This file is indexed.

/usr/share/pyshared/scapy/crypto/cert.py is in python-scapy 2.2.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
## This file is part of Scapy
## See http://www.secdev.org/projects/scapy for more informations
## Copyright (C) Arnaud Ebalard <arno@natisbad.org>
## This program is published under a GPLv2 license

"""
Cryptographic certificates.
"""

import os, sys, math, socket, struct, sha, hmac, string, time
import random, popen2, tempfile
from scapy.utils import strxor
try:
    HAS_HASHLIB=True
    import hashlib
except:
    HAS_HASHLIB=False

from Crypto.PublicKey import *
from Crypto.Cipher import *
from Crypto.Hash import *

# Maximum allowed size in bytes for a certificate file, to avoid
# loading huge file when importing a cert
MAX_KEY_SIZE=50*1024
MAX_CERT_SIZE=50*1024
MAX_CRL_SIZE=10*1024*1024   # some are that big

#####################################################################
# Some helpers
#####################################################################

def warning(m):
    print "WARNING: %s" % m

def randstring(l):
    """
    Returns a random string of length l (l >= 0)
    """
    tmp = map(lambda x: struct.pack("B", random.randrange(0, 256, 1)), [""]*l)
    return "".join(tmp)

def zerofree_randstring(l):
    """
    Returns a random string of length l (l >= 0) without zero in it. 
    """
    tmp = map(lambda x: struct.pack("B", random.randrange(1, 256, 1)), [""]*l)
    return "".join(tmp)

def strand(s1, s2):
    """
    Returns the binary AND of the 2 provided strings s1 and s2. s1 and s2
    must be of same length.
    """
    return "".join(map(lambda x,y:chr(ord(x)&ord(y)), s1, s2))

# OS2IP function defined in RFC 3447 for octet string to integer conversion
def pkcs_os2ip(x):
    """
    Accepts a byte string as input parameter and return the associated long
    value:

    Input : x        octet string to be converted

    Output: x        corresponding nonnegative integer

    Reverse function is pkcs_i2osp()
    """
    return RSA.number.bytes_to_long(x) 

# IP2OS function defined in RFC 3447 for octet string to integer conversion
def pkcs_i2osp(x,xLen):
    """
    Converts a long (the first parameter) to the associated byte string
    representation of length l (second parameter). Basically, the length
    parameters allow the function to perform the associated padding.

    Input : x        nonnegative integer to be converted
            xLen     intended length of the resulting octet string

    Output: x        corresponding nonnegative integer

    Reverse function is pkcs_os2ip().
    """
    z = RSA.number.long_to_bytes(x)
    padlen = max(0, xLen-len(z))
    return '\x00'*padlen + z

# for every hash function a tuple is provided, giving access to 
# - hash output length in byte
# - associated hash function that take data to be hashed as parameter
#   XXX I do not provide update() at the moment.
# - DER encoding of the leading bits of digestInfo (the hash value
#   will be concatenated to create the complete digestInfo).
# 
# Notes:
# - MD4 asn.1 value should be verified. Also, as stated in 
#   PKCS#1 v2.1, MD4 should not be used.
# - hashlib is available from http://code.krypto.org/python/hashlib/
# - 'tls' one is the concatenation of both md5 and sha1 hashes used
#   by SSL/TLS when signing/verifying things
_hashFuncParams = {
    "md2"    : (16, 
                lambda x: MD2.new(x).digest(), 
                '\x30\x20\x30\x0c\x06\x08\x2a\x86\x48\x86\xf7\x0d\x02\x02\x05\x00\x04\x10'),
    "md4"    : (16, 
                lambda x: MD4.new(x).digest(), 
                '\x30\x20\x30\x0c\x06\x08\x2a\x86\x48\x86\xf7\x0d\x02\x04\x05\x00\x04\x10'), # is that right ?
    "md5"    : (16, 
                lambda x: MD5.new(x).digest(), 
                '\x30\x20\x30\x0c\x06\x08\x2a\x86\x48\x86\xf7\x0d\x02\x05\x05\x00\x04\x10'),
    "sha1"   : (20,
                lambda x: SHA.new(x).digest(), 
                '\x30\x21\x30\x09\x06\x05\x2b\x0e\x03\x02\x1a\x05\x00\x04\x14'),
    "tls"    : (36,
                lambda x: MD5.new(x).digest() + SHA.new(x).digest(),
                '') }

if HAS_HASHLIB:
    _hashFuncParams["sha224"] = (28, 
                lambda x: hashlib.sha224(x).digest(),
                '\x30\x2d\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x04\x05\x00\x04\x1c')
    _hashFuncParams["sha256"] = (32, 
                lambda x: hashlib.sha256(x).digest(), 
                '\x30\x31\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x01\x05\x00\x04\x20')
    _hashFuncParams["sha384"] = (48, 
                lambda x: hashlib.sha384(x).digest(),
               '\x30\x41\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x02\x05\x00\x04\x30')
    _hashFuncParams["sha512"] = (64, 
               lambda x: hashlib.sha512(x).digest(),
               '\x30\x51\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x03\x05\x00\x04\x40')
else:
    warning("hashlib support is not available. Consider installing it")
    warning("if you need sha224, sha256, sha384 and sha512 algs.")
    
def pkcs_mgf1(mgfSeed, maskLen, h):
    """
    Implements generic MGF1 Mask Generation function as described in
    Appendix B.2.1 of RFC 3447. The hash function is passed by name.
    valid values are 'md2', 'md4', 'md5', 'sha1', 'tls, 'sha256',
    'sha384' and 'sha512'. Returns None on error.

    Input:
       mgfSeed: seed from which mask is generated, an octet string
       maskLen: intended length in octets of the mask, at most 2^32 * hLen
                hLen (see below)
       h      : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls',
                'sha256', 'sha384'). hLen denotes the length in octets of
                the hash function output.

    Output:
       an octet string of length maskLen
    """

    # steps are those of Appendix B.2.1
    if not _hashFuncParams.has_key(h):
        warning("pkcs_mgf1: invalid hash (%s) provided")
        return None
    hLen = _hashFuncParams[h][0]
    hFunc = _hashFuncParams[h][1]
    if maskLen > 2**32 * hLen:                               # 1)
        warning("pkcs_mgf1: maskLen > 2**32 * hLen")         
        return None
    T = ""                                                   # 2)
    maxCounter = math.ceil(float(maskLen) / float(hLen))     # 3)
    counter = 0
    while counter < maxCounter:
        C = pkcs_i2osp(counter, 4)
        T += hFunc(mgfSeed + C)
        counter += 1
    return T[:maskLen]


def pkcs_emsa_pss_encode(M, emBits, h, mgf, sLen): 
    """
    Implements EMSA-PSS-ENCODE() function described in Sect. 9.1.1 of RFC 3447

    Input:
       M     : message to be encoded, an octet string
       emBits: maximal bit length of the integer resulting of pkcs_os2ip(EM),
               where EM is the encoded message, output of the function.
       h     : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls',
               'sha256', 'sha384'). hLen denotes the length in octets of
               the hash function output. 
       mgf   : the mask generation function f : seed, maskLen -> mask
       sLen  : intended length in octets of the salt

    Output:
       encoded message, an octet string of length emLen = ceil(emBits/8)

    On error, None is returned.
    """

    # 1) is not done
    hLen = _hashFuncParams[h][0]                             # 2)
    hFunc = _hashFuncParams[h][1]
    mHash = hFunc(M)
    emLen = int(math.ceil(emBits/8.))
    if emLen < hLen + sLen + 2:                              # 3)
        warning("encoding error (emLen < hLen + sLen + 2)")
        return None
    salt = randstring(sLen)                                  # 4)
    MPrime = '\x00'*8 + mHash + salt                         # 5)
    H = hFunc(MPrime)                                        # 6)
    PS = '\x00'*(emLen - sLen - hLen - 2)                    # 7)
    DB = PS + '\x01' + salt                                  # 8)
    dbMask = mgf(H, emLen - hLen - 1)                        # 9)
    maskedDB = strxor(DB, dbMask)                            # 10)
    l = (8*emLen - emBits)/8                                 # 11)
    rem = 8*emLen - emBits - 8*l # additionnal bits
    andMask = l*'\x00'
    if rem:
        j = chr(reduce(lambda x,y: x+y, map(lambda x: 1<<x, range(8-rem))))
        andMask += j
        l += 1
    maskedDB = strand(maskedDB[:l], andMask) + maskedDB[l:]
    EM = maskedDB + H + '\xbc'                               # 12)
    return EM                                                # 13)


def pkcs_emsa_pss_verify(M, EM, emBits, h, mgf, sLen):
    """
    Implements EMSA-PSS-VERIFY() function described in Sect. 9.1.2 of RFC 3447

    Input:
       M     : message to be encoded, an octet string
       EM    : encoded message, an octet string of length emLen = ceil(emBits/8)
       emBits: maximal bit length of the integer resulting of pkcs_os2ip(EM)
       h     : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls',
               'sha256', 'sha384'). hLen denotes the length in octets of
               the hash function output.
       mgf   : the mask generation function f : seed, maskLen -> mask
       sLen  : intended length in octets of the salt

    Output:
       True if the verification is ok, False otherwise.
    """
    
    # 1) is not done
    hLen = _hashFuncParams[h][0]                             # 2)
    hFunc = _hashFuncParams[h][1]
    mHash = hFunc(M)
    emLen = int(math.ceil(emBits/8.))                        # 3)
    if emLen < hLen + sLen + 2:
        return False
    if EM[-1] != '\xbc':                                     # 4)
        return False
    l = emLen - hLen - 1                                     # 5)
    maskedDB = EM[:l]
    H = EM[l:l+hLen]
    l = (8*emLen - emBits)/8                                 # 6)
    rem = 8*emLen - emBits - 8*l # additionnal bits
    andMask = l*'\xff'
    if rem:
        val = reduce(lambda x,y: x+y, map(lambda x: 1<<x, range(8-rem)))
        j = chr(~val & 0xff)
        andMask += j
        l += 1
    if strand(maskedDB[:l], andMask) != '\x00'*l:
        return False
    dbMask = mgf(H, emLen - hLen - 1)                        # 7)
    DB = strxor(maskedDB, dbMask)                            # 8)
    l = (8*emLen - emBits)/8                                 # 9)
    rem = 8*emLen - emBits - 8*l # additionnal bits
    andMask = l*'\x00'
    if rem:
        j = chr(reduce(lambda x,y: x+y, map(lambda x: 1<<x, range(8-rem))))
        andMask += j
        l += 1
    DB = strand(DB[:l], andMask) + DB[l:]
    l = emLen - hLen - sLen - 1                              # 10)
    if DB[:l] != '\x00'*(l-1) + '\x01':
        return False
    salt = DB[-sLen:]                                        # 11)
    MPrime = '\x00'*8 + mHash + salt                         # 12)
    HPrime = hFunc(MPrime)                                   # 13)
    return H == HPrime                                       # 14)


def pkcs_emsa_pkcs1_v1_5_encode(M, emLen, h): # section 9.2 of RFC 3447
    """
    Implements EMSA-PKCS1-V1_5-ENCODE() function described in Sect.
    9.2 of RFC 3447.

    Input:
       M    : message to be encode, an octet string
       emLen: intended length in octets of the encoded message, at least
              tLen + 11, where tLen is the octet length of the DER encoding
              T of a certain value computed during the encoding operation.
       h    : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls',
              'sha256', 'sha384'). hLen denotes the length in octets of
              the hash function output.

    Output:
       encoded message, an octet string of length emLen

    On error, None is returned.
    """
    hLen = _hashFuncParams[h][0]                             # 1)
    hFunc = _hashFuncParams[h][1]
    H = hFunc(M)
    hLeadingDigestInfo = _hashFuncParams[h][2]               # 2)
    T = hLeadingDigestInfo + H
    tLen = len(T)
    if emLen < tLen + 11:                                    # 3)
        warning("pkcs_emsa_pkcs1_v1_5_encode: intended encoded message length too short")
        return None
    PS = '\xff'*(emLen - tLen - 3)                           # 4)
    EM = '\x00' + '\x01' + PS + '\x00' + T                   # 5)
    return EM                                                # 6)


# XXX should add other pgf1 instance in a better fashion.

def create_ca_file(anchor_list, filename):
    """
    Concatenate all the certificates (PEM format for the export) in
    'anchor_list' and write the result to file 'filename'. On success
    'filename' is returned, None otherwise.

    If you are used to OpenSSL tools, this function builds a CAfile
    that can be used for certificate and CRL check.

    Also see create_temporary_ca_file().
    """
    try:
        f = open(filename, "w")
        for a in anchor_list:
            s = a.output(fmt="PEM")
            f.write(s)
        f.close()
    except:
        return None
    return filename

def create_temporary_ca_file(anchor_list):
    """
    Concatenate all the certificates (PEM format for the export) in
    'anchor_list' and write the result to file to a temporary file
    using mkstemp() from tempfile module. On success 'filename' is
    returned, None otherwise.

    If you are used to OpenSSL tools, this function builds a CAfile
    that can be used for certificate and CRL check.

    Also see create_temporary_ca_file().
    """
    try:
        f, fname = tempfile.mkstemp()
        for a in anchor_list:
            s = a.output(fmt="PEM")
            l = os.write(f, s)
        os.close(f)
    except:
        return None
    return fname

def create_temporary_ca_path(anchor_list, folder):
    """
    Create a CA path folder as defined in OpenSSL terminology, by
    storing all certificates in 'anchor_list' list in PEM format
    under provided 'folder' and then creating the associated links
    using the hash as usually done by c_rehash.

    Note that you can also include CRL in 'anchor_list'. In that
    case, they will also be stored under 'folder' and associated
    links will be created.

    In folder, the files are created with names of the form
    0...ZZ.pem. If you provide an empty list, folder will be created
    if it does not already exist, but that's all.

    The number of certificates written to folder is returned on
    success, None on error.
    """
    # We should probably avoid writing duplicate anchors and also
    # check if they are all certs.
    try:
        if not os.path.isdir(folder):
            os.makedirs(folder)
    except:
        return None
    
    l = len(anchor_list)
    if l == 0:
        return None
    fmtstr = "%%0%sd.pem" % math.ceil(math.log(l, 10))
    i = 0
    try:
        for a in anchor_list:
            fname = os.path.join(folder, fmtstr % i)
            f = open(fname, "w")
            s = a.output(fmt="PEM")
            f.write(s)
            f.close()
            i += 1
    except:
        return None

    r,w=popen2.popen2("c_rehash %s" % folder)
    r.close(); w.close()

    return l


#####################################################################
# Public Key Cryptography related stuff
#####################################################################

class OSSLHelper:
    def _apply_ossl_cmd(self, osslcmd, rawdata):
        r,w=popen2.popen2(osslcmd)
        w.write(rawdata)
        w.close()
        res = r.read()
        r.close()
        return res

class _EncryptAndVerify:
    ### Below are encryption methods

    def _rsaep(self, m):
        """
        Internal method providing raw RSA encryption, i.e. simple modular
        exponentiation of the given message representative 'm', a long
        between 0 and n-1.

        This is the encryption primitive RSAEP described in PKCS#1 v2.1,
        i.e. RFC 3447 Sect. 5.1.1.

        Input:
           m: message representative, a long between 0 and n-1, where
              n is the key modulus.

        Output:
           ciphertext representative, a long between 0 and n-1

        Not intended to be used directly. Please, see encrypt() method.
        """

        n = self.modulus
        if type(m) is int:
            m = long(m)
        if type(m) is not long or m > n-1:
            warning("Key._rsaep() expects a long between 0 and n-1")
            return None

        return self.key.encrypt(m, "")[0]


    def _rsaes_pkcs1_v1_5_encrypt(self, M):
        """
        Implements RSAES-PKCS1-V1_5-ENCRYPT() function described in section
        7.2.1 of RFC 3447.

        Input:
           M: message to be encrypted, an octet string of length mLen, where
              mLen <= k - 11 (k denotes the length in octets of the key modulus)

        Output:
           ciphertext, an octet string of length k

        On error, None is returned.
        """

        # 1) Length checking
        mLen = len(M)
        k = self.modulusLen / 8
        if mLen > k - 11:
            warning("Key._rsaes_pkcs1_v1_5_encrypt(): message too "
                    "long (%d > %d - 11)" % (mLen, k))
            return None

        # 2) EME-PKCS1-v1_5 encoding
        PS = zerofree_randstring(k - mLen - 3)      # 2.a)
        EM = '\x00' + '\x02' + PS + '\x00' + M      # 2.b)

        # 3) RSA encryption
        m = pkcs_os2ip(EM)                          # 3.a)
        c = self._rsaep(m)                          # 3.b)
        C = pkcs_i2osp(c, k)                        # 3.c)

        return C                                    # 4)


    def _rsaes_oaep_encrypt(self, M, h=None, mgf=None, L=None):
        """
        Internal method providing RSAES-OAEP-ENCRYPT as defined in Sect.
        7.1.1 of RFC 3447. Not intended to be used directly. Please, see
        encrypt() method for type "OAEP".


        Input:
           M  : message to be encrypted, an octet string of length mLen
                where mLen <= k - 2*hLen - 2 (k denotes the length in octets
                of the RSA modulus and hLen the length in octets of the hash
                function output)
           h  : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls',
                'sha256', 'sha384'). hLen denotes the length in octets of
                the hash function output. 'sha1' is used by default if not
                provided.
           mgf: the mask generation function f : seed, maskLen -> mask
           L  : optional label to be associated with the message; the default
                value for L, if not provided is the empty string

        Output:
           ciphertext, an octet string of length k

        On error, None is returned.
        """
        # The steps below are the one described in Sect. 7.1.1 of RFC 3447.
        # 1) Length Checking
                                                    # 1.a) is not done
        mLen = len(M)
        if h is None:
            h = "sha1"
        if not _hashFuncParams.has_key(h):
            warning("Key._rsaes_oaep_encrypt(): unknown hash function %s.", h)
            return None
        hLen = _hashFuncParams[h][0]
        hFun = _hashFuncParams[h][1]
        k = self.modulusLen / 8
        if mLen > k - 2*hLen - 2:                   # 1.b)
            warning("Key._rsaes_oaep_encrypt(): message too long.")
            return None
        
        # 2) EME-OAEP encoding
        if L is None:                               # 2.a)
            L = ""
        lHash = hFun(L)
        PS = '\x00'*(k - mLen - 2*hLen - 2)         # 2.b)
        DB = lHash + PS + '\x01' + M                # 2.c)
        seed = randstring(hLen)                     # 2.d)
        if mgf is None:                             # 2.e)
            mgf = lambda x,y: pkcs_mgf1(x,y,h)
        dbMask = mgf(seed, k - hLen - 1)
        maskedDB = strxor(DB, dbMask)               # 2.f)
        seedMask = mgf(maskedDB, hLen)              # 2.g)
        maskedSeed = strxor(seed, seedMask)         # 2.h)
        EM = '\x00' + maskedSeed + maskedDB         # 2.i)

        # 3) RSA Encryption
        m = pkcs_os2ip(EM)                          # 3.a)
        c = self._rsaep(m)                          # 3.b)
        C = pkcs_i2osp(c, k)                        # 3.c)

        return C                                    # 4)


    def encrypt(self, m, t=None, h=None, mgf=None, L=None):
        """
        Encrypt message 'm' using 't' encryption scheme where 't' can be:

        - None: the message 'm' is directly applied the RSAEP encryption
                primitive, as described in PKCS#1 v2.1, i.e. RFC 3447
                Sect 5.1.1. Simply put, the message undergo a modular
                exponentiation using the public key. Additionnal method
                parameters are just ignored.

        - 'pkcs': the message 'm' is applied RSAES-PKCS1-V1_5-ENCRYPT encryption
                scheme as described in section 7.2.1 of RFC 3447. In that
                context, other parameters ('h', 'mgf', 'l') are not used.

        - 'oaep': the message 'm' is applied the RSAES-OAEP-ENCRYPT encryption
                scheme, as described in PKCS#1 v2.1, i.e. RFC 3447 Sect
                7.1.1. In that context,

                o 'h' parameter provides the name of the hash method to use.
                  Possible values are "md2", "md4", "md5", "sha1", "tls",
                  "sha224", "sha256", "sha384" and "sha512". if none is provided,
                  sha1 is used.

                o 'mgf' is the mask generation function. By default, mgf
                  is derived from the provided hash function using the
                  generic MGF1 (see pkcs_mgf1() for details).

                o 'L' is the optional label to be associated with the
                  message. If not provided, the default value is used, i.e
                  the empty string. No check is done on the input limitation
                  of the hash function regarding the size of 'L' (for
                  instance, 2^61 - 1 for SHA-1). You have been warned.
        """

        if t is None: # Raw encryption
            m = pkcs_os2ip(m)
            c = self._rsaep(m)
            return pkcs_i2osp(c, self.modulusLen/8)
        
        elif t == "pkcs":
            return self._rsaes_pkcs1_v1_5_encrypt(m)
        
        elif t == "oaep":
            return self._rsaes_oaep_encrypt(m, h, mgf, L)

        else:
            warning("Key.encrypt(): Unknown encryption type (%s) provided" % t)
            return None

    ### Below are verification related methods

    def _rsavp1(self, s):
        """
        Internal method providing raw RSA verification, i.e. simple modular
        exponentiation of the given signature representative 'c', an integer
        between 0 and n-1.

        This is the signature verification primitive RSAVP1 described in
        PKCS#1 v2.1, i.e. RFC 3447 Sect. 5.2.2.

        Input:
          s: signature representative, an integer between 0 and n-1,
             where n is the key modulus.

        Output:
           message representative, an integer between 0 and n-1

        Not intended to be used directly. Please, see verify() method.
        """
        return self._rsaep(s)

    def _rsassa_pss_verify(self, M, S, h=None, mgf=None, sLen=None):
        """
        Implements RSASSA-PSS-VERIFY() function described in Sect 8.1.2
        of RFC 3447

        Input:
           M: message whose signature is to be verified
           S: signature to be verified, an octet string of length k, where k
              is the length in octets of the RSA modulus n.

        Output:
           True is the signature is valid. False otherwise.
        """

        # Set default parameters if not provided
        if h is None: # By default, sha1
            h = "sha1"
        if not _hashFuncParams.has_key(h):
            warning("Key._rsassa_pss_verify(): unknown hash function "
                    "provided (%s)" % h)
            return False
        if mgf is None: # use mgf1 with underlying hash function
            mgf = lambda x,y: pkcs_mgf1(x, y, h)
        if sLen is None: # use Hash output length (A.2.3 of RFC 3447)
            hLen = _hashFuncParams[h][0]
            sLen = hLen

        # 1) Length checking
        modBits = self.modulusLen
        k = modBits / 8
        if len(S) != k:
            return False

        # 2) RSA verification
        s = pkcs_os2ip(S)                           # 2.a)
        m = self._rsavp1(s)                         # 2.b)
        emLen = math.ceil((modBits - 1) / 8.)       # 2.c)
        EM = pkcs_i2osp(m, emLen) 

        # 3) EMSA-PSS verification
        Result = pkcs_emsa_pss_verify(M, EM, modBits - 1, h, mgf, sLen)

        return Result                               # 4)


    def _rsassa_pkcs1_v1_5_verify(self, M, S, h):
        """
        Implements RSASSA-PKCS1-v1_5-VERIFY() function as described in
        Sect. 8.2.2 of RFC 3447.

        Input:
           M: message whose signature is to be verified, an octet string
           S: signature to be verified, an octet string of length k, where
              k is the length in octets of the RSA modulus n
           h: hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls',
                'sha256', 'sha384').
           
        Output:
           True if the signature is valid. False otherwise.
        """

        # 1) Length checking
        k = self.modulusLen / 8
        if len(S) != k:
            warning("invalid signature (len(S) != k)")
            return False

        # 2) RSA verification
        s = pkcs_os2ip(S)                           # 2.a)
        m = self._rsavp1(s)                         # 2.b)
        EM = pkcs_i2osp(m, k)                       # 2.c)

        # 3) EMSA-PKCS1-v1_5 encoding
        EMPrime = pkcs_emsa_pkcs1_v1_5_encode(M, k, h)
        if EMPrime is None:
            warning("Key._rsassa_pkcs1_v1_5_verify(): unable to encode.")
            return False

        # 4) Comparison
        return EM == EMPrime


    def verify(self, M, S, t=None, h=None, mgf=None, sLen=None):
        """
        Verify alleged signature 'S' is indeed the signature of message 'M' using
        't' signature scheme where 't' can be:

        - None: the alleged signature 'S' is directly applied the RSAVP1 signature
                primitive, as described in PKCS#1 v2.1, i.e. RFC 3447 Sect
                5.2.1. Simply put, the provided signature is applied a moular
                exponentiation using the public key. Then, a comparison of the
                result is done against 'M'. On match, True is returned.
                Additionnal method parameters are just ignored.

        - 'pkcs': the alleged signature 'S' and message 'M' are applied
                RSASSA-PKCS1-v1_5-VERIFY signature verification scheme as
                described in Sect. 8.2.2 of RFC 3447. In that context,
                the hash function name is passed using 'h'. Possible values are
                "md2", "md4", "md5", "sha1", "tls", "sha224", "sha256", "sha384"
                and "sha512". If none is provided, sha1 is used. Other additionnal
                parameters are ignored.

        - 'pss': the alleged signature 'S' and message 'M' are applied
                RSASSA-PSS-VERIFY signature scheme as described in Sect. 8.1.2.
                of RFC 3447. In that context,

                o 'h' parameter provides the name of the hash method to use.
                   Possible values are "md2", "md4", "md5", "sha1", "tls", "sha224",
                   "sha256", "sha384" and "sha512". if none is provided, sha1
                   is used. 

                o 'mgf' is the mask generation function. By default, mgf
                   is derived from the provided hash function using the
                   generic MGF1 (see pkcs_mgf1() for details).

                o 'sLen' is the length in octet of the salt. You can overload the
                  default value (the octet length of the hash value for provided
                  algorithm) by providing another one with that parameter.
        """
        if t is None: # RSAVP1
            S = pkcs_os2ip(S)
            n = self.modulus
            if S > n-1:
                warning("Signature to be verified is too long for key modulus")
                return False
            m = self._rsavp1(S)
            if m is None:
                return False
            l = int(math.ceil(math.log(m, 2) / 8.)) # Hack
            m = pkcs_i2osp(m, l)
            return M == m

        elif t == "pkcs": # RSASSA-PKCS1-v1_5-VERIFY
            if h is None:
                h = "sha1"
            return self._rsassa_pkcs1_v1_5_verify(M, S, h)

        elif t == "pss": # RSASSA-PSS-VERIFY
            return self._rsassa_pss_verify(M, S, h, mgf, sLen)

        else:
            warning("Key.verify(): Unknown signature type (%s) provided" % t)
            return None
    
class _DecryptAndSignMethods(OSSLHelper):
    ### Below are decryption related methods. Encryption ones are inherited
    ### from PubKey

    def _rsadp(self, c):
        """
        Internal method providing raw RSA decryption, i.e. simple modular
        exponentiation of the given ciphertext representative 'c', a long
        between 0 and n-1.

        This is the decryption primitive RSADP described in PKCS#1 v2.1,
        i.e. RFC 3447 Sect. 5.1.2.

        Input:
           c: ciphertest representative, a long between 0 and n-1, where
              n is the key modulus.

        Output:
           ciphertext representative, a long between 0 and n-1

        Not intended to be used directly. Please, see encrypt() method.
        """

        n = self.modulus
        if type(c) is int:
            c = long(c)        
        if type(c) is not long or c > n-1:
            warning("Key._rsaep() expects a long between 0 and n-1")
            return None

        return self.key.decrypt(c)    


    def _rsaes_pkcs1_v1_5_decrypt(self, C):
        """
        Implements RSAES-PKCS1-V1_5-DECRYPT() function described in section
        7.2.2 of RFC 3447.

        Input:
           C: ciphertext to be decrypted, an octet string of length k, where
              k is the length in octets of the RSA modulus n.

        Output:
           an octet string of length k at most k - 11

        on error, None is returned.
        """
        
        # 1) Length checking
        cLen = len(C)
        k = self.modulusLen / 8
        if cLen != k or k < 11:
            warning("Key._rsaes_pkcs1_v1_5_decrypt() decryption error "
                    "(cLen != k or k < 11)")
            return None

        # 2) RSA decryption
        c = pkcs_os2ip(C)                           # 2.a)
        m = self._rsadp(c)                          # 2.b)
        EM = pkcs_i2osp(m, k)                       # 2.c)

        # 3) EME-PKCS1-v1_5 decoding

        # I am aware of the note at the end of 7.2.2 regarding error
        # conditions reporting but the one provided below are for _local_
        # debugging purposes. --arno
        
        if EM[0] != '\x00':
            warning("Key._rsaes_pkcs1_v1_5_decrypt(): decryption error "
                    "(first byte is not 0x00)")
            return None

        if EM[1] != '\x02':
            warning("Key._rsaes_pkcs1_v1_5_decrypt(): decryption error "
                    "(second byte is not 0x02)")
            return None

        tmp = EM[2:].split('\x00', 1)
        if len(tmp) != 2:
            warning("Key._rsaes_pkcs1_v1_5_decrypt(): decryption error "
                    "(no 0x00 to separate PS from M)")
            return None

        PS, M = tmp
        if len(PS) < 8:
            warning("Key._rsaes_pkcs1_v1_5_decrypt(): decryption error "
                    "(PS is less than 8 byte long)")
            return None

        return M                                    # 4)


    def _rsaes_oaep_decrypt(self, C, h=None, mgf=None, L=None):
        """
        Internal method providing RSAES-OAEP-DECRYPT as defined in Sect.
        7.1.2 of RFC 3447. Not intended to be used directly. Please, see
        encrypt() method for type "OAEP".


        Input:
           C  : ciphertext to be decrypted, an octet string of length k, where
                k = 2*hLen + 2 (k denotes the length in octets of the RSA modulus
                and hLen the length in octets of the hash function output)
           h  : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls',
                'sha256', 'sha384'). 'sha1' is used if none is provided.
           mgf: the mask generation function f : seed, maskLen -> mask
           L  : optional label whose association with the message is to be
                verified; the default value for L, if not provided is the empty
                string.

        Output:
           message, an octet string of length k mLen, where mLen <= k - 2*hLen - 2

        On error, None is returned.
        """
        # The steps below are the one described in Sect. 7.1.2 of RFC 3447.

        # 1) Length Checking
                                                    # 1.a) is not done
        if h is None:
            h = "sha1"
        if not _hashFuncParams.has_key(h):
            warning("Key._rsaes_oaep_decrypt(): unknown hash function %s.", h)
            return None
        hLen = _hashFuncParams[h][0]
        hFun = _hashFuncParams[h][1]
        k = self.modulusLen / 8
        cLen = len(C)
        if cLen != k:                               # 1.b)
            warning("Key._rsaes_oaep_decrypt(): decryption error. "
                    "(cLen != k)")
            return None
        if k < 2*hLen + 2:
            warning("Key._rsaes_oaep_decrypt(): decryption error. "
                    "(k < 2*hLen + 2)")
            return None

        # 2) RSA decryption
        c = pkcs_os2ip(C)                           # 2.a)
        m = self._rsadp(c)                          # 2.b)
        EM = pkcs_i2osp(m, k)                       # 2.c)

        # 3) EME-OAEP decoding
        if L is None:                               # 3.a)
            L = ""
        lHash = hFun(L)
        Y = EM[:1]                                  # 3.b)
        if Y != '\x00':
            warning("Key._rsaes_oaep_decrypt(): decryption error. "
                    "(Y is not zero)")
            return None
        maskedSeed = EM[1:1+hLen]
        maskedDB = EM[1+hLen:]
        if mgf is None:
            mgf = lambda x,y: pkcs_mgf1(x, y, h)
        seedMask = mgf(maskedDB, hLen)              # 3.c)
        seed = strxor(maskedSeed, seedMask)         # 3.d)
        dbMask = mgf(seed, k - hLen - 1)            # 3.e)
        DB = strxor(maskedDB, dbMask)               # 3.f)

        # I am aware of the note at the end of 7.1.2 regarding error
        # conditions reporting but the one provided below are for _local_
        # debugging purposes. --arno

        lHashPrime = DB[:hLen]                      # 3.g)
        tmp = DB[hLen:].split('\x01', 1)
        if len(tmp) != 2:
            warning("Key._rsaes_oaep_decrypt(): decryption error. "
                    "(0x01 separator not found)")
            return None
        PS, M = tmp
        if PS != '\x00'*len(PS):
            warning("Key._rsaes_oaep_decrypt(): decryption error. "
                    "(invalid padding string)")
            return None
        if lHash != lHashPrime:
            warning("Key._rsaes_oaep_decrypt(): decryption error. "
                    "(invalid hash)")
            return None            
        return M                                    # 4)


    def decrypt(self, C, t=None, h=None, mgf=None, L=None):
        """
        Decrypt ciphertext 'C' using 't' decryption scheme where 't' can be:

        - None: the ciphertext 'C' is directly applied the RSADP decryption
                primitive, as described in PKCS#1 v2.1, i.e. RFC 3447
                Sect 5.1.2. Simply, put the message undergo a modular
                exponentiation using the private key. Additionnal method
                parameters are just ignored.

        - 'pkcs': the ciphertext 'C' is applied RSAES-PKCS1-V1_5-DECRYPT
                decryption scheme as described in section 7.2.2 of RFC 3447.
                In that context, other parameters ('h', 'mgf', 'l') are not
                used.

        - 'oaep': the ciphertext 'C' is applied the RSAES-OAEP-DECRYPT decryption
                scheme, as described in PKCS#1 v2.1, i.e. RFC 3447 Sect
                7.1.2. In that context,

                o 'h' parameter provides the name of the hash method to use.
                  Possible values are "md2", "md4", "md5", "sha1", "tls",
                  "sha224", "sha256", "sha384" and "sha512". if none is provided,
                  sha1 is used by default.

                o 'mgf' is the mask generation function. By default, mgf
                  is derived from the provided hash function using the
                  generic MGF1 (see pkcs_mgf1() for details).

                o 'L' is the optional label to be associated with the
                  message. If not provided, the default value is used, i.e
                  the empty string. No check is done on the input limitation
                  of the hash function regarding the size of 'L' (for
                  instance, 2^61 - 1 for SHA-1). You have been warned.        
        """
        if t is None:
            C = pkcs_os2ip(C)
            c = self._rsadp(C)
            l = int(math.ceil(math.log(c, 2) / 8.)) # Hack
            return pkcs_i2osp(c, l)

        elif t == "pkcs":
            return self._rsaes_pkcs1_v1_5_decrypt(C)

        elif t == "oaep":
            return self._rsaes_oaep_decrypt(C, h, mgf, L)

        else:
            warning("Key.decrypt(): Unknown decryption type (%s) provided" % t)
            return None

    ### Below are signature related methods. Verification ones are inherited from
    ### PubKey

    def _rsasp1(self, m):
        """
        Internal method providing raw RSA signature, i.e. simple modular
        exponentiation of the given message representative 'm', an integer
        between 0 and n-1.

        This is the signature primitive RSASP1 described in PKCS#1 v2.1,
        i.e. RFC 3447 Sect. 5.2.1.

        Input:
           m: message representative, an integer between 0 and n-1, where
              n is the key modulus.

        Output:
           signature representative, an integer between 0 and n-1

        Not intended to be used directly. Please, see sign() method.
        """
        return self._rsadp(m)


    def _rsassa_pss_sign(self, M, h=None, mgf=None, sLen=None):
        """
        Implements RSASSA-PSS-SIGN() function described in Sect. 8.1.1 of
        RFC 3447.

        Input:
           M: message to be signed, an octet string

        Output:
           signature, an octet string of length k, where k is the length in
           octets of the RSA modulus n.

        On error, None is returned.
        """

        # Set default parameters if not provided
        if h is None: # By default, sha1
            h = "sha1"
        if not _hashFuncParams.has_key(h):
            warning("Key._rsassa_pss_sign(): unknown hash function "
                    "provided (%s)" % h)
            return None
        if mgf is None: # use mgf1 with underlying hash function
            mgf = lambda x,y: pkcs_mgf1(x, y, h)
        if sLen is None: # use Hash output length (A.2.3 of RFC 3447)
            hLen = _hashFuncParams[h][0]
            sLen = hLen

        # 1) EMSA-PSS encoding
        modBits = self.modulusLen
        k = modBits / 8
        EM = pkcs_emsa_pss_encode(M, modBits - 1, h, mgf, sLen)
        if EM is None:
            warning("Key._rsassa_pss_sign(): unable to encode")
            return None

        # 2) RSA signature
        m = pkcs_os2ip(EM)                          # 2.a)
        s = self._rsasp1(m)                         # 2.b)
        S = pkcs_i2osp(s, k)                        # 2.c)

        return S                                    # 3)


    def _rsassa_pkcs1_v1_5_sign(self, M, h):
        """
        Implements RSASSA-PKCS1-v1_5-SIGN() function as described in
        Sect. 8.2.1 of RFC 3447.

        Input:
           M: message to be signed, an octet string
           h: hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls'
                'sha256', 'sha384').
           
        Output:
           the signature, an octet string.
        """
        
        # 1) EMSA-PKCS1-v1_5 encoding
        k = self.modulusLen / 8
        EM = pkcs_emsa_pkcs1_v1_5_encode(M, k, h)
        if EM is None:
            warning("Key._rsassa_pkcs1_v1_5_sign(): unable to encode")
            return None

        # 2) RSA signature
        m = pkcs_os2ip(EM)                          # 2.a)
        s = self._rsasp1(m)                         # 2.b)
        S = pkcs_i2osp(s, k)                        # 2.c)

        return S                                    # 3)


    def sign(self, M, t=None, h=None, mgf=None, sLen=None):
        """
        Sign message 'M' using 't' signature scheme where 't' can be:

        - None: the message 'M' is directly applied the RSASP1 signature
                primitive, as described in PKCS#1 v2.1, i.e. RFC 3447 Sect
                5.2.1. Simply put, the message undergo a modular exponentiation
                using the private key. Additionnal method parameters are just
                ignored.

        - 'pkcs': the message 'M' is applied RSASSA-PKCS1-v1_5-SIGN signature
                scheme as described in Sect. 8.2.1 of RFC 3447. In that context,
                the hash function name is passed using 'h'. Possible values are
                "md2", "md4", "md5", "sha1", "tls", "sha224", "sha256", "sha384"
                and "sha512". If none is provided, sha1 is used. Other additionnal 
                parameters are ignored.

        - 'pss' : the message 'M' is applied RSASSA-PSS-SIGN signature scheme as
                described in Sect. 8.1.1. of RFC 3447. In that context,

                o 'h' parameter provides the name of the hash method to use.
                   Possible values are "md2", "md4", "md5", "sha1", "tls", "sha224",
                   "sha256", "sha384" and "sha512". if none is provided, sha1
                   is used. 

                o 'mgf' is the mask generation function. By default, mgf
                   is derived from the provided hash function using the
                   generic MGF1 (see pkcs_mgf1() for details).

                o 'sLen' is the length in octet of the salt. You can overload the
                  default value (the octet length of the hash value for provided
                  algorithm) by providing another one with that parameter.
        """

        if t is None: # RSASP1
            M = pkcs_os2ip(M)
            n = self.modulus
            if M > n-1:
                warning("Message to be signed is too long for key modulus")
                return None
            s = self._rsasp1(M)
            if s is None:
                return None
            return pkcs_i2osp(s, self.modulusLen/8)
        
        elif t == "pkcs": # RSASSA-PKCS1-v1_5-SIGN
            if h is None:
                h = "sha1"
            return self._rsassa_pkcs1_v1_5_sign(M, h)
        
        elif t == "pss": # RSASSA-PSS-SIGN
            return self._rsassa_pss_sign(M, h, mgf, sLen)

        else:
            warning("Key.sign(): Unknown signature type (%s) provided" % t)
            return None




class PubKey(OSSLHelper, _EncryptAndVerify):
    # Below are the fields we recognize in the -text output of openssl
    # and from which we extract information. We expect them in that
    # order. Number of spaces does matter.
    possible_fields = [ "Modulus (",
                        "Exponent:" ]
    possible_fields_count = len(possible_fields)
    
    def __init__(self, keypath):
        error_msg = "Unable to import key."

        # XXX Temporary hack to use PubKey inside Cert
        if type(keypath) is tuple:
            e, m, mLen = keypath
            self.modulus = m
            self.modulusLen = mLen
            self.pubExp = e
            return

        fields_dict = {}
        for k in self.possible_fields:
            fields_dict[k] = None

        self.keypath = None
        rawkey = None

        if (not '\x00' in keypath) and os.path.isfile(keypath): # file
            self.keypath = keypath
            key_size = os.path.getsize(keypath)
            if key_size > MAX_KEY_SIZE:
                raise Exception(error_msg)
            try:
                f = open(keypath)
                rawkey = f.read()
                f.close()
            except:
                raise Exception(error_msg)     
        else:
            rawkey = keypath

        if rawkey is None:
            raise Exception(error_msg)

        self.rawkey = rawkey

        # Let's try to get file format : PEM or DER.
        fmtstr = 'openssl rsa -text -pubin -inform %s -noout '
        convertstr = 'openssl rsa -pubin -inform %s -outform %s 2>/dev/null'
        key_header = "-----BEGIN PUBLIC KEY-----"
        key_footer = "-----END PUBLIC KEY-----"
        l = rawkey.split(key_header, 1)
        if len(l) == 2: # looks like PEM
            tmp = l[1]
            l = tmp.split(key_footer, 1)
            if len(l) == 2:
                tmp = l[0]
                rawkey = "%s%s%s\n" % (key_header, tmp, key_footer)
            else:
                raise Exception(error_msg)
            r,w,e = popen2.popen3(fmtstr % "PEM")
            w.write(rawkey)
            w.close()
            textkey = r.read()
            r.close()
            res = e.read()
            e.close()
            if res == '':
                self.format = "PEM"
                self.pemkey = rawkey
                self.textkey = textkey
                cmd = convertstr % ("PEM", "DER")
                self.derkey = self._apply_ossl_cmd(cmd, rawkey)
            else:
                raise Exception(error_msg)
        else: # not PEM, try DER
            r,w,e = popen2.popen3(fmtstr % "DER")            
            w.write(rawkey)
            w.close()
            textkey = r.read()
            r.close()
            res = e.read()
            if res == '':
                self.format = "DER"
                self.derkey = rawkey
                self.textkey = textkey
                cmd = convertstr % ("DER", "PEM")
                self.pemkey = self._apply_ossl_cmd(cmd, rawkey)
                cmd = convertstr % ("DER", "DER")
                self.derkey = self._apply_ossl_cmd(cmd, rawkey)                
            else:
                try: # Perhaps it is a cert
                    c = Cert(keypath)
                except:
                    raise Exception(error_msg)
                # TODO:
                # Reconstruct a key (der and pem) and provide:
                # self.format
                # self.derkey
                # self.pemkey
                # self.textkey
                # self.keypath

        self.osslcmdbase = 'openssl rsa -pubin -inform %s ' % self.format

        self.keypath = keypath

        # Parse the -text output of openssl to make things available
        l = self.textkey.split('\n', 1)
        if len(l) != 2:
            raise Exception(error_msg)
        cur, tmp = l
        i = 0
        k = self.possible_fields[i] # Modulus (
        cur = cur[len(k):] + '\n'
        while k:
            l = tmp.split('\n', 1)
            if len(l) != 2: # Over
                fields_dict[k] = cur
                break
            l, tmp = l

            newkey = 0
            # skip fields we have already seen, this is the purpose of 'i'
            for j in range(i, self.possible_fields_count):
                f = self.possible_fields[j]
                if l.startswith(f):
                    fields_dict[k] = cur
                    cur = l[len(f):] + '\n'
                    k = f
                    newkey = 1
                    i = j+1
                    break
            if newkey == 1:
                continue
            cur += l + '\n'

        # modulus and modulus length
        v = fields_dict["Modulus ("]
        self.modulusLen = None
        if v:
            v, rem = v.split(' bit):', 1)
            self.modulusLen = int(v)
            rem = rem.replace('\n','').replace(' ','').replace(':','')
            self.modulus = long(rem, 16)
        if self.modulus is None:
            raise Exception(error_msg)
        
        # public exponent
        v = fields_dict["Exponent:"]
        self.pubExp = None
        if v:
            self.pubExp = long(v.split('(', 1)[0])
        if self.pubExp is None:
            raise Exception(error_msg)

        self.key = RSA.construct((self.modulus, self.pubExp, ))

    def __str__(self):
        return self.derkey


class Key(OSSLHelper, _DecryptAndSignMethods, _EncryptAndVerify):
    # Below are the fields we recognize in the -text output of openssl
    # and from which we extract information. We expect them in that
    # order. Number of spaces does matter.
    possible_fields = [ "Private-Key: (",
                        "modulus:",
                        "publicExponent:",
                        "privateExponent:",
                        "prime1:",
                        "prime2:",
                        "exponent1:",
                        "exponent2:",
                        "coefficient:" ]
    possible_fields_count = len(possible_fields)
    
    def __init__(self, keypath):
        error_msg = "Unable to import key."

        fields_dict = {}
        for k in self.possible_fields:
            fields_dict[k] = None

        self.keypath = None
        rawkey = None

        if (not '\x00' in keypath) and os.path.isfile(keypath):
            self.keypath = keypath
            key_size = os.path.getsize(keypath)
            if key_size > MAX_KEY_SIZE:
                raise Exception(error_msg)
            try:
                f = open(keypath)
                rawkey = f.read()
                f.close()
            except:
                raise Exception(error_msg)     
        else:
            rawkey = keypath

        if rawkey is None:
            raise Exception(error_msg)

        self.rawkey = rawkey

        # Let's try to get file format : PEM or DER.
        fmtstr = 'openssl rsa -text -inform %s -noout '
        convertstr = 'openssl rsa -inform %s -outform %s 2>/dev/null'
        key_header = "-----BEGIN RSA PRIVATE KEY-----"
        key_footer = "-----END RSA PRIVATE KEY-----"
        l = rawkey.split(key_header, 1)
        if len(l) == 2: # looks like PEM
            tmp = l[1]
            l = tmp.split(key_footer, 1)
            if len(l) == 2:
                tmp = l[0]
                rawkey = "%s%s%s\n" % (key_header, tmp, key_footer)
            else:
                raise Exception(error_msg)
            r,w,e = popen2.popen3(fmtstr % "PEM")
            w.write(rawkey)
            w.close()
            textkey = r.read()
            r.close()
            res = e.read()
            e.close()
            if res == '':
                self.format = "PEM"
                self.pemkey = rawkey
                self.textkey = textkey
                cmd = convertstr % ("PEM", "DER")
                self.derkey = self._apply_ossl_cmd(cmd, rawkey)
            else:
                raise Exception(error_msg)
        else: # not PEM, try DER
            r,w,e = popen2.popen3(fmtstr % "DER")            
            w.write(rawkey)
            w.close()
            textkey = r.read()
            r.close()
            res = e.read()
            if res == '':
                self.format = "DER"
                self.derkey = rawkey
                self.textkey = textkey
                cmd = convertstr % ("DER", "PEM")
                self.pemkey = self._apply_ossl_cmd(cmd, rawkey)
                cmd = convertstr % ("DER", "DER")
                self.derkey = self._apply_ossl_cmd(cmd, rawkey)
            else:
                raise Exception(error_msg)     

        self.osslcmdbase = 'openssl rsa -inform %s ' % self.format

        r,w,e = popen2.popen3('openssl asn1parse -inform DER ')
        w.write(self.derkey)
        w.close()
        self.asn1parsekey = r.read()
        r.close()
        res = e.read()
        e.close()
        if res != '':
            raise Exception(error_msg)

        self.keypath = keypath

        # Parse the -text output of openssl to make things available
        l = self.textkey.split('\n', 1)
        if len(l) != 2:
            raise Exception(error_msg)
        cur, tmp = l
        i = 0
        k = self.possible_fields[i] # Private-Key: (
        cur = cur[len(k):] + '\n'
        while k:
            l = tmp.split('\n', 1)
            if len(l) != 2: # Over
                fields_dict[k] = cur
                break
            l, tmp = l

            newkey = 0
            # skip fields we have already seen, this is the purpose of 'i'
            for j in range(i, self.possible_fields_count):
                f = self.possible_fields[j]
                if l.startswith(f):
                    fields_dict[k] = cur
                    cur = l[len(f):] + '\n'
                    k = f
                    newkey = 1
                    i = j+1
                    break
            if newkey == 1:
                continue
            cur += l + '\n'

        # modulus length
        v = fields_dict["Private-Key: ("]
        self.modulusLen = None
        if v:
            self.modulusLen = int(v.split(' bit', 1)[0])
        if self.modulusLen is None:
            raise Exception(error_msg)
        
        # public exponent
        v = fields_dict["publicExponent:"]
        self.pubExp = None
        if v:
            self.pubExp = long(v.split('(', 1)[0])
        if self.pubExp is None:
            raise Exception(error_msg)

        tmp = {}
        for k in ["modulus:", "privateExponent:", "prime1:", "prime2:",
                  "exponent1:", "exponent2:", "coefficient:"]:
            v = fields_dict[k]
            if v:
                s = v.replace('\n', '').replace(' ', '').replace(':', '')
                tmp[k] = long(s, 16)
            else:
                raise Exception(error_msg)

        self.modulus     = tmp["modulus:"]
        self.privExp     = tmp["privateExponent:"]
        self.prime1      = tmp["prime1:"]
        self.prime2      = tmp["prime2:"] 
        self.exponent1   = tmp["exponent1:"]
        self.exponent2   = tmp["exponent2:"]
        self.coefficient = tmp["coefficient:"]

        self.key = RSA.construct((self.modulus, self.pubExp, self.privExp))

    def __str__(self):
        return self.derkey


# We inherit from PubKey to get access to all encryption and verification
# methods. To have that working, we simply need Cert to provide 
# modulusLen and key attribute.
# XXX Yes, it is a hack.
class Cert(OSSLHelper, _EncryptAndVerify):
    # Below are the fields we recognize in the -text output of openssl
    # and from which we extract information. We expect them in that
    # order. Number of spaces does matter.
    possible_fields = [ "        Version:",
                        "        Serial Number:",
                        "        Signature Algorithm:",
                        "        Issuer:",
                        "            Not Before:",
                        "            Not After :",
                        "        Subject:",
                        "            Public Key Algorithm:",
                        "                Modulus (",
                        "                Exponent:",
                        "            X509v3 Subject Key Identifier:",
                        "            X509v3 Authority Key Identifier:",
                        "                keyid:",
                        "                DirName:",
                        "                serial:",
                        "            X509v3 Basic Constraints:",
                        "            X509v3 Key Usage:",
                        "            X509v3 Extended Key Usage:",
                        "            X509v3 CRL Distribution Points:",
                        "            Authority Information Access:",
                        "    Signature Algorithm:" ]
    possible_fields_count = len(possible_fields)
    
    def __init__(self, certpath):
        error_msg = "Unable to import certificate."

        fields_dict = {}
        for k in self.possible_fields:
            fields_dict[k] = None

        self.certpath = None
        rawcert = None

        if (not '\x00' in certpath) and os.path.isfile(certpath): # file
            self.certpath = certpath
            cert_size = os.path.getsize(certpath)
            if cert_size > MAX_CERT_SIZE:
                raise Exception(error_msg)
            try:
                f = open(certpath)
                rawcert = f.read()
                f.close()
            except:
                raise Exception(error_msg)     
        else:
            rawcert = certpath
            
        if rawcert is None:
            raise Exception(error_msg)

        self.rawcert = rawcert

        # Let's try to get file format : PEM or DER.
        fmtstr = 'openssl x509 -text -inform %s -noout '
        convertstr = 'openssl x509 -inform %s -outform %s '
        cert_header = "-----BEGIN CERTIFICATE-----"
        cert_footer = "-----END CERTIFICATE-----"
        l = rawcert.split(cert_header, 1)
        if len(l) == 2: # looks like PEM
            tmp = l[1]
            l = tmp.split(cert_footer, 1)
            if len(l) == 2:
                tmp = l[0]
                rawcert = "%s%s%s\n" % (cert_header, tmp, cert_footer)
            else:
                raise Exception(error_msg)
            r,w,e = popen2.popen3(fmtstr % "PEM")
            w.write(rawcert)
            w.close()
            textcert = r.read()
            r.close()
            res = e.read()
            e.close()
            if res == '':
                self.format = "PEM"
                self.pemcert = rawcert
                self.textcert = textcert
                cmd = convertstr % ("PEM", "DER")
                self.dercert = self._apply_ossl_cmd(cmd, rawcert)
            else:
                raise Exception(error_msg)
        else: # not PEM, try DER
            r,w,e = popen2.popen3(fmtstr % "DER")            
            w.write(rawcert)
            w.close()
            textcert = r.read()
            r.close()
            res = e.read()
            if res == '':
                self.format = "DER"
                self.dercert = rawcert
                self.textcert = textcert
                cmd = convertstr % ("DER", "PEM")
                self.pemcert = self._apply_ossl_cmd(cmd, rawcert)
                cmd = convertstr % ("DER", "DER")                
                self.dercert = self._apply_ossl_cmd(cmd, rawcert)
            else:
                raise Exception(error_msg)

        self.osslcmdbase = 'openssl x509 -inform %s ' % self.format
                                                  
        r,w,e = popen2.popen3('openssl asn1parse -inform DER ')
        w.write(self.dercert)
        w.close()
        self.asn1parsecert = r.read()
        r.close()
        res = e.read()
        e.close()
        if res != '':
            raise Exception(error_msg)
        
        # Grab _raw_ X509v3 Authority Key Identifier, if any.
        tmp = self.asn1parsecert.split(":X509v3 Authority Key Identifier", 1)
        self.authorityKeyID = None
        if len(tmp) == 2:
            tmp = tmp[1]
            tmp = tmp.split("[HEX DUMP]:", 1)[1]
            self.authorityKeyID=tmp.split('\n',1)[0]

        # Grab _raw_ X509v3 Subject Key Identifier, if any.
        tmp = self.asn1parsecert.split(":X509v3 Subject Key Identifier", 1)
        self.subjectKeyID = None
        if len(tmp) == 2:
            tmp = tmp[1]
            tmp = tmp.split("[HEX DUMP]:", 1)[1]
            self.subjectKeyID=tmp.split('\n',1)[0]            

        # Get tbsCertificate using the worst hack. output of asn1parse
        # looks like that:
        #
        # 0:d=0  hl=4 l=1298 cons: SEQUENCE          
        # 4:d=1  hl=4 l=1018 cons: SEQUENCE          
        # ...
        #
        l1,l2 = self.asn1parsecert.split('\n', 2)[:2]
        hl1 = int(l1.split("hl=",1)[1].split("l=",1)[0])
        rem = l2.split("hl=",1)[1]
        hl2, rem = rem.split("l=",1)
        hl2 = int(hl2)
        l = int(rem.split("cons",1)[0])
        self.tbsCertificate = self.dercert[hl1:hl1+hl2+l]

        # Parse the -text output of openssl to make things available
        tmp = self.textcert.split('\n', 2)[2]
        l = tmp.split('\n', 1)
        if len(l) != 2:
            raise Exception(error_msg)
        cur, tmp = l
        i = 0
        k = self.possible_fields[i] # Version:
        cur = cur[len(k):] + '\n'
        while k:
            l = tmp.split('\n', 1)
            if len(l) != 2: # Over
                fields_dict[k] = cur
                break
            l, tmp = l

            newkey = 0
            # skip fields we have already seen, this is the purpose of 'i'
            for j in range(i, self.possible_fields_count):
                f = self.possible_fields[j]
                if l.startswith(f):
                    fields_dict[k] = cur
                    cur = l[len(f):] + '\n'
                    k = f
                    newkey = 1
                    i = j+1
                    break
            if newkey == 1:
                continue
            cur += l + '\n'

        # version
        v = fields_dict["        Version:"]
        self.version = None
        if v:
            self.version = int(v[1:2])
        if self.version is None:
            raise Exception(error_msg)

        # serial number
        v = fields_dict["        Serial Number:"]
        self.serial = None
        if v:
            v = v.replace('\n', '').strip()
            if "0x" in v:
                v = v.split("0x", 1)[1].split(')', 1)[0]
            v = v.replace(':', '').upper()
            if len(v) % 2:
                v = '0' + v
            self.serial = v
        if self.serial is None:
            raise Exception(error_msg)

        # Signature Algorithm        
        v = fields_dict["        Signature Algorithm:"]
        self.sigAlg = None
        if v:
            v = v.split('\n',1)[0]
            v = v.strip()
            self.sigAlg = v
        if self.sigAlg is None:
            raise Exception(error_msg)
        
        # issuer
        v = fields_dict["        Issuer:"]
        self.issuer = None
        if v:
            v = v.split('\n',1)[0]
            v = v.strip()
            self.issuer = v
        if self.issuer is None:
            raise Exception(error_msg)

        # not before
        v = fields_dict["            Not Before:"]
        self.notBefore_str = None
        if v:
            v = v.split('\n',1)[0]
            v = v.strip()
            self.notBefore_str = v
        if self.notBefore_str is None:
            raise Exception(error_msg)
        try:
            self.notBefore = time.strptime(self.notBefore_str,
                                           "%b %d %H:%M:%S %Y %Z")
        except:
            self.notBefore = time.strptime(self.notBefore_str,
                                           "%b %d %H:%M:%S %Y")
        self.notBefore_str_simple = time.strftime("%x", self.notBefore)
        
        # not after
        v = fields_dict["            Not After :"]
        self.notAfter_str = None
        if v:
            v = v.split('\n',1)[0]
            v = v.strip()
            self.notAfter_str = v
        if self.notAfter_str is None:
            raise Exception(error_msg)
        try:
            self.notAfter = time.strptime(self.notAfter_str,
                                          "%b %d %H:%M:%S %Y %Z")
        except:
            self.notAfter = time.strptime(self.notAfter_str,
                                          "%b %d %H:%M:%S %Y")            
        self.notAfter_str_simple = time.strftime("%x", self.notAfter)
        
        # subject
        v = fields_dict["        Subject:"]
        self.subject = None
        if v:
            v = v.split('\n',1)[0]
            v = v.strip()
            self.subject = v
        if self.subject is None:
            raise Exception(error_msg)
        
        # Public Key Algorithm
        v = fields_dict["            Public Key Algorithm:"]
        self.pubKeyAlg = None
        if v:
            v = v.split('\n',1)[0]
            v = v.strip()
            self.pubKeyAlg = v
        if self.pubKeyAlg is None:
            raise Exception(error_msg)
        
        # Modulus
        v = fields_dict["                Modulus ("]
        self.modulus = None
        if v:
            v,t = v.split(' bit):',1)
            self.modulusLen = int(v)
            t = t.replace(' ', '').replace('\n', ''). replace(':', '')
            self.modulus_hexdump = t
            self.modulus = long(t, 16)
        if self.modulus is None:
            raise Exception(error_msg)

        # Exponent
        v = fields_dict["                Exponent:"]
        self.exponent = None
        if v:
            v = v.split('(',1)[0]
            self.exponent = long(v)
        if self.exponent is None:
            raise Exception(error_msg)

        # Public Key instance
        self.key = RSA.construct((self.modulus, self.exponent, ))
        
        # Subject Key Identifier

        # Authority Key Identifier: keyid, dirname and serial
        self.authorityKeyID_keyid   = None
        self.authorityKeyID_dirname = None
        self.authorityKeyID_serial  = None
        if self.authorityKeyID: # (hex version already done using asn1parse)
            v = fields_dict["                keyid:"]
            if v:
                v = v.split('\n',1)[0]
                v = v.strip().replace(':', '')
                self.authorityKeyID_keyid = v
            v = fields_dict["                DirName:"]
            if v:
                v = v.split('\n',1)[0]
                self.authorityKeyID_dirname = v
            v = fields_dict["                serial:"]
            if v:
                v = v.split('\n',1)[0]
                v = v.strip().replace(':', '')
                self.authorityKeyID_serial = v                

        # Basic constraints
        self.basicConstraintsCritical = False
        self.basicConstraints=None
        v = fields_dict["            X509v3 Basic Constraints:"]
        if v:
            self.basicConstraints = {}
            v,t = v.split('\n',2)[:2]
            if "critical" in v:
                self.basicConstraintsCritical = True
            if "CA:" in t:
                self.basicConstraints["CA"] = t.split('CA:')[1][:4] == "TRUE"
            if "pathlen:" in t:
                self.basicConstraints["pathlen"] = int(t.split('pathlen:')[1])

        # X509v3 Key Usage
        self.keyUsage = []
        v = fields_dict["            X509v3 Key Usage:"]
        if v:   
            # man 5 x509v3_config
            ku_mapping = {"Digital Signature": "digitalSignature",
                          "Non Repudiation": "nonRepudiation",
                          "Key Encipherment": "keyEncipherment",
                          "Data Encipherment": "dataEncipherment",
                          "Key Agreement": "keyAgreement",
                          "Certificate Sign": "keyCertSign",
                          "CRL Sign": "cRLSign",
                          "Encipher Only": "encipherOnly",
                          "Decipher Only": "decipherOnly"}
            v = v.split('\n',2)[1]
            l = map(lambda x: x.strip(), v.split(','))
            while l:
                c = l.pop()
                if ku_mapping.has_key(c):
                    self.keyUsage.append(ku_mapping[c])
                else:
                    self.keyUsage.append(c) # Add it anyway
                    print "Found unknown X509v3 Key Usage: '%s'" % c
                    print "Report it to arno (at) natisbad.org for addition"

        # X509v3 Extended Key Usage
        self.extKeyUsage = []
        v = fields_dict["            X509v3 Extended Key Usage:"]
        if v:   
            # man 5 x509v3_config:
            eku_mapping = {"TLS Web Server Authentication": "serverAuth",
                           "TLS Web Client Authentication": "clientAuth",
                           "Code Signing": "codeSigning",
                           "E-mail Protection": "emailProtection",
                           "Time Stamping": "timeStamping",
                           "Microsoft Individual Code Signing": "msCodeInd",
                           "Microsoft Commercial Code Signing": "msCodeCom",
                           "Microsoft Trust List Signing": "msCTLSign",
                           "Microsoft Encrypted File System": "msEFS",
                           "Microsoft Server Gated Crypto": "msSGC",
                           "Netscape Server Gated Crypto": "nsSGC",
                           "IPSec End System": "iPsecEndSystem",
                           "IPSec Tunnel": "iPsecTunnel",
                           "IPSec User": "iPsecUser"}
            v = v.split('\n',2)[1]
            l = map(lambda x: x.strip(), v.split(','))
            while l:
                c = l.pop()
                if eku_mapping.has_key(c):
                    self.extKeyUsage.append(eku_mapping[c])
                else:
                    self.extKeyUsage.append(c) # Add it anyway
                    print "Found unknown X509v3 Extended Key Usage: '%s'" % c
                    print "Report it to arno (at) natisbad.org for addition"

        # CRL Distribution points
        self.cRLDistributionPoints = []
        v = fields_dict["            X509v3 CRL Distribution Points:"]
        if v:
            v = v.split("\n\n", 1)[0]
            v = v.split("URI:")[1:]
            self.CRLDistributionPoints = map(lambda x: x.strip(), v)
            
        # Authority Information Access: list of tuples ("method", "location")
        self.authorityInfoAccess = []
        v = fields_dict["            Authority Information Access:"]
        if v:
            v = v.split("\n\n", 1)[0]
            v = v.split("\n")[1:]
            for e in v:
                method, location = map(lambda x: x.strip(), e.split(" - ", 1))
                self.authorityInfoAccess.append((method, location))

        # signature field
        v = fields_dict["    Signature Algorithm:" ]
        self.sig = None
        if v:
            v = v.split('\n',1)[1]
            v = v.replace(' ', '').replace('\n', '')
            self.sig = "".join(map(lambda x: chr(int(x, 16)), v.split(':')))
            self.sigLen = len(self.sig)
        if self.sig is None:
            raise Exception(error_msg)

    def isIssuerCert(self, other):
        """
        True if 'other' issued 'self', i.e.:
          - self.issuer == other.subject
          - self is signed by other
        """
        # XXX should be done on raw values, instead of their textual repr
        if self.issuer != other.subject:
            return False

        # Sanity check regarding modulus length and the
        # signature length
        keyLen = (other.modulusLen + 7)/8
        if keyLen != self.sigLen:
            return False

        unenc = other.encrypt(self.sig) # public key encryption, i.e. decrypt

        # XXX Check block type (00 or 01 and type of padding)
        unenc = unenc[1:]
        if not '\x00' in unenc:
            return False
        pos = unenc.index('\x00')
        unenc = unenc[pos+1:]

        found = None
        for k in _hashFuncParams.keys():
            if self.sigAlg.startswith(k):
                found = k
                break
        if not found:
            return False
        hlen, hfunc, digestInfo =  _hashFuncParams[k]
        
        if len(unenc) != (hlen+len(digestInfo)):
            return False

        if not unenc.startswith(digestInfo):
            return False

        h = unenc[-hlen:]
        myh = hfunc(self.tbsCertificate)

        return h == myh

    def chain(self, certlist):
        """
        Construct the chain of certificates leading from 'self' to the
        self signed root using the certificates in 'certlist'. If the
        list does not provide all the required certs to go to the root
        the function returns a incomplete chain starting with the
        certificate. This fact can be tested by tchecking if the last
        certificate of the returned chain is self signed (if c is the
        result, c[-1].isSelfSigned())
        """
        d = {}
        for c in certlist:
            # XXX we should check if we have duplicate
            d[c.subject] = c
        res = [self]
        cur = self
        while not cur.isSelfSigned():
            if d.has_key(cur.issuer):
                possible_issuer = d[cur.issuer]
                if cur.isIssuerCert(possible_issuer):
                    res.append(possible_issuer)
                    cur = possible_issuer
                else:
                    break
        return res

    def remainingDays(self, now=None):
        """
        Based on the value of notBefore field, returns the number of
        days the certificate will still be valid. The date used for the
        comparison is the current and local date, as returned by 
        time.localtime(), except if 'now' argument is provided another
        one. 'now' argument can be given as either a time tuple or a string
        representing the date. Accepted format for the string version
        are:
        
         - '%b %d %H:%M:%S %Y %Z' e.g. 'Jan 30 07:38:59 2008 GMT'
         - '%m/%d/%y' e.g. '01/30/08' (less precise)

        If the certificate is no more valid at the date considered, then,
        a negative value is returned representing the number of days
        since it has expired.
        
        The number of days is returned as a float to deal with the unlikely
        case of certificates that are still just valid.
        """
        if now is None:
            now = time.localtime()
        elif type(now) is str:
            try:
                if '/' in now:
                    now = time.strptime(now, '%m/%d/%y')
                else:
                    now = time.strptime(now, '%b %d %H:%M:%S %Y %Z')
            except:
                warning("Bad time string provided '%s'. Using current time" % now)
                now = time.localtime()

        now = time.mktime(now)
        nft = time.mktime(self.notAfter)
        diff = (nft - now)/(24.*3600)
        return diff


    # return SHA-1 hash of cert embedded public key
    # !! At the moment, the trailing 0 is in the hashed string if any
    def keyHash(self):
        m = self.modulus_hexdump
        res = []
        i = 0
        l = len(m)
        while i<l: # get a string version of modulus
            res.append(struct.pack("B", int(m[i:i+2], 16)))
            i += 2
        return sha.new("".join(res)).digest()    

    def output(self, fmt="DER"):
        if fmt == "DER":
            return self.dercert
        elif fmt == "PEM":
            return self.pemcert
        elif fmt == "TXT":
            return self.textcert

    def export(self, filename, fmt="DER"):
        """
        Export certificate in 'fmt' format (PEM, DER or TXT) to file 'filename'
        """
        f = open(filename, "wb")
        f.write(self.output(fmt))
        f.close()

    def isSelfSigned(self):
        """
        Return True if the certificate is self signed:
          - issuer and subject are the same
          - the signature of the certificate is valid.
        """
        if self.issuer == self.subject:
            return self.isIssuerCert(self)
        return False

    # Print main informations stored in certificate
    def show(self):
        print "Serial: %s" % self.serial
        print "Issuer: " + self.issuer
        print "Subject: " + self.subject
        print "Validity: %s to %s" % (self.notBefore_str_simple,
                                      self.notAfter_str_simple)

    def __repr__(self):
        return "[X.509 Cert. Subject:%s, Issuer:%s]" % (self.subject, self.issuer)

    def __str__(self):
        return self.dercert

    def verifychain(self, anchors, untrusted=None):
        """
        Perform verification of certificate chains for that certificate. The
        behavior of verifychain method is mapped (and also based) on openssl
        verify userland tool (man 1 verify).
        A list of anchors is required. untrusted parameter can be provided 
        a list of untrusted certificates that can be used to reconstruct the
        chain.

        If you have a lot of certificates to verify against the same
        list of anchor, consider constructing this list as a cafile
        and use .verifychain_from_cafile() instead.
        """
        cafile = create_temporary_ca_file(anchors)
        if not cafile:
            return False
        untrusted_file = None
        if untrusted:
            untrusted_file = create_temporary_ca_file(untrusted) # hack
            if not untrusted_file:
                os.unlink(cafile)
                return False
        res = self.verifychain_from_cafile(cafile, 
                                           untrusted_file=untrusted_file)
        os.unlink(cafile)
        if untrusted_file:
            os.unlink(untrusted_file)
        return res

    def verifychain_from_cafile(self, cafile, untrusted_file=None):
        """
        Does the same job as .verifychain() but using the list of anchors
        from the cafile. This is useful (because more efficient) if
        you have a lot of certificates to verify do it that way: it
        avoids the creation of a cafile from anchors at each call.

        As for .verifychain(), a list of untrusted certificates can be
        passed (as a file, this time)
        """
        u = ""
        if untrusted_file:
            u = "-untrusted %s" % untrusted_file
        try:
            cmd = "openssl verify -CAfile %s %s " % (cafile, u)
            pemcert = self.output(fmt="PEM")
            cmdres = self._apply_ossl_cmd(cmd, pemcert)
        except:
            return False
        return cmdres.endswith("\nOK\n") or cmdres.endswith(": OK\n")

    def verifychain_from_capath(self, capath, untrusted_file=None):
        """
        Does the same job as .verifychain_from_cafile() but using the list
        of anchors in capath directory. The directory should contain
        certificates files in PEM format with associated links as
        created using c_rehash utility (man c_rehash).

        As for .verifychain_from_cafile(), a list of untrusted certificates
        can be passed as a file (concatenation of the certificates in
        PEM format)
        """
        u = ""
        if untrusted_file:
            u = "-untrusted %s" % untrusted_file
        try:
            cmd = "openssl verify -CApath %s %s " % (capath, u)
            pemcert = self.output(fmt="PEM")
            cmdres = self._apply_ossl_cmd(cmd, pemcert)
        except:
            return False
        return cmdres.endswith("\nOK\n") or cmdres.endswith(": OK\n")

    def is_revoked(self, crl_list):
        """
        Given a list of trusted CRL (their signature has already been
        verified with trusted anchors), this function returns True if
        the certificate is marked as revoked by one of those CRL.

        Note that if the Certificate was on hold in a previous CRL and
        is now valid again in a new CRL and bot are in the list, it
        will be considered revoked: this is because _all_ CRLs are 
        checked (not only the freshest) and revocation status is not
        handled.

        Also note that the check on the issuer is performed on the
        Authority Key Identifier if available in _both_ the CRL and the
        Cert. Otherwise, the issuers are simply compared.
        """
        for c in crl_list:
            if (self.authorityKeyID is not None and 
                c.authorityKeyID is not None and
                self.authorityKeyID == c.authorityKeyID):
                return self.serial in map(lambda x: x[0], c.revoked_cert_serials)
            elif (self.issuer == c.issuer):
                return self.serial in map(lambda x: x[0], c.revoked_cert_serials)
        return False

def print_chain(l):
    llen = len(l) - 1
    if llen < 0:
        return ""
    c = l[llen]
    llen -= 1
    s = "_ "
    if not c.isSelfSigned():
        s = "_ ... [Missing Root]\n"
    else:
        s += "%s [Self Signed]\n" % c.subject
    i = 1
    while (llen != -1):
        c = l[llen]
        s += "%s\_ %s" % (" "*i, c.subject)
        if llen != 0:
            s += "\n"
        i += 2
        llen -= 1
    print s

# import popen2
# a=popen2.Popen3("openssl crl -text -inform DER -noout ", capturestderr=True)
# a.tochild.write(open("samples/klasa1.crl").read())
# a.tochild.close()
# a.poll()

class CRL(OSSLHelper):
    # Below are the fields we recognize in the -text output of openssl
    # and from which we extract information. We expect them in that
    # order. Number of spaces does matter.
    possible_fields = [ "        Version",
                        "        Signature Algorithm:",
                        "        Issuer:",
                        "        Last Update:",
                        "        Next Update:",
                        "        CRL extensions:",
                        "            X509v3 Issuer Alternative Name:",
                        "            X509v3 Authority Key Identifier:", 
                        "                keyid:",
                        "                DirName:",
                        "                serial:",
                        "            X509v3 CRL Number:", 
                        "Revoked Certificates:",
                        "No Revoked Certificates.",
                        "    Signature Algorithm:" ]
    possible_fields_count = len(possible_fields)

    def __init__(self, crlpath):
        error_msg = "Unable to import CRL."

        fields_dict = {}
        for k in self.possible_fields:
            fields_dict[k] = None

        self.crlpath = None
        rawcrl = None

        if (not '\x00' in crlpath) and os.path.isfile(crlpath):
            self.crlpath = crlpath
            cert_size = os.path.getsize(crlpath)
            if cert_size > MAX_CRL_SIZE:
                raise Exception(error_msg)
            try:
                f = open(crlpath)
                rawcrl = f.read()
                f.close()
            except:
                raise Exception(error_msg)     
        else:
            rawcrl = crlpath

        if rawcrl is None:
            raise Exception(error_msg)

        self.rawcrl = rawcrl

        # Let's try to get file format : PEM or DER.
        fmtstr = 'openssl crl -text -inform %s -noout '
        convertstr = 'openssl crl -inform %s -outform %s '
        crl_header = "-----BEGIN X509 CRL-----"
        crl_footer = "-----END X509 CRL-----"
        l = rawcrl.split(crl_header, 1)
        if len(l) == 2: # looks like PEM
            tmp = l[1]
            l = tmp.split(crl_footer, 1)
            if len(l) == 2:
                tmp = l[0]
                rawcrl = "%s%s%s\n" % (crl_header, tmp, crl_footer)
            else:
                raise Exception(error_msg)
            r,w,e = popen2.popen3(fmtstr % "PEM")
            w.write(rawcrl)
            w.close()
            textcrl = r.read()
            r.close()
            res = e.read()
            e.close()
            if res == '':
                self.format = "PEM"
                self.pemcrl = rawcrl
                self.textcrl = textcrl
                cmd = convertstr % ("PEM", "DER")
                self.dercrl = self._apply_ossl_cmd(cmd, rawcrl)
            else:
                raise Exception(error_msg)
        else: # not PEM, try DER
            r,w,e = popen2.popen3(fmtstr % "DER")            
            w.write(rawcrl)
            w.close()
            textcrl = r.read()
            r.close()
            res = e.read()
            if res == '':
                self.format = "DER"
                self.dercrl = rawcrl
                self.textcrl = textcrl
                cmd = convertstr % ("DER", "PEM")
                self.pemcrl = self._apply_ossl_cmd(cmd, rawcrl)
                cmd = convertstr % ("DER", "DER")
                self.dercrl = self._apply_ossl_cmd(cmd, rawcrl)
            else:
                raise Exception(error_msg)

        self.osslcmdbase = 'openssl crl -inform %s ' % self.format

        r,w,e = popen2.popen3('openssl asn1parse -inform DER ')
        w.write(self.dercrl)
        w.close()
        self.asn1parsecrl = r.read()
        r.close()
        res = e.read()
        e.close()
        if res != '':
            raise Exception(error_msg)

        # Grab _raw_ X509v3 Authority Key Identifier, if any.
        tmp = self.asn1parsecrl.split(":X509v3 Authority Key Identifier", 1)
        self.authorityKeyID = None
        if len(tmp) == 2:
            tmp = tmp[1]
            tmp = tmp.split("[HEX DUMP]:", 1)[1]
            self.authorityKeyID=tmp.split('\n',1)[0]

        # Parse the -text output of openssl to make things available
        tmp = self.textcrl.split('\n', 1)[1]
        l = tmp.split('\n', 1)
        if len(l) != 2:
            raise Exception(error_msg)
        cur, tmp = l
        i = 0
        k = self.possible_fields[i] # Version
        cur = cur[len(k):] + '\n'
        while k:
            l = tmp.split('\n', 1)
            if len(l) != 2: # Over
                fields_dict[k] = cur
                break
            l, tmp = l

            newkey = 0
            # skip fields we have already seen, this is the purpose of 'i'
            for j in range(i, self.possible_fields_count):
                f = self.possible_fields[j]
                if l.startswith(f):
                    fields_dict[k] = cur
                    cur = l[len(f):] + '\n'
                    k = f
                    newkey = 1
                    i = j+1
                    break
            if newkey == 1:
                continue
            cur += l + '\n'

        # version
        v = fields_dict["        Version"]
        self.version = None
        if v:
            self.version = int(v[1:2])
        if self.version is None:
            raise Exception(error_msg)

        # signature algorithm
        v = fields_dict["        Signature Algorithm:"]
        self.sigAlg = None
        if v:
            v = v.split('\n',1)[0]
            v = v.strip()
            self.sigAlg = v
        if self.sigAlg is None:
            raise Exception(error_msg)

        # issuer
        v = fields_dict["        Issuer:"]
        self.issuer = None
        if v:
            v = v.split('\n',1)[0]
            v = v.strip()
            self.issuer = v
        if self.issuer is None:
            raise Exception(error_msg)

        # last update
        v = fields_dict["        Last Update:"]
        self.lastUpdate_str = None
        if v:
            v = v.split('\n',1)[0]
            v = v.strip()
            self.lastUpdate_str = v
        if self.lastUpdate_str is None:
            raise Exception(error_msg)
        self.lastUpdate = time.strptime(self.lastUpdate_str,
                                       "%b %d %H:%M:%S %Y %Z")
        self.lastUpdate_str_simple = time.strftime("%x", self.lastUpdate)

        # next update
        v = fields_dict["        Next Update:"]
        self.nextUpdate_str = None
        if v:
            v = v.split('\n',1)[0]
            v = v.strip()
            self.nextUpdate_str = v
        if self.nextUpdate_str is None:
            raise Exception(error_msg)
        self.nextUpdate = time.strptime(self.nextUpdate_str,
                                       "%b %d %H:%M:%S %Y %Z")
        self.nextUpdate_str_simple = time.strftime("%x", self.nextUpdate)
        
        # XXX Do something for Issuer Alternative Name

        # Authority Key Identifier: keyid, dirname and serial
        self.authorityKeyID_keyid   = None
        self.authorityKeyID_dirname = None
        self.authorityKeyID_serial  = None
        if self.authorityKeyID: # (hex version already done using asn1parse)
            v = fields_dict["                keyid:"]
            if v:
                v = v.split('\n',1)[0]
                v = v.strip().replace(':', '')
                self.authorityKeyID_keyid = v
            v = fields_dict["                DirName:"]
            if v:
                v = v.split('\n',1)[0]
                self.authorityKeyID_dirname = v
            v = fields_dict["                serial:"]
            if v:
                v = v.split('\n',1)[0]
                v = v.strip().replace(':', '')
                self.authorityKeyID_serial = v

        # number
        v = fields_dict["            X509v3 CRL Number:"]
        self.number = None
        if v:
            v = v.split('\n',2)[1]
            v = v.strip()
            self.number = int(v)

        # Get the list of serial numbers of revoked certificates
        self.revoked_cert_serials = []
        v = fields_dict["Revoked Certificates:"]
        t = fields_dict["No Revoked Certificates."]
        if (t is None and v is not None):
            v = v.split("Serial Number: ")[1:]
            for r in v:
                s,d = r.split('\n', 1)
                s = s.split('\n', 1)[0]
                d = d.split("Revocation Date:", 1)[1]
                d = time.strptime(d.strip(), "%b %d %H:%M:%S %Y %Z")
                self.revoked_cert_serials.append((s,d))

        # signature field
        v = fields_dict["    Signature Algorithm:" ]
        self.sig = None
        if v:
            v = v.split('\n',1)[1]
            v = v.replace(' ', '').replace('\n', '')
            self.sig = "".join(map(lambda x: chr(int(x, 16)), v.split(':')))
            self.sigLen = len(self.sig)
        if self.sig is None:
            raise Exception(error_msg)

    def __str__(self):
        return self.dercrl
        
    # Print main informations stored in CRL
    def show(self):
        print "Version: %d" % self.version
        print "sigAlg: " + self.sigAlg
        print "Issuer: " + self.issuer
        print "lastUpdate: %s" % self.lastUpdate_str_simple
        print "nextUpdate: %s" % self.nextUpdate_str_simple

    def verify(self, anchors):
        """
        Return True if the CRL is signed by one of the provided
        anchors. False on error (invalid signature, missing anchorand, ...)
        """
        cafile = create_temporary_ca_file(anchors)
        if cafile is None:
            return False
        try:
            cmd = self.osslcmdbase + '-noout -CAfile %s 2>&1' % cafile
            cmdres = self._apply_ossl_cmd(cmd, self.rawcrl)
        except:
            os.unlink(cafile)
            return False
        os.unlink(cafile)
        return "verify OK" in cmdres