] = {'value': 1836.15267247, 'precision': 0.00000080, 'units': ''}
physical_constants['proton g factor'] = {'value': 5.585694713, 'precision': 0.000000046, 'units': ''}
physical_constants['proton gyromagnetic ratio'] = {'value': 2.675222099e8, 'precision': 0.000000070e8, 'units': 's**-1*T**-1'}
physical_constants['proton gyromagnetic ratio over 2 pi'] = {'value': 42.5774821, 'precision': 0.0000011, 'units': 'MHz*T**-1'}
physical_constants['proton magnetic moment'] = {'value': 1.410606662e-26, 'precision': 0.000000037e-26, 'units': 'J*T**-1'}
physical_constants['proton magnetic moment to Bohr magneton ratio'] = {'value': 1.521032209e-3, 'precision': 0.000000012e-3, 'units': ''}
physical_constants['proton magnetic moment to nuclear magneton ratio'] = {'value': 2.792847356, 'precision': 0.000000023, 'units': ''}
physical_constants['proton magnetic shielding correction'] = {'value': 25.694e-6, 'precision': 0.014e-6, 'units': ''}
physical_constants['proton mass'] = {'value': 1.672621637e-27, 'precision': 0.000000083e-27, 'units': 'kg'}
physical_constants['proton mass energy equivalent'] = {'value': 1.503277359e-10, 'precision': 0.000000075e-10, 'units': 'J'}
physical_constants['proton mass energy equivalent in MeV'] = {'value': 938.272013, 'precision': 0.000023, 'units': 'MeV'}
physical_constants['proton mass in u'] = {'value': 1.00727646677, 'precision': 0.00000000010, 'units': 'u'}
physical_constants['proton molar mass'] = {'value': 1.00727646677e-3, 'precision': 0.00000000010e-3, 'units': 'kg*mol**-1'}
physical_constants['proton-muon mass ratio'] = {'value': 8.88024339, 'precision': 0.00000023, 'units': ''}
physical_constants['proton-neutron magnetic moment ratio'] = {'value': -1.45989806, 'precision': 0.00000034, 'units': ''}
physical_constants['proton-neutron mass ratio'] = {'value': 0.99862347824, 'precision': 0.00000000046, 'units': ''}
physical_constants['proton rms charge radius'] = {'value': 0.8768e-15, 'precision': 0.0069e-15, 'units': 'm'}
physical_constants['proton-tau mass ratio'] = {'value': 0.528012, 'precision': 0.000086, 'units': ''}
physical_constants['quantum of circulation'] = {'value': 3.6369475199e-4, 'precision': 0.0000000050e-4, 'units': 'm**2*s**-1'}
physical_constants['quantum of circulation times 2'] = {'value': 7.273895040e-4, 'precision': 0.000000010e-4, 'units': 'm**2*s**-1'}
physical_constants['Rydberg constant'] = {'value': 10973731.568527, 'precision': 0.000073, 'units': 'm**-1'}
physical_constants['Rydberg constant times c in Hz'] = {'value': 3.289841960361e15, 'precision': 0.000000000022e15, 'units': 'Hz'}
physical_constants['Rydberg constant times hc in eV'] = {'value': 13.60569193, 'precision': 0.00000034, 'units': 'eV'}
physical_constants['Rydberg constant times hc in J'] = {'value': 2.17987197e-18, 'precision': 0.00000011e-18, 'units': 'J'}
physical_constants['Sackur-Tetrode constant (1 K, 100 kPa)'] = {'value': -1.1517047, 'precision': 0.0000044, 'units': ''}
physical_constants['Sackur-Tetrode constant (1 K, 101.325 kPa)'] = {'value': -1.1648677, 'precision': 0.0000044, 'units': ''}
physical_constants['second radiation constant'] = {'value': 1.4387752e-2, 'precision': 0.0000025e-2, 'units': 'm*K'}
physical_constants['shielded helion gyromagnetic ratio'] = {'value': 2.037894730e8, 'precision': 0.000000056e8, 'units': 's**-1*T**-1'}
physical_constants['shielded helion gyromagnetic ratio over 2 pi'] = {'value': 32.43410198, 'precision': 0.00000090, 'units': 'MHz*T**-1'}
physical_constants['shielded helion magnetic moment'] = {'value': -1.074552982e-26, 'precision': 0.000000030e-26, 'units': 'J*T**-1'}
physical_constants['shielded helion magnetic moment to Bohr magneton ratio'] = {'value': -1.158671471e-3, 'precision': 0.000000014e-3, 'units': ''}
physical_constants['shielded helion magnetic moment to nuclear magneton ratio'] = {'value': -2.127497718, 'precision': 0.000000025, 'units': ''}
physical_constants['shielded helion to proton magnetic moment ratio'] = {'value': -0.761766558, 'precision': 0.000000011, 'units': ''}
physical_constants['shielded helion to shielded proton magnetic moment ratio'] = {'value': -0.7617861313, 'precision': 0.0000000033, 'units': ''}
physical_constants['shielded proton gyromagnetic ratio'] = {'value': 2.675153362e8, 'precision': 0.000000073e8, 'units': 's**-1*T**-1'}
physical_constants['shielded proton gyromagnetic ratio over 2 pi'] = {'value': 42.5763881, 'precision': 0.0000012, 'units': 'MHz*T**-1'}
physical_constants['shielded proton magnetic moment'] = {'value': 1.410570419e-26, 'precision': 0.000000038e-26, 'units': 'J*T**-1'}
physical_constants['shielded proton magnetic moment to Bohr magneton ratio'] = {'value': 1.520993128e-3, 'precision': 0.000000017e-3, 'units': ''}
physical_constants['shielded proton magnetic moment to nuclear magneton ratio'] = {'value': 2.792775598, 'precision': 0.000000030, 'units': ''}
physical_constants['speed of light in vacuum'] = {'value': 299792458, 'precision': 0, 'units': 'm*s**-1'}
physical_constants['standard acceleration of gravity'] = {'value': 9.80665, 'precision': 0, 'units': 'm*s**-2'}
physical_constants['standard atmosphere'] = {'value': 101325, 'precision': 0, 'units': 'Pa'}
physical_constants['Stefan-Boltzmann constant'] = {'value': 5.670400e-8, 'precision': 0.000040e-8, 'units': 'W*m**-2*K**-4'}
physical_constants['tau Compton wavelength'] = {'value': 0.69772e-15, 'precision': 0.00011e-15, 'units': 'm'}
physical_constants['tau Compton wavelength over 2 pi'] = {'value': 0.111046e-15, 'precision': 0.000018e-15, 'units': 'm'}
physical_constants['tau-electron mass ratio'] = {'value': 3477.48, 'precision': 0.57, 'units': ''}
physical_constants['tau mass'] = {'value': 3.16777e-27, 'precision': 0.00052e-27, 'units': 'kg'}
physical_constants['tau mass energy equivalent'] = {'value': 2.84705e-10, 'precision': 0.00046e-10, 'units': 'J'}
physical_constants['tau mass energy equivalent in MeV'] = {'value': 1776.99, 'precision': 0.29, 'units': 'MeV'}
physical_constants['tau mass in u'] = {'value': 1.90768, 'precision': 0.00031, 'units': 'u'}
physical_constants['tau molar mass'] = {'value': 1.90768e-3, 'precision': 0.00031e-3, 'units': 'kg*mol**-1'}
physical_constants['tau-muon mass ratio'] = {'value': 16.8183, 'precision': 0.0027, 'units': ''}
physical_constants['tau-neutron mass ratio'] = {'value': 1.89129, 'precision': 0.00031, 'units': ''}
physical_constants['tau-proton mass ratio'] = {'value': 1.89390, 'precision': 0.00031, 'units': ''}
physical_constants['Thomson cross section'] = {'value': 0.6652458558e-28, 'precision': 0.0000000027e-28, 'units': 'm**2'}
physical_constants['triton-electron magnetic moment ratio'] = {'value': -1.620514423e-3, 'precision': 0.000000021e-3, 'units': ''}
physical_constants['triton-electron mass ratio'] = {'value': 5496.9215269, 'precision': 0.0000051, 'units': ''}
physical_constants['triton g factor'] = {'value': 5.957924896, 'precision': 0.000000076, 'units': ''}
physical_constants['triton magnetic moment'] = {'value': 1.504609361e-26, 'precision': 0.000000042e-26, 'units': 'J*T**-1'}
physical_constants['triton magnetic moment to Bohr magneton ratio'] = {'value': 1.622393657e-3, 'precision': 0.000000021e-3, 'units': ''}
physical_constants['triton magnetic moment to nuclear magneton ratio'] = {'value': 2.978962448, 'precision': 0.000000038, 'units': ''}
physical_constants['triton mass'] = {'value': 5.00735588e-27, 'precision': 0.00000025e-27, 'units': 'kg'}
physical_constants['triton mass energy equivalent'] = {'value': 4.50038703e-10, 'precision': 0.00000022e-10, 'units': 'J'}
physical_constants['triton mass energy equivalent in MeV'] = {'value': 2808.920906, 'precision': 0.000070, 'units': 'MeV'}
physical_constants['triton mass in u'] = {'value': 3.0155007134, 'precision': 0.0000000025, 'units': 'u'}
physical_constants['triton molar mass'] = {'value': 3.0155007134e-3, 'precision': 0.0000000025e-3, 'units': 'kg*mol**-1'}
physical_constants['triton-neutron magnetic moment ratio'] = {'value': -1.55718553, 'precision': 0.00000037, 'units': ''}
physical_constants['triton-proton magnetic moment ratio'] = {'value': 1.066639908, 'precision': 0.000000010, 'units': ''}
physical_constants['triton-proton mass ratio'] = {'value': 2.9937170309, 'precision': 0.0000000025, 'units': ''}
physical_constants['unified atomic mass unit'] = {'value': 1.660538782e-27, 'precision': 0.000000083e-27, 'units': 'kg'}
physical_constants['von Klitzing constant'] = {'value': 25812.807557, 'precision': 0.000018, 'units': 'ohm'}
physical_constants['weak mixing angle'] = {'value': 0.22255, 'precision': 0.00056, 'units': ''}
physical_constants['Wien frequency displacement law constant'] = {'value': 5.878933e10, 'precision': 0.000010e10, 'units': 'Hz*K**-1'}
physical_constants['Wien wavelength displacement law constant'] = {'value': 2.8977685e-3, 'precision': 0.0000051e-3, 'units': 'm*K'}