This file is indexed.

/usr/share/pyshared/rope/docs/overview.txt is in python-rope 0.9.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
===============
 Rope Overview
===============


The purpose of this file is to give an overview of some of rope's
features.  It is incomplete.  And some of the features shown here are
old and do not show what rope can do in extremes.  So if you really
want to feel the power of rope try its features and see its unit
tests.

This file is more suitable for the users.  Developers who plan to use
rope as a library might find library.txt_ more useful.

.. contents:: Table of Contents
.. _library.txt: library.html


``.ropeproject`` Folder
=======================

Rope uses a folder inside projects for holding project configuration
and data.  Its default name is ``.ropeproject``, but it can be
changed (you can even tell rope not to create this folder).

Currently it is used for things such as:

* There is a ``config.py`` file in this folder in which you can change
  project configurations.  Have look at the default ``config.py`` file
  (is created when it does not exist) for more information.
* It can be used for saving project history, so that the next time you
  open the project you can undo past changes.
* It can be used for saving object information to help rope object
  inference.
* It can be used for saving global names cache which is used in
  auto-import.

You can change what to save and what not to in the ``config.py`` file.


Refactorings
============

This section shows some random refactorings that you can perform using
rope.


Renaming Attributes
-------------------

Consider we have::

  class AClass(object):

      def __init__(self):
          self.an_attr = 1

      def a_method(self, arg):
          print self.an_attr, arg

  a_var = AClass()
  a_var.a_method(a_var.an_attr)

After renaming ``an_attr`` to ``new_attr`` and ``a_method`` to
``new_method`` we'll have::

  class AClass(object):

      def __init__(self):
          self.new_attr = 1

      def new_method(self, arg):
          print self.new_attr, arg

  a_var = AClass()
  a_var.new_method(a_var.new_attr)


Renaming Function Keyword Parameters
------------------------------------

On::

  def a_func(a_param):
      print a_param

  a_func(a_param=10)
  a_func(10)

performing rename refactoring on any occurrence of ``a_param`` will
result in::

  def a_func(new_param):
      print new_param

  a_func(new_param=10)
  a_func(10)


Renaming modules
----------------

Consider the project tree is something like::

  root/
    mod1.py
    mod2.py

``mod1.py`` contains::

  import mod2
  from mod2 import AClass

  mod2.a_func()
  a_var = AClass()

After performing rename refactoring one of the ``mod2`` occurrences in
`mod1` we'll get::

  import newmod
  from newmod import AClass

  newmod.a_func()
  a_var = AClass()

and the new project tree would be::

  root/
    mod1.py
    newmod.py


Renaming Occurrences In Strings And Comments
--------------------------------------------

You can tell rope to rename all occurrences of a name in comments and
strings.  This can be done by passing ``docs=True`` to
`Rename.get_changes()` method.  Rope renames names in comments and
strings only where the name is visible.  For example in::

  def f():
      a_var = 1
      # INFO: I'm printing `a_var`
      print 'a_var = %s' % a_var

  # f prints a_var

after we rename the `a_var` local variable in `f()` to `new_var` we
would get::

  def f():
      new_var = 1
      # INFO: I'm printing `new_var`
      print 'new_var = %s' % new_var

  # f prints a_var

This makes it safe to assume that this option does not perform wrong
renames most of the time.

This also changes occurrences inside evaluated strings::

  def func():
      print 'func() called'

  eval('func()')

After renaming `func` to `newfunc` we should have::

  def newfunc():
      print 'newfunc() called'

  eval('newfunc()')


Rename When Unsure
------------------

This option tells rope to rename when it doesn't know whether it is an
exact match or not.  For example after renaming `C.a_func` when the
'rename when unsure' option is set in::

  class C(object):

      def a_func(self):
          pass

  def a_func(arg):
      arg.a_func()

  C().a_func()
  
we would have::

  class C(object):

      def new_func(self):
          pass

  def a_func(arg):
      arg.new_func()

  C().new_func()

Note that the global `a_func` was not renamed because we are sure that
it is not a match.  But when using this option there might be some
unexpected renames.  So only use this option when the name is almost
unique and is not defined in other places.

Move Method Refactoring
-----------------------

It happens when you perform move refactoring on a method of a class.
In this refactoring, a method of a class is moved to the class of one
of its attributes.  The old method will call the new method.  If you
want to change all of the occurrences of the old method to use the new
method you can inline it afterwards.

For instance if you perform move method on `a_method` in::

  class A(object):
      pass

  class B(object):

      def __init__(self):
          self.attr = A()

      def a_method(self):
          pass

  b = B()
  b.a_method()

You will be asked for the destination field and the name of the new
method.  If you use ``attr`` and ``new_method`` in these fields
and press enter, you'll have::
      
  class A(object):

      def new_method(self):
          pass

  class B(object):

      def __init__(self):
          self.attr = A()

      def a_method(self):
          return self.attr.new_method()


  b = B()
  b.a_method()

Now if you want to change the occurrences of `B.a_method()` to use
`A.new_method()`, you can inline `B.a_method()`::

  class A(object):

      def new_method(self):
          pass

  class B(object):

      def __init__(self):
          self.attr = A()

  b = B()
  b.attr.new_method()


Moving Fields
-------------

Rope does not have a separate refactoring for moving fields.  Rope's
refactorings are very flexible, though.  You can use the rename
refactoring to move fields.  For instance::

  class A(object):
      pass

  class B(object):

      def __init__(self):
          self.a = A()
          self.attr = 1

  b = B()
  print(b.attr)

consider we want to move `attr` to `A`.  We can do that by renaming `attr`
to `a.attr`::
  
  class A(object):
      pass

  class B(object):

      def __init__(self):
          self.a = A()
          self.a.attr = 1

  b = B()
  print(b.a.attr)

You can move the definition of `attr` manually.


Extract Method
--------------

In these examples ``${region_start}`` and ``${region_end}`` show the
selected region for extraction::

  def a_func():
      a = 1
      b = 2 * a
      c = ${region_start}a * 2 + b * 3${region_end}

After performing extract method we'll have::

  def a_func():
      a = 1
      b = 2 * a
      c = new_func(a, b)

  def new_func(a, b):
      return a * 2 + b * 3

For multi-line extractions if we have::

  def a_func():
      a = 1
      ${region_start}b = 2 * a
      c = a * 2 + b * 3${region_end}
      print b, c

After performing extract method we'll have::

  def a_func():
      a = 1
      b, c = new_func(a)
      print b, c

  def new_func(a):
      b = 2 * a
      c = a * 2 + b * 3
      return b, c


Extracting Similar Expressions/Statements
-----------------------------------------

When performing extract method or local variable refactorings you can
tell rope to extract similar expressions/statements.  For instance
in::

  if True:
      x = 2 * 3
  else:
      x = 2 * 3 + 1

Extracting ``2 * 3`` will result in::

  six = 2 * 3
  if True:
      x = six
  else:
      x = six + 1


Extract Method In staticmethods/classmethods
--------------------------------------------

The extract method refactoring has been enhanced to handle static and
class methods better.  For instance in::

  class A(object):

      @staticmethod
      def f(a):
          b = a * 2

if you extract ``a * 2`` as a method you'll get::

  class A(object):

      @staticmethod
      def f(a):
          b = A.twice(a)

      @staticmethod
      def twice(a):
          return a * 2


Inline Method Refactoring
-------------------------

Inline method refactoring can add imports when necessary.  For
instance consider ``mod1.py`` is::

  import sys


  class C(object):
      pass

  def do_something():
      print sys.version
      return C()

and ``mod2.py`` is::

  import mod1


  c = mod1.do_something()

After inlining `do_something`, ``mod2.py`` would be::

  import mod1
  import sys


  print sys.version
  c = mod1.C()

Rope can inline methods, too::

  class C(object):

      var = 1

      def f(self, p):
	  result = self.var + pn
	  return result


  c = C()
  x = c.f(1)

After inlining `C.f()`, we'll have::

  class C(object):

      var = 1

  c = C()
  result = c.var + pn
  x = result

As another example we will inline a `classmethod`::

  class C(object):
      @classmethod
      def say_hello(cls, name):
          return 'Saying hello to %s from %s' % (name, cls.__name__)
  hello = C.say_hello('Rope')

Inlining `say_hello` will result in::

  class C(object):
      pass
  hello = 'Saying hello to %s from %s' % ('Rope', C.__name__)


Inlining Parameters
-------------------

`rope.refactor.inline.create_inline()` creates an `InlineParameter`
object when performed on a parameter.  It passes the default value of
the parameter wherever its function is called without passing it.  For
instance in::

  def f(p1=1, p2=1):
      pass

  f(3)
  f()
  f(3, 4)

after inlining p2 parameter will have::

  def f(p1=1, p2=1):
      pass

  f(3, 2)
  f(p2=2)
  f(3, 4)


Use Function Refactoring
------------------------

It tries to find the places in which a function can be used and
changes the code to call it instead.  For instance if mod1 is::

  def square(p):
      return p ** 2

  my_var = 3 ** 2


and mod2 is::

  another_var = 4 ** 2

if we perform "use function" on square function, mod1 will be::

  def square(p):
      return p ** 2

  my_var = square(3)

and mod2 will be::

  import mod1
  another_var = mod1.square(4)


Automatic Default Insertion In Change Signature
-----------------------------------------------

The `rope.refactor.change_signature.ArgumentReorderer` signature
changer takes a parameter called ``autodef``.  If not `None`, its
value is used whenever rope needs to insert a default for a parameter
(that happens when an argument without default is moved after another
that has a default value).  For instance in::

  def f(p1, p2=2):
      pass

if we reorder using::

  changers = [ArgumentReorderer([1, 0], autodef='1')]

will result in::

  def f(p2=2, p1=1):
      pass


Sorting Imports
---------------

Organize imports sorts imports, too.  It does that according to
:PEP:`8`::

  [__future__ imports]

  [standard imports]

  [third-party imports]

  [project imports]


  [the rest of module]


Handling Long Imports
---------------------

``Handle long imports`` command trys to make long imports look better by
transforming ``import pkg1.pkg2.pkg3.pkg4.mod1`` to ``from
pkg1.pkg2.pkg3.pkg4 import mod1``.  Long imports can be identified
either by having lots of dots or being very long.  The default
configuration considers imported modules with more than 2 dots or with
more than 27 characters to be long.


Stoppable Refactorings
----------------------

Some refactorings might take a long time to finish (based on the size
of your project).  The `get_changes()` method of these refactorings
take a parameter called `task_handle`.  If you want to monitor or stop
these refactoring you can pass a `rope.refactor.
taskhandle.TaskHandle` to this method.  See `rope.refactor.taskhandle`
module for more information.


Basic Implicit Interfaces
-------------------------

Implicit interfaces are the interfaces that you don't explicitly
define; But you expect a group of classes to have some common
attributes.  These interfaces are very common in dynamic languages;
Since we only have implementation inheritance and not interface
inheritance.  For instance::

  class A(object):

      def count(self):
          pass

  class B(object):

      def count(self):
          pass

  def count_for(arg):
      return arg.count()

  count_for(A())
  count_for(B())

Here we know that there is an implicit interface defined by the
function `count_for` that provides `count()`.  Here when we rename
`A.count()` we expect `B.count()` to be renamed, too.  Currently rope
supports a basic form of implicit interfaces.  When you try to rename
an attribute of a parameter, rope renames that attribute for all
objects that have been passed to that function in different call
sites.  That is renaming the occurrence of `count` in `count_for`
function to `newcount` will result in::

  class A(object):

      def newcount(self):
          pass

  class B(object):

      def newcount(self):
          pass

  def count_for(arg):
      return arg.newcount()

  count_for(A())
  count_for(B())

This also works for change method signature.  Note that this feature
relies on rope's object analysis mechanisms to find out the parameters
that are passed to a function.


Restructurings
--------------

`rope.refactor.restructure` can be used for performing restructurings.
A restructuring is a program transformation; not as well defined as
other refactorings like rename.  In this section, we'll see some
examples.  After this example you might like to have a look at:

* `rope.refactor.restructure` for more examples and features not
  described here like adding imports to changed modules.
* `rope.refactor.wildcards` for an overview of the arguments the
  default wildcard supports.

Finally, restructurings can be improved in many ways (for instance
adding new wildcards).  You might like to discuss your ideas in the
mailing list.


Example 1
'''''''''

In its basic form we have a pattern and a goal.  Consider we were not
aware of the ``**`` operator and wrote our own ::

  def pow(x, y):
      result = 1
      for i in range(y):
          result *= x
      return result

  print pow(2, 3)

Now that we know ``**`` exists we want to use it wherever `pow` is
used (there might be hundreds of them!).  We can use a pattern like::

  pattern: pow(${param1}, ${param2})

Goal can be something like::

  goal: ${param1} ** ${param2}

Note that ``${...}`` can be used to match expressions.  By default
every expression at that point will match.

You can use the matched names in goal and they will be replaced with
the string that was matched in each occurrence.  So the outcome of our
restructuring will be::

  def pow(x, y):
      result = 1
      for i in range(y):
          result *= x
      return result

  print 2 ** 3

It seems to be working but what if `pow` is imported in some module or
we have some other function defined in some other module that uses the
same name and we don't want to change it.  Wildcard arguments come to
rescue.  Wildcard arguments is a mapping; Its keys are wildcard names
that appear in the pattern (the names inside ``${...}``).

The values are the parameters that are passed to wildcard matchers.
The arguments a wildcard takes is based on its type.

For checking the type of a wildcard, we can pass ``type=value`` as an
argument; ``value`` should be resolved to a python variable (or
reference).  For instance for specifying `pow` in this example we can
use `mod.pow`.  As you see, this string should start from module name.
For referencing python builtin types and functions you can use
`__builtin__` module (for instance `__builtin__.int`).

For solving the mentioned problem, we change our `pattern`.  But
`goal` remains the same::

  pattern: ${pow_func}(${param1}, ${param2})
  goal: ${param1} ** ${param2}

Consider the name of the module containing our `pow` function is
`mod`.  ``args`` can be::

  pow_func: name=mod.pow

If we need to pass more arguments to a wildcard matcher we can use
``,`` to separate them.  Such as ``name: type=mod.MyClass,exact``.

This restructuring handles aliases; like in::

  mypow = pow
  result = mypow(2, 3)

Transforms into::

  mypow = pow
  result = 2 ** 3

If we want to ignore aliases we can pass ``exact`` as another wildcard
argument::

  pattern: ${pow}(${param1}, ${param2})
  goal: ${param1} ** ${param2}
  args: pow: name=mod.pow, exact

``${name}``, by default, matches every expression at that point; if
``exact`` argument is passed to a wildcard only the specified name
will match (for instance, if ``exact`` is specified , ``${name}``
matches ``name`` and ``x.name`` but not ``var`` nor ``(1 + 2)`` while
a normal ``${name}`` can match all of them).

For performing this refactoring using rope library see `library.txt`_.


Example 2
'''''''''

As another example consider::

  class A(object):

      def f(self, p1, p2):
          print p1
          print p2


  a = A()
  a.f(1, 2)

Later we decide that `A.f()` is doing too much and we want to divide
it to `A.f1()` and `A.f2()`::

  class A(object):

      def f(self, p1, p2):
          print p1
          print p2

      def f1(self, p):
          print p

      def f2(self, p):
          print p


  a = A()
  a.f(1, 2)

But who's going to fix all those nasty occurrences (actually this
situation can be handled using inline method refactoring but this is
just an example; consider inline refactoring is not implemented yet!).
Restructurings come to rescue::

  pattern: ${inst}.f(${p1}, ${p2})
  goal:
   ${inst}.f1(${p1})
   ${inst}.f2(${p2})
  
  args:
   inst: type=mod.A

After performing we will have::

  class A(object):

      def f(self, p1, p2):
          print p1
          print p2

      def f1(self, p):
          print p

      def f2(self, p):
          print p


  a = A()
  a.f1(1)
  a.f2(2)


Example 3
'''''''''

If you like to replace every occurrences of ``x.set(y)`` with ``x =
y`` when x is an instance of `mod.A` in::

  from mod import A

  a = A()
  b = A()
  a.set(b)

We can perform a restructuring with these information::

  pattern: ${x}.set(${y})
  goal: ${x} = ${y}

  args: x: type=mod.A

After performing the above restructuring we'll have::

  from mod import A

  a = A()
  b = A()
  a = b

Note that ``mod.py`` contains something like::

  class A(object):

      def set(self, arg):
          pass

Issues
''''''

Pattern names can appear only at the start of an expression.  For
instance ``var.${name}`` is invalid.  These situations can usually be
fixed by specifying good checks, for example on the type of `var` and
using a ``${var}.name``.


Object Inference
================

This section is a bit out of date.  Static object inference can do
more than described here (see unittests).  Hope to update this
someday!


Static Object Inference
-----------------------

::

  class AClass(object):

      def __init__(self):
          self.an_attr = 1

      def call_a_func(self):
          return a_func()

  def a_func():
      return AClass()

  a_var = a_func()
  #a_var.${codeassist}

  another_var = a_var
  #another_var.${codeassist}
  #another_var.call_a_func().${codeassist}


Basic support for builtin types::

  a_list = [AClass(), AClass()]
  for x in a_list:
      pass
      #x.${codeassist}
  #a_list.pop().${codeassist}

  a_dict = ['text': AClass()]
  for key, value in a_dict.items():
      pass
      #key.${codeassist}
      #value.${codeassist}

Enhanced static returned object inference::

    class C(object):

        def c_func(self):
            return ['']

    def a_func(arg):
        return arg.c_func()

    a_var = a_func(C())

Here rope knows that the type of a_var is a `list` that holds `str`\s.

Supporting generator functions::

  class C(object):
      pass

  def a_generator():
      yield C()


  for c in a_generator():
      a_var = c

Here the objects `a_var` and `c` hold are known.

Rope collects different types of data during SOA, like per name data
for builtin container types::

  l1 = [C()]
  var1 = l1.pop()

  l2 = []
  l2.append(C())
  var2 = l2.pop()

Here rope can easily infer the type of `var1`.  But for knowing the
type of `var2`, it needs to analyze the items inserted into `l2` which
might happen in other modules.  Rope can do that by running SOA on
that module.

You might be wondering is there any reason for using DOA instead of
SOA.  The answer is that DOA might be more accurate and handles
complex and dynamic situations.  For example in::

  def f(arg):
      return eval(arg)

  a_var = f('C')

SOA can no way conclude the object `a_var` holds but it is really
trivial for DOA.  What's more SOA only analyzes calls in one module
while DOA analyzes any call that happens when running a module.  That
is, for achieving the same result as DOA you might need to run SOA on
more than one module and more than once (not considering dynamic
situations.) One advantage of SOA is that it is much faster than DOA.


Dynamic Object Analysis
-----------------------

`PyCore.run_module()` runs a module and collects object information if
``perform_doa`` project config is set.  Since as the program runs rope
gathers type information, the program runs much slower.  After the
program is run, you can get better code assists and some of the
refactorings perform much better.

``mod1.py``::

  def f1(param):
      pass
      #param.${codeassist}
      #f2(param).${codeassist}

  def f2(param):
      #param.${codeassist}
      return param

Using code assist in specified places does not give any information
and there is actually no information about the return type of `f2` or
`param` parameter of `f1`.

``mod2.py``::

  import mod1

  class A(object):

      def a_method(self):
          pass

  a_var = A()
  mod1.f1(a_var)

Retry those code assists after performing DOA on `mod2` module.


Builtin Container Types
'''''''''''''''''''''''

Builtin types can be handled in a limited way, too::

  class A(object):

      def a_method(self):
          pass

  def f1():
      result = []
      result.append(A())
      return result

  returned = f()
  #returned[0].${codeassist}

Test the the proposed completions after running this module.


Guessing Function Returned Value Based On Parameters
----------------------------------------------------

``mod1.py``::

  class C1(object):

      def c1_func(self):
          pass

  class C2(object):

      def c2_func(self):
          pass


  def func(arg):
      if isinstance(arg, C1):
          return C2()
      else:
          return C1()

  func(C1())
  func(C2())

After running `mod1` either SOA or DOA on this module you can test:

``mod2.py``::

  import mod1

  arg = mod1.C1()
  a_var = mod1.func(arg)
  a_var.${codeassist}
  mod1.func(mod1.C2()).${codeassist}


Automatic SOA
-------------

When turned on, it analyzes the changed scopes of a file when saving
for obtaining object information; So this might make saving files a
bit more time consuming.  By default, this feature is turned on, but
you can turn it off by editing your project ``config.py`` file, though
that is not recommended.


Validating Object DB
--------------------

Since files on disk change over time project objectdb might hold
invalid information.  Currently there is a basic incremental objectdb
validation that can be used to remove or fix out of date information.
Rope uses this feature by default but you can disable it by editing
``config.py``.


Custom Source Folders
=====================

By default rope searches the project for finding source folders
(folders that should be searched for finding modules).  You can add
paths to that list using ``source_folders`` project config.  Note that
rope guesses project source folders correctly most of the time.  You
can also extend python path using ``python_path`` config.


Version Control Systems Support
===============================

When performing refactorings some files might need to be moved (when
renaming a module) or new files might be created.  When using a VCS,
rope detects and uses it to perform file system actions.

Currently Mercurial_, GIT_, Darcs_ and SVN (using pysvn_ library) are
supported.  They are selected based on dot files in project root
directory.  For instance, Mercurial will be used if `mercurial` module
is available and there is a ``.hg`` folder in project root.  Rope
assumes either all files are under version control in a project or
there is no version control at all.  Also don't forget to commit your
changes yourself, rope doesn't do that.

Adding support for other VCSs is easy; have a look at
`library.txt`_.

.. _pysvn: http://pysvn.tigris.org
.. _Mercurial: http://selenic.com/mercurial
.. _GIT: http://git.or.cz
.. _darcs: http://darcs.net