/usr/share/pyshared/scapy/crypto/cert.py is in python-scapy 2.2.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 | ## This file is part of Scapy
## See http://www.secdev.org/projects/scapy for more informations
## Copyright (C) Arnaud Ebalard <arno@natisbad.org>
## This program is published under a GPLv2 license
"""
Cryptographic certificates.
"""
import os, sys, math, socket, struct, sha, hmac, string, time
import random, popen2, tempfile
from scapy.utils import strxor
try:
HAS_HASHLIB=True
import hashlib
except:
HAS_HASHLIB=False
from Crypto.PublicKey import *
from Crypto.Cipher import *
from Crypto.Hash import *
# Maximum allowed size in bytes for a certificate file, to avoid
# loading huge file when importing a cert
MAX_KEY_SIZE=50*1024
MAX_CERT_SIZE=50*1024
MAX_CRL_SIZE=10*1024*1024 # some are that big
#####################################################################
# Some helpers
#####################################################################
def warning(m):
print "WARNING: %s" % m
def randstring(l):
"""
Returns a random string of length l (l >= 0)
"""
tmp = map(lambda x: struct.pack("B", random.randrange(0, 256, 1)), [""]*l)
return "".join(tmp)
def zerofree_randstring(l):
"""
Returns a random string of length l (l >= 0) without zero in it.
"""
tmp = map(lambda x: struct.pack("B", random.randrange(1, 256, 1)), [""]*l)
return "".join(tmp)
def strand(s1, s2):
"""
Returns the binary AND of the 2 provided strings s1 and s2. s1 and s2
must be of same length.
"""
return "".join(map(lambda x,y:chr(ord(x)&ord(y)), s1, s2))
# OS2IP function defined in RFC 3447 for octet string to integer conversion
def pkcs_os2ip(x):
"""
Accepts a byte string as input parameter and return the associated long
value:
Input : x octet string to be converted
Output: x corresponding nonnegative integer
Reverse function is pkcs_i2osp()
"""
return RSA.number.bytes_to_long(x)
# IP2OS function defined in RFC 3447 for octet string to integer conversion
def pkcs_i2osp(x,xLen):
"""
Converts a long (the first parameter) to the associated byte string
representation of length l (second parameter). Basically, the length
parameters allow the function to perform the associated padding.
Input : x nonnegative integer to be converted
xLen intended length of the resulting octet string
Output: x corresponding nonnegative integer
Reverse function is pkcs_os2ip().
"""
z = RSA.number.long_to_bytes(x)
padlen = max(0, xLen-len(z))
return '\x00'*padlen + z
# for every hash function a tuple is provided, giving access to
# - hash output length in byte
# - associated hash function that take data to be hashed as parameter
# XXX I do not provide update() at the moment.
# - DER encoding of the leading bits of digestInfo (the hash value
# will be concatenated to create the complete digestInfo).
#
# Notes:
# - MD4 asn.1 value should be verified. Also, as stated in
# PKCS#1 v2.1, MD4 should not be used.
# - hashlib is available from http://code.krypto.org/python/hashlib/
# - 'tls' one is the concatenation of both md5 and sha1 hashes used
# by SSL/TLS when signing/verifying things
_hashFuncParams = {
"md2" : (16,
lambda x: MD2.new(x).digest(),
'\x30\x20\x30\x0c\x06\x08\x2a\x86\x48\x86\xf7\x0d\x02\x02\x05\x00\x04\x10'),
"md4" : (16,
lambda x: MD4.new(x).digest(),
'\x30\x20\x30\x0c\x06\x08\x2a\x86\x48\x86\xf7\x0d\x02\x04\x05\x00\x04\x10'), # is that right ?
"md5" : (16,
lambda x: MD5.new(x).digest(),
'\x30\x20\x30\x0c\x06\x08\x2a\x86\x48\x86\xf7\x0d\x02\x05\x05\x00\x04\x10'),
"sha1" : (20,
lambda x: SHA.new(x).digest(),
'\x30\x21\x30\x09\x06\x05\x2b\x0e\x03\x02\x1a\x05\x00\x04\x14'),
"tls" : (36,
lambda x: MD5.new(x).digest() + SHA.new(x).digest(),
'') }
if HAS_HASHLIB:
_hashFuncParams["sha224"] = (28,
lambda x: hashlib.sha224(x).digest(),
'\x30\x2d\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x04\x05\x00\x04\x1c')
_hashFuncParams["sha256"] = (32,
lambda x: hashlib.sha256(x).digest(),
'\x30\x31\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x01\x05\x00\x04\x20')
_hashFuncParams["sha384"] = (48,
lambda x: hashlib.sha384(x).digest(),
'\x30\x41\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x02\x05\x00\x04\x30')
_hashFuncParams["sha512"] = (64,
lambda x: hashlib.sha512(x).digest(),
'\x30\x51\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x03\x05\x00\x04\x40')
else:
warning("hashlib support is not available. Consider installing it")
warning("if you need sha224, sha256, sha384 and sha512 algs.")
def pkcs_mgf1(mgfSeed, maskLen, h):
"""
Implements generic MGF1 Mask Generation function as described in
Appendix B.2.1 of RFC 3447. The hash function is passed by name.
valid values are 'md2', 'md4', 'md5', 'sha1', 'tls, 'sha256',
'sha384' and 'sha512'. Returns None on error.
Input:
mgfSeed: seed from which mask is generated, an octet string
maskLen: intended length in octets of the mask, at most 2^32 * hLen
hLen (see below)
h : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls',
'sha256', 'sha384'). hLen denotes the length in octets of
the hash function output.
Output:
an octet string of length maskLen
"""
# steps are those of Appendix B.2.1
if not _hashFuncParams.has_key(h):
warning("pkcs_mgf1: invalid hash (%s) provided")
return None
hLen = _hashFuncParams[h][0]
hFunc = _hashFuncParams[h][1]
if maskLen > 2**32 * hLen: # 1)
warning("pkcs_mgf1: maskLen > 2**32 * hLen")
return None
T = "" # 2)
maxCounter = math.ceil(float(maskLen) / float(hLen)) # 3)
counter = 0
while counter < maxCounter:
C = pkcs_i2osp(counter, 4)
T += hFunc(mgfSeed + C)
counter += 1
return T[:maskLen]
def pkcs_emsa_pss_encode(M, emBits, h, mgf, sLen):
"""
Implements EMSA-PSS-ENCODE() function described in Sect. 9.1.1 of RFC 3447
Input:
M : message to be encoded, an octet string
emBits: maximal bit length of the integer resulting of pkcs_os2ip(EM),
where EM is the encoded message, output of the function.
h : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls',
'sha256', 'sha384'). hLen denotes the length in octets of
the hash function output.
mgf : the mask generation function f : seed, maskLen -> mask
sLen : intended length in octets of the salt
Output:
encoded message, an octet string of length emLen = ceil(emBits/8)
On error, None is returned.
"""
# 1) is not done
hLen = _hashFuncParams[h][0] # 2)
hFunc = _hashFuncParams[h][1]
mHash = hFunc(M)
emLen = int(math.ceil(emBits/8.))
if emLen < hLen + sLen + 2: # 3)
warning("encoding error (emLen < hLen + sLen + 2)")
return None
salt = randstring(sLen) # 4)
MPrime = '\x00'*8 + mHash + salt # 5)
H = hFunc(MPrime) # 6)
PS = '\x00'*(emLen - sLen - hLen - 2) # 7)
DB = PS + '\x01' + salt # 8)
dbMask = mgf(H, emLen - hLen - 1) # 9)
maskedDB = strxor(DB, dbMask) # 10)
l = (8*emLen - emBits)/8 # 11)
rem = 8*emLen - emBits - 8*l # additionnal bits
andMask = l*'\x00'
if rem:
j = chr(reduce(lambda x,y: x+y, map(lambda x: 1<<x, range(8-rem))))
andMask += j
l += 1
maskedDB = strand(maskedDB[:l], andMask) + maskedDB[l:]
EM = maskedDB + H + '\xbc' # 12)
return EM # 13)
def pkcs_emsa_pss_verify(M, EM, emBits, h, mgf, sLen):
"""
Implements EMSA-PSS-VERIFY() function described in Sect. 9.1.2 of RFC 3447
Input:
M : message to be encoded, an octet string
EM : encoded message, an octet string of length emLen = ceil(emBits/8)
emBits: maximal bit length of the integer resulting of pkcs_os2ip(EM)
h : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls',
'sha256', 'sha384'). hLen denotes the length in octets of
the hash function output.
mgf : the mask generation function f : seed, maskLen -> mask
sLen : intended length in octets of the salt
Output:
True if the verification is ok, False otherwise.
"""
# 1) is not done
hLen = _hashFuncParams[h][0] # 2)
hFunc = _hashFuncParams[h][1]
mHash = hFunc(M)
emLen = int(math.ceil(emBits/8.)) # 3)
if emLen < hLen + sLen + 2:
return False
if EM[-1] != '\xbc': # 4)
return False
l = emLen - hLen - 1 # 5)
maskedDB = EM[:l]
H = EM[l:l+hLen]
l = (8*emLen - emBits)/8 # 6)
rem = 8*emLen - emBits - 8*l # additionnal bits
andMask = l*'\xff'
if rem:
val = reduce(lambda x,y: x+y, map(lambda x: 1<<x, range(8-rem)))
j = chr(~val & 0xff)
andMask += j
l += 1
if strand(maskedDB[:l], andMask) != '\x00'*l:
return False
dbMask = mgf(H, emLen - hLen - 1) # 7)
DB = strxor(maskedDB, dbMask) # 8)
l = (8*emLen - emBits)/8 # 9)
rem = 8*emLen - emBits - 8*l # additionnal bits
andMask = l*'\x00'
if rem:
j = chr(reduce(lambda x,y: x+y, map(lambda x: 1<<x, range(8-rem))))
andMask += j
l += 1
DB = strand(DB[:l], andMask) + DB[l:]
l = emLen - hLen - sLen - 1 # 10)
if DB[:l] != '\x00'*(l-1) + '\x01':
return False
salt = DB[-sLen:] # 11)
MPrime = '\x00'*8 + mHash + salt # 12)
HPrime = hFunc(MPrime) # 13)
return H == HPrime # 14)
def pkcs_emsa_pkcs1_v1_5_encode(M, emLen, h): # section 9.2 of RFC 3447
"""
Implements EMSA-PKCS1-V1_5-ENCODE() function described in Sect.
9.2 of RFC 3447.
Input:
M : message to be encode, an octet string
emLen: intended length in octets of the encoded message, at least
tLen + 11, where tLen is the octet length of the DER encoding
T of a certain value computed during the encoding operation.
h : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls',
'sha256', 'sha384'). hLen denotes the length in octets of
the hash function output.
Output:
encoded message, an octet string of length emLen
On error, None is returned.
"""
hLen = _hashFuncParams[h][0] # 1)
hFunc = _hashFuncParams[h][1]
H = hFunc(M)
hLeadingDigestInfo = _hashFuncParams[h][2] # 2)
T = hLeadingDigestInfo + H
tLen = len(T)
if emLen < tLen + 11: # 3)
warning("pkcs_emsa_pkcs1_v1_5_encode: intended encoded message length too short")
return None
PS = '\xff'*(emLen - tLen - 3) # 4)
EM = '\x00' + '\x01' + PS + '\x00' + T # 5)
return EM # 6)
# XXX should add other pgf1 instance in a better fashion.
def create_ca_file(anchor_list, filename):
"""
Concatenate all the certificates (PEM format for the export) in
'anchor_list' and write the result to file 'filename'. On success
'filename' is returned, None otherwise.
If you are used to OpenSSL tools, this function builds a CAfile
that can be used for certificate and CRL check.
Also see create_temporary_ca_file().
"""
try:
f = open(filename, "w")
for a in anchor_list:
s = a.output(fmt="PEM")
f.write(s)
f.close()
except:
return None
return filename
def create_temporary_ca_file(anchor_list):
"""
Concatenate all the certificates (PEM format for the export) in
'anchor_list' and write the result to file to a temporary file
using mkstemp() from tempfile module. On success 'filename' is
returned, None otherwise.
If you are used to OpenSSL tools, this function builds a CAfile
that can be used for certificate and CRL check.
Also see create_temporary_ca_file().
"""
try:
f, fname = tempfile.mkstemp()
for a in anchor_list:
s = a.output(fmt="PEM")
l = os.write(f, s)
os.close(f)
except:
return None
return fname
def create_temporary_ca_path(anchor_list, folder):
"""
Create a CA path folder as defined in OpenSSL terminology, by
storing all certificates in 'anchor_list' list in PEM format
under provided 'folder' and then creating the associated links
using the hash as usually done by c_rehash.
Note that you can also include CRL in 'anchor_list'. In that
case, they will also be stored under 'folder' and associated
links will be created.
In folder, the files are created with names of the form
0...ZZ.pem. If you provide an empty list, folder will be created
if it does not already exist, but that's all.
The number of certificates written to folder is returned on
success, None on error.
"""
# We should probably avoid writing duplicate anchors and also
# check if they are all certs.
try:
if not os.path.isdir(folder):
os.makedirs(folder)
except:
return None
l = len(anchor_list)
if l == 0:
return None
fmtstr = "%%0%sd.pem" % math.ceil(math.log(l, 10))
i = 0
try:
for a in anchor_list:
fname = os.path.join(folder, fmtstr % i)
f = open(fname, "w")
s = a.output(fmt="PEM")
f.write(s)
f.close()
i += 1
except:
return None
r,w=popen2.popen2("c_rehash %s" % folder)
r.close(); w.close()
return l
#####################################################################
# Public Key Cryptography related stuff
#####################################################################
class OSSLHelper:
def _apply_ossl_cmd(self, osslcmd, rawdata):
r,w=popen2.popen2(osslcmd)
w.write(rawdata)
w.close()
res = r.read()
r.close()
return res
class _EncryptAndVerify:
### Below are encryption methods
def _rsaep(self, m):
"""
Internal method providing raw RSA encryption, i.e. simple modular
exponentiation of the given message representative 'm', a long
between 0 and n-1.
This is the encryption primitive RSAEP described in PKCS#1 v2.1,
i.e. RFC 3447 Sect. 5.1.1.
Input:
m: message representative, a long between 0 and n-1, where
n is the key modulus.
Output:
ciphertext representative, a long between 0 and n-1
Not intended to be used directly. Please, see encrypt() method.
"""
n = self.modulus
if type(m) is int:
m = long(m)
if type(m) is not long or m > n-1:
warning("Key._rsaep() expects a long between 0 and n-1")
return None
return self.key.encrypt(m, "")[0]
def _rsaes_pkcs1_v1_5_encrypt(self, M):
"""
Implements RSAES-PKCS1-V1_5-ENCRYPT() function described in section
7.2.1 of RFC 3447.
Input:
M: message to be encrypted, an octet string of length mLen, where
mLen <= k - 11 (k denotes the length in octets of the key modulus)
Output:
ciphertext, an octet string of length k
On error, None is returned.
"""
# 1) Length checking
mLen = len(M)
k = self.modulusLen / 8
if mLen > k - 11:
warning("Key._rsaes_pkcs1_v1_5_encrypt(): message too "
"long (%d > %d - 11)" % (mLen, k))
return None
# 2) EME-PKCS1-v1_5 encoding
PS = zerofree_randstring(k - mLen - 3) # 2.a)
EM = '\x00' + '\x02' + PS + '\x00' + M # 2.b)
# 3) RSA encryption
m = pkcs_os2ip(EM) # 3.a)
c = self._rsaep(m) # 3.b)
C = pkcs_i2osp(c, k) # 3.c)
return C # 4)
def _rsaes_oaep_encrypt(self, M, h=None, mgf=None, L=None):
"""
Internal method providing RSAES-OAEP-ENCRYPT as defined in Sect.
7.1.1 of RFC 3447. Not intended to be used directly. Please, see
encrypt() method for type "OAEP".
Input:
M : message to be encrypted, an octet string of length mLen
where mLen <= k - 2*hLen - 2 (k denotes the length in octets
of the RSA modulus and hLen the length in octets of the hash
function output)
h : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls',
'sha256', 'sha384'). hLen denotes the length in octets of
the hash function output. 'sha1' is used by default if not
provided.
mgf: the mask generation function f : seed, maskLen -> mask
L : optional label to be associated with the message; the default
value for L, if not provided is the empty string
Output:
ciphertext, an octet string of length k
On error, None is returned.
"""
# The steps below are the one described in Sect. 7.1.1 of RFC 3447.
# 1) Length Checking
# 1.a) is not done
mLen = len(M)
if h is None:
h = "sha1"
if not _hashFuncParams.has_key(h):
warning("Key._rsaes_oaep_encrypt(): unknown hash function %s.", h)
return None
hLen = _hashFuncParams[h][0]
hFun = _hashFuncParams[h][1]
k = self.modulusLen / 8
if mLen > k - 2*hLen - 2: # 1.b)
warning("Key._rsaes_oaep_encrypt(): message too long.")
return None
# 2) EME-OAEP encoding
if L is None: # 2.a)
L = ""
lHash = hFun(L)
PS = '\x00'*(k - mLen - 2*hLen - 2) # 2.b)
DB = lHash + PS + '\x01' + M # 2.c)
seed = randstring(hLen) # 2.d)
if mgf is None: # 2.e)
mgf = lambda x,y: pkcs_mgf1(x,y,h)
dbMask = mgf(seed, k - hLen - 1)
maskedDB = strxor(DB, dbMask) # 2.f)
seedMask = mgf(maskedDB, hLen) # 2.g)
maskedSeed = strxor(seed, seedMask) # 2.h)
EM = '\x00' + maskedSeed + maskedDB # 2.i)
# 3) RSA Encryption
m = pkcs_os2ip(EM) # 3.a)
c = self._rsaep(m) # 3.b)
C = pkcs_i2osp(c, k) # 3.c)
return C # 4)
def encrypt(self, m, t=None, h=None, mgf=None, L=None):
"""
Encrypt message 'm' using 't' encryption scheme where 't' can be:
- None: the message 'm' is directly applied the RSAEP encryption
primitive, as described in PKCS#1 v2.1, i.e. RFC 3447
Sect 5.1.1. Simply put, the message undergo a modular
exponentiation using the public key. Additionnal method
parameters are just ignored.
- 'pkcs': the message 'm' is applied RSAES-PKCS1-V1_5-ENCRYPT encryption
scheme as described in section 7.2.1 of RFC 3447. In that
context, other parameters ('h', 'mgf', 'l') are not used.
- 'oaep': the message 'm' is applied the RSAES-OAEP-ENCRYPT encryption
scheme, as described in PKCS#1 v2.1, i.e. RFC 3447 Sect
7.1.1. In that context,
o 'h' parameter provides the name of the hash method to use.
Possible values are "md2", "md4", "md5", "sha1", "tls",
"sha224", "sha256", "sha384" and "sha512". if none is provided,
sha1 is used.
o 'mgf' is the mask generation function. By default, mgf
is derived from the provided hash function using the
generic MGF1 (see pkcs_mgf1() for details).
o 'L' is the optional label to be associated with the
message. If not provided, the default value is used, i.e
the empty string. No check is done on the input limitation
of the hash function regarding the size of 'L' (for
instance, 2^61 - 1 for SHA-1). You have been warned.
"""
if t is None: # Raw encryption
m = pkcs_os2ip(m)
c = self._rsaep(m)
return pkcs_i2osp(c, self.modulusLen/8)
elif t == "pkcs":
return self._rsaes_pkcs1_v1_5_encrypt(m)
elif t == "oaep":
return self._rsaes_oaep_encrypt(m, h, mgf, L)
else:
warning("Key.encrypt(): Unknown encryption type (%s) provided" % t)
return None
### Below are verification related methods
def _rsavp1(self, s):
"""
Internal method providing raw RSA verification, i.e. simple modular
exponentiation of the given signature representative 'c', an integer
between 0 and n-1.
This is the signature verification primitive RSAVP1 described in
PKCS#1 v2.1, i.e. RFC 3447 Sect. 5.2.2.
Input:
s: signature representative, an integer between 0 and n-1,
where n is the key modulus.
Output:
message representative, an integer between 0 and n-1
Not intended to be used directly. Please, see verify() method.
"""
return self._rsaep(s)
def _rsassa_pss_verify(self, M, S, h=None, mgf=None, sLen=None):
"""
Implements RSASSA-PSS-VERIFY() function described in Sect 8.1.2
of RFC 3447
Input:
M: message whose signature is to be verified
S: signature to be verified, an octet string of length k, where k
is the length in octets of the RSA modulus n.
Output:
True is the signature is valid. False otherwise.
"""
# Set default parameters if not provided
if h is None: # By default, sha1
h = "sha1"
if not _hashFuncParams.has_key(h):
warning("Key._rsassa_pss_verify(): unknown hash function "
"provided (%s)" % h)
return False
if mgf is None: # use mgf1 with underlying hash function
mgf = lambda x,y: pkcs_mgf1(x, y, h)
if sLen is None: # use Hash output length (A.2.3 of RFC 3447)
hLen = _hashFuncParams[h][0]
sLen = hLen
# 1) Length checking
modBits = self.modulusLen
k = modBits / 8
if len(S) != k:
return False
# 2) RSA verification
s = pkcs_os2ip(S) # 2.a)
m = self._rsavp1(s) # 2.b)
emLen = math.ceil((modBits - 1) / 8.) # 2.c)
EM = pkcs_i2osp(m, emLen)
# 3) EMSA-PSS verification
Result = pkcs_emsa_pss_verify(M, EM, modBits - 1, h, mgf, sLen)
return Result # 4)
def _rsassa_pkcs1_v1_5_verify(self, M, S, h):
"""
Implements RSASSA-PKCS1-v1_5-VERIFY() function as described in
Sect. 8.2.2 of RFC 3447.
Input:
M: message whose signature is to be verified, an octet string
S: signature to be verified, an octet string of length k, where
k is the length in octets of the RSA modulus n
h: hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls',
'sha256', 'sha384').
Output:
True if the signature is valid. False otherwise.
"""
# 1) Length checking
k = self.modulusLen / 8
if len(S) != k:
warning("invalid signature (len(S) != k)")
return False
# 2) RSA verification
s = pkcs_os2ip(S) # 2.a)
m = self._rsavp1(s) # 2.b)
EM = pkcs_i2osp(m, k) # 2.c)
# 3) EMSA-PKCS1-v1_5 encoding
EMPrime = pkcs_emsa_pkcs1_v1_5_encode(M, k, h)
if EMPrime is None:
warning("Key._rsassa_pkcs1_v1_5_verify(): unable to encode.")
return False
# 4) Comparison
return EM == EMPrime
def verify(self, M, S, t=None, h=None, mgf=None, sLen=None):
"""
Verify alleged signature 'S' is indeed the signature of message 'M' using
't' signature scheme where 't' can be:
- None: the alleged signature 'S' is directly applied the RSAVP1 signature
primitive, as described in PKCS#1 v2.1, i.e. RFC 3447 Sect
5.2.1. Simply put, the provided signature is applied a moular
exponentiation using the public key. Then, a comparison of the
result is done against 'M'. On match, True is returned.
Additionnal method parameters are just ignored.
- 'pkcs': the alleged signature 'S' and message 'M' are applied
RSASSA-PKCS1-v1_5-VERIFY signature verification scheme as
described in Sect. 8.2.2 of RFC 3447. In that context,
the hash function name is passed using 'h'. Possible values are
"md2", "md4", "md5", "sha1", "tls", "sha224", "sha256", "sha384"
and "sha512". If none is provided, sha1 is used. Other additionnal
parameters are ignored.
- 'pss': the alleged signature 'S' and message 'M' are applied
RSASSA-PSS-VERIFY signature scheme as described in Sect. 8.1.2.
of RFC 3447. In that context,
o 'h' parameter provides the name of the hash method to use.
Possible values are "md2", "md4", "md5", "sha1", "tls", "sha224",
"sha256", "sha384" and "sha512". if none is provided, sha1
is used.
o 'mgf' is the mask generation function. By default, mgf
is derived from the provided hash function using the
generic MGF1 (see pkcs_mgf1() for details).
o 'sLen' is the length in octet of the salt. You can overload the
default value (the octet length of the hash value for provided
algorithm) by providing another one with that parameter.
"""
if t is None: # RSAVP1
S = pkcs_os2ip(S)
n = self.modulus
if S > n-1:
warning("Signature to be verified is too long for key modulus")
return False
m = self._rsavp1(S)
if m is None:
return False
l = int(math.ceil(math.log(m, 2) / 8.)) # Hack
m = pkcs_i2osp(m, l)
return M == m
elif t == "pkcs": # RSASSA-PKCS1-v1_5-VERIFY
if h is None:
h = "sha1"
return self._rsassa_pkcs1_v1_5_verify(M, S, h)
elif t == "pss": # RSASSA-PSS-VERIFY
return self._rsassa_pss_verify(M, S, h, mgf, sLen)
else:
warning("Key.verify(): Unknown signature type (%s) provided" % t)
return None
class _DecryptAndSignMethods(OSSLHelper):
### Below are decryption related methods. Encryption ones are inherited
### from PubKey
def _rsadp(self, c):
"""
Internal method providing raw RSA decryption, i.e. simple modular
exponentiation of the given ciphertext representative 'c', a long
between 0 and n-1.
This is the decryption primitive RSADP described in PKCS#1 v2.1,
i.e. RFC 3447 Sect. 5.1.2.
Input:
c: ciphertest representative, a long between 0 and n-1, where
n is the key modulus.
Output:
ciphertext representative, a long between 0 and n-1
Not intended to be used directly. Please, see encrypt() method.
"""
n = self.modulus
if type(c) is int:
c = long(c)
if type(c) is not long or c > n-1:
warning("Key._rsaep() expects a long between 0 and n-1")
return None
return self.key.decrypt(c)
def _rsaes_pkcs1_v1_5_decrypt(self, C):
"""
Implements RSAES-PKCS1-V1_5-DECRYPT() function described in section
7.2.2 of RFC 3447.
Input:
C: ciphertext to be decrypted, an octet string of length k, where
k is the length in octets of the RSA modulus n.
Output:
an octet string of length k at most k - 11
on error, None is returned.
"""
# 1) Length checking
cLen = len(C)
k = self.modulusLen / 8
if cLen != k or k < 11:
warning("Key._rsaes_pkcs1_v1_5_decrypt() decryption error "
"(cLen != k or k < 11)")
return None
# 2) RSA decryption
c = pkcs_os2ip(C) # 2.a)
m = self._rsadp(c) # 2.b)
EM = pkcs_i2osp(m, k) # 2.c)
# 3) EME-PKCS1-v1_5 decoding
# I am aware of the note at the end of 7.2.2 regarding error
# conditions reporting but the one provided below are for _local_
# debugging purposes. --arno
if EM[0] != '\x00':
warning("Key._rsaes_pkcs1_v1_5_decrypt(): decryption error "
"(first byte is not 0x00)")
return None
if EM[1] != '\x02':
warning("Key._rsaes_pkcs1_v1_5_decrypt(): decryption error "
"(second byte is not 0x02)")
return None
tmp = EM[2:].split('\x00', 1)
if len(tmp) != 2:
warning("Key._rsaes_pkcs1_v1_5_decrypt(): decryption error "
"(no 0x00 to separate PS from M)")
return None
PS, M = tmp
if len(PS) < 8:
warning("Key._rsaes_pkcs1_v1_5_decrypt(): decryption error "
"(PS is less than 8 byte long)")
return None
return M # 4)
def _rsaes_oaep_decrypt(self, C, h=None, mgf=None, L=None):
"""
Internal method providing RSAES-OAEP-DECRYPT as defined in Sect.
7.1.2 of RFC 3447. Not intended to be used directly. Please, see
encrypt() method for type "OAEP".
Input:
C : ciphertext to be decrypted, an octet string of length k, where
k = 2*hLen + 2 (k denotes the length in octets of the RSA modulus
and hLen the length in octets of the hash function output)
h : hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls',
'sha256', 'sha384'). 'sha1' is used if none is provided.
mgf: the mask generation function f : seed, maskLen -> mask
L : optional label whose association with the message is to be
verified; the default value for L, if not provided is the empty
string.
Output:
message, an octet string of length k mLen, where mLen <= k - 2*hLen - 2
On error, None is returned.
"""
# The steps below are the one described in Sect. 7.1.2 of RFC 3447.
# 1) Length Checking
# 1.a) is not done
if h is None:
h = "sha1"
if not _hashFuncParams.has_key(h):
warning("Key._rsaes_oaep_decrypt(): unknown hash function %s.", h)
return None
hLen = _hashFuncParams[h][0]
hFun = _hashFuncParams[h][1]
k = self.modulusLen / 8
cLen = len(C)
if cLen != k: # 1.b)
warning("Key._rsaes_oaep_decrypt(): decryption error. "
"(cLen != k)")
return None
if k < 2*hLen + 2:
warning("Key._rsaes_oaep_decrypt(): decryption error. "
"(k < 2*hLen + 2)")
return None
# 2) RSA decryption
c = pkcs_os2ip(C) # 2.a)
m = self._rsadp(c) # 2.b)
EM = pkcs_i2osp(m, k) # 2.c)
# 3) EME-OAEP decoding
if L is None: # 3.a)
L = ""
lHash = hFun(L)
Y = EM[:1] # 3.b)
if Y != '\x00':
warning("Key._rsaes_oaep_decrypt(): decryption error. "
"(Y is not zero)")
return None
maskedSeed = EM[1:1+hLen]
maskedDB = EM[1+hLen:]
if mgf is None:
mgf = lambda x,y: pkcs_mgf1(x, y, h)
seedMask = mgf(maskedDB, hLen) # 3.c)
seed = strxor(maskedSeed, seedMask) # 3.d)
dbMask = mgf(seed, k - hLen - 1) # 3.e)
DB = strxor(maskedDB, dbMask) # 3.f)
# I am aware of the note at the end of 7.1.2 regarding error
# conditions reporting but the one provided below are for _local_
# debugging purposes. --arno
lHashPrime = DB[:hLen] # 3.g)
tmp = DB[hLen:].split('\x01', 1)
if len(tmp) != 2:
warning("Key._rsaes_oaep_decrypt(): decryption error. "
"(0x01 separator not found)")
return None
PS, M = tmp
if PS != '\x00'*len(PS):
warning("Key._rsaes_oaep_decrypt(): decryption error. "
"(invalid padding string)")
return None
if lHash != lHashPrime:
warning("Key._rsaes_oaep_decrypt(): decryption error. "
"(invalid hash)")
return None
return M # 4)
def decrypt(self, C, t=None, h=None, mgf=None, L=None):
"""
Decrypt ciphertext 'C' using 't' decryption scheme where 't' can be:
- None: the ciphertext 'C' is directly applied the RSADP decryption
primitive, as described in PKCS#1 v2.1, i.e. RFC 3447
Sect 5.1.2. Simply, put the message undergo a modular
exponentiation using the private key. Additionnal method
parameters are just ignored.
- 'pkcs': the ciphertext 'C' is applied RSAES-PKCS1-V1_5-DECRYPT
decryption scheme as described in section 7.2.2 of RFC 3447.
In that context, other parameters ('h', 'mgf', 'l') are not
used.
- 'oaep': the ciphertext 'C' is applied the RSAES-OAEP-DECRYPT decryption
scheme, as described in PKCS#1 v2.1, i.e. RFC 3447 Sect
7.1.2. In that context,
o 'h' parameter provides the name of the hash method to use.
Possible values are "md2", "md4", "md5", "sha1", "tls",
"sha224", "sha256", "sha384" and "sha512". if none is provided,
sha1 is used by default.
o 'mgf' is the mask generation function. By default, mgf
is derived from the provided hash function using the
generic MGF1 (see pkcs_mgf1() for details).
o 'L' is the optional label to be associated with the
message. If not provided, the default value is used, i.e
the empty string. No check is done on the input limitation
of the hash function regarding the size of 'L' (for
instance, 2^61 - 1 for SHA-1). You have been warned.
"""
if t is None:
C = pkcs_os2ip(C)
c = self._rsadp(C)
l = int(math.ceil(math.log(c, 2) / 8.)) # Hack
return pkcs_i2osp(c, l)
elif t == "pkcs":
return self._rsaes_pkcs1_v1_5_decrypt(C)
elif t == "oaep":
return self._rsaes_oaep_decrypt(C, h, mgf, L)
else:
warning("Key.decrypt(): Unknown decryption type (%s) provided" % t)
return None
### Below are signature related methods. Verification ones are inherited from
### PubKey
def _rsasp1(self, m):
"""
Internal method providing raw RSA signature, i.e. simple modular
exponentiation of the given message representative 'm', an integer
between 0 and n-1.
This is the signature primitive RSASP1 described in PKCS#1 v2.1,
i.e. RFC 3447 Sect. 5.2.1.
Input:
m: message representative, an integer between 0 and n-1, where
n is the key modulus.
Output:
signature representative, an integer between 0 and n-1
Not intended to be used directly. Please, see sign() method.
"""
return self._rsadp(m)
def _rsassa_pss_sign(self, M, h=None, mgf=None, sLen=None):
"""
Implements RSASSA-PSS-SIGN() function described in Sect. 8.1.1 of
RFC 3447.
Input:
M: message to be signed, an octet string
Output:
signature, an octet string of length k, where k is the length in
octets of the RSA modulus n.
On error, None is returned.
"""
# Set default parameters if not provided
if h is None: # By default, sha1
h = "sha1"
if not _hashFuncParams.has_key(h):
warning("Key._rsassa_pss_sign(): unknown hash function "
"provided (%s)" % h)
return None
if mgf is None: # use mgf1 with underlying hash function
mgf = lambda x,y: pkcs_mgf1(x, y, h)
if sLen is None: # use Hash output length (A.2.3 of RFC 3447)
hLen = _hashFuncParams[h][0]
sLen = hLen
# 1) EMSA-PSS encoding
modBits = self.modulusLen
k = modBits / 8
EM = pkcs_emsa_pss_encode(M, modBits - 1, h, mgf, sLen)
if EM is None:
warning("Key._rsassa_pss_sign(): unable to encode")
return None
# 2) RSA signature
m = pkcs_os2ip(EM) # 2.a)
s = self._rsasp1(m) # 2.b)
S = pkcs_i2osp(s, k) # 2.c)
return S # 3)
def _rsassa_pkcs1_v1_5_sign(self, M, h):
"""
Implements RSASSA-PKCS1-v1_5-SIGN() function as described in
Sect. 8.2.1 of RFC 3447.
Input:
M: message to be signed, an octet string
h: hash function name (in 'md2', 'md4', 'md5', 'sha1', 'tls'
'sha256', 'sha384').
Output:
the signature, an octet string.
"""
# 1) EMSA-PKCS1-v1_5 encoding
k = self.modulusLen / 8
EM = pkcs_emsa_pkcs1_v1_5_encode(M, k, h)
if EM is None:
warning("Key._rsassa_pkcs1_v1_5_sign(): unable to encode")
return None
# 2) RSA signature
m = pkcs_os2ip(EM) # 2.a)
s = self._rsasp1(m) # 2.b)
S = pkcs_i2osp(s, k) # 2.c)
return S # 3)
def sign(self, M, t=None, h=None, mgf=None, sLen=None):
"""
Sign message 'M' using 't' signature scheme where 't' can be:
- None: the message 'M' is directly applied the RSASP1 signature
primitive, as described in PKCS#1 v2.1, i.e. RFC 3447 Sect
5.2.1. Simply put, the message undergo a modular exponentiation
using the private key. Additionnal method parameters are just
ignored.
- 'pkcs': the message 'M' is applied RSASSA-PKCS1-v1_5-SIGN signature
scheme as described in Sect. 8.2.1 of RFC 3447. In that context,
the hash function name is passed using 'h'. Possible values are
"md2", "md4", "md5", "sha1", "tls", "sha224", "sha256", "sha384"
and "sha512". If none is provided, sha1 is used. Other additionnal
parameters are ignored.
- 'pss' : the message 'M' is applied RSASSA-PSS-SIGN signature scheme as
described in Sect. 8.1.1. of RFC 3447. In that context,
o 'h' parameter provides the name of the hash method to use.
Possible values are "md2", "md4", "md5", "sha1", "tls", "sha224",
"sha256", "sha384" and "sha512". if none is provided, sha1
is used.
o 'mgf' is the mask generation function. By default, mgf
is derived from the provided hash function using the
generic MGF1 (see pkcs_mgf1() for details).
o 'sLen' is the length in octet of the salt. You can overload the
default value (the octet length of the hash value for provided
algorithm) by providing another one with that parameter.
"""
if t is None: # RSASP1
M = pkcs_os2ip(M)
n = self.modulus
if M > n-1:
warning("Message to be signed is too long for key modulus")
return None
s = self._rsasp1(M)
if s is None:
return None
return pkcs_i2osp(s, self.modulusLen/8)
elif t == "pkcs": # RSASSA-PKCS1-v1_5-SIGN
if h is None:
h = "sha1"
return self._rsassa_pkcs1_v1_5_sign(M, h)
elif t == "pss": # RSASSA-PSS-SIGN
return self._rsassa_pss_sign(M, h, mgf, sLen)
else:
warning("Key.sign(): Unknown signature type (%s) provided" % t)
return None
class PubKey(OSSLHelper, _EncryptAndVerify):
# Below are the fields we recognize in the -text output of openssl
# and from which we extract information. We expect them in that
# order. Number of spaces does matter.
possible_fields = [ "Modulus (",
"Exponent:" ]
possible_fields_count = len(possible_fields)
def __init__(self, keypath):
error_msg = "Unable to import key."
# XXX Temporary hack to use PubKey inside Cert
if type(keypath) is tuple:
e, m, mLen = keypath
self.modulus = m
self.modulusLen = mLen
self.pubExp = e
return
fields_dict = {}
for k in self.possible_fields:
fields_dict[k] = None
self.keypath = None
rawkey = None
if (not '\x00' in keypath) and os.path.isfile(keypath): # file
self.keypath = keypath
key_size = os.path.getsize(keypath)
if key_size > MAX_KEY_SIZE:
raise Exception(error_msg)
try:
f = open(keypath)
rawkey = f.read()
f.close()
except:
raise Exception(error_msg)
else:
rawkey = keypath
if rawkey is None:
raise Exception(error_msg)
self.rawkey = rawkey
# Let's try to get file format : PEM or DER.
fmtstr = 'openssl rsa -text -pubin -inform %s -noout '
convertstr = 'openssl rsa -pubin -inform %s -outform %s 2>/dev/null'
key_header = "-----BEGIN PUBLIC KEY-----"
key_footer = "-----END PUBLIC KEY-----"
l = rawkey.split(key_header, 1)
if len(l) == 2: # looks like PEM
tmp = l[1]
l = tmp.split(key_footer, 1)
if len(l) == 2:
tmp = l[0]
rawkey = "%s%s%s\n" % (key_header, tmp, key_footer)
else:
raise Exception(error_msg)
r,w,e = popen2.popen3(fmtstr % "PEM")
w.write(rawkey)
w.close()
textkey = r.read()
r.close()
res = e.read()
e.close()
if res == '':
self.format = "PEM"
self.pemkey = rawkey
self.textkey = textkey
cmd = convertstr % ("PEM", "DER")
self.derkey = self._apply_ossl_cmd(cmd, rawkey)
else:
raise Exception(error_msg)
else: # not PEM, try DER
r,w,e = popen2.popen3(fmtstr % "DER")
w.write(rawkey)
w.close()
textkey = r.read()
r.close()
res = e.read()
if res == '':
self.format = "DER"
self.derkey = rawkey
self.textkey = textkey
cmd = convertstr % ("DER", "PEM")
self.pemkey = self._apply_ossl_cmd(cmd, rawkey)
cmd = convertstr % ("DER", "DER")
self.derkey = self._apply_ossl_cmd(cmd, rawkey)
else:
try: # Perhaps it is a cert
c = Cert(keypath)
except:
raise Exception(error_msg)
# TODO:
# Reconstruct a key (der and pem) and provide:
# self.format
# self.derkey
# self.pemkey
# self.textkey
# self.keypath
self.osslcmdbase = 'openssl rsa -pubin -inform %s ' % self.format
self.keypath = keypath
# Parse the -text output of openssl to make things available
l = self.textkey.split('\n', 1)
if len(l) != 2:
raise Exception(error_msg)
cur, tmp = l
i = 0
k = self.possible_fields[i] # Modulus (
cur = cur[len(k):] + '\n'
while k:
l = tmp.split('\n', 1)
if len(l) != 2: # Over
fields_dict[k] = cur
break
l, tmp = l
newkey = 0
# skip fields we have already seen, this is the purpose of 'i'
for j in range(i, self.possible_fields_count):
f = self.possible_fields[j]
if l.startswith(f):
fields_dict[k] = cur
cur = l[len(f):] + '\n'
k = f
newkey = 1
i = j+1
break
if newkey == 1:
continue
cur += l + '\n'
# modulus and modulus length
v = fields_dict["Modulus ("]
self.modulusLen = None
if v:
v, rem = v.split(' bit):', 1)
self.modulusLen = int(v)
rem = rem.replace('\n','').replace(' ','').replace(':','')
self.modulus = long(rem, 16)
if self.modulus is None:
raise Exception(error_msg)
# public exponent
v = fields_dict["Exponent:"]
self.pubExp = None
if v:
self.pubExp = long(v.split('(', 1)[0])
if self.pubExp is None:
raise Exception(error_msg)
self.key = RSA.construct((self.modulus, self.pubExp, ))
def __str__(self):
return self.derkey
class Key(OSSLHelper, _DecryptAndSignMethods, _EncryptAndVerify):
# Below are the fields we recognize in the -text output of openssl
# and from which we extract information. We expect them in that
# order. Number of spaces does matter.
possible_fields = [ "Private-Key: (",
"modulus:",
"publicExponent:",
"privateExponent:",
"prime1:",
"prime2:",
"exponent1:",
"exponent2:",
"coefficient:" ]
possible_fields_count = len(possible_fields)
def __init__(self, keypath):
error_msg = "Unable to import key."
fields_dict = {}
for k in self.possible_fields:
fields_dict[k] = None
self.keypath = None
rawkey = None
if (not '\x00' in keypath) and os.path.isfile(keypath):
self.keypath = keypath
key_size = os.path.getsize(keypath)
if key_size > MAX_KEY_SIZE:
raise Exception(error_msg)
try:
f = open(keypath)
rawkey = f.read()
f.close()
except:
raise Exception(error_msg)
else:
rawkey = keypath
if rawkey is None:
raise Exception(error_msg)
self.rawkey = rawkey
# Let's try to get file format : PEM or DER.
fmtstr = 'openssl rsa -text -inform %s -noout '
convertstr = 'openssl rsa -inform %s -outform %s 2>/dev/null'
key_header = "-----BEGIN RSA PRIVATE KEY-----"
key_footer = "-----END RSA PRIVATE KEY-----"
l = rawkey.split(key_header, 1)
if len(l) == 2: # looks like PEM
tmp = l[1]
l = tmp.split(key_footer, 1)
if len(l) == 2:
tmp = l[0]
rawkey = "%s%s%s\n" % (key_header, tmp, key_footer)
else:
raise Exception(error_msg)
r,w,e = popen2.popen3(fmtstr % "PEM")
w.write(rawkey)
w.close()
textkey = r.read()
r.close()
res = e.read()
e.close()
if res == '':
self.format = "PEM"
self.pemkey = rawkey
self.textkey = textkey
cmd = convertstr % ("PEM", "DER")
self.derkey = self._apply_ossl_cmd(cmd, rawkey)
else:
raise Exception(error_msg)
else: # not PEM, try DER
r,w,e = popen2.popen3(fmtstr % "DER")
w.write(rawkey)
w.close()
textkey = r.read()
r.close()
res = e.read()
if res == '':
self.format = "DER"
self.derkey = rawkey
self.textkey = textkey
cmd = convertstr % ("DER", "PEM")
self.pemkey = self._apply_ossl_cmd(cmd, rawkey)
cmd = convertstr % ("DER", "DER")
self.derkey = self._apply_ossl_cmd(cmd, rawkey)
else:
raise Exception(error_msg)
self.osslcmdbase = 'openssl rsa -inform %s ' % self.format
r,w,e = popen2.popen3('openssl asn1parse -inform DER ')
w.write(self.derkey)
w.close()
self.asn1parsekey = r.read()
r.close()
res = e.read()
e.close()
if res != '':
raise Exception(error_msg)
self.keypath = keypath
# Parse the -text output of openssl to make things available
l = self.textkey.split('\n', 1)
if len(l) != 2:
raise Exception(error_msg)
cur, tmp = l
i = 0
k = self.possible_fields[i] # Private-Key: (
cur = cur[len(k):] + '\n'
while k:
l = tmp.split('\n', 1)
if len(l) != 2: # Over
fields_dict[k] = cur
break
l, tmp = l
newkey = 0
# skip fields we have already seen, this is the purpose of 'i'
for j in range(i, self.possible_fields_count):
f = self.possible_fields[j]
if l.startswith(f):
fields_dict[k] = cur
cur = l[len(f):] + '\n'
k = f
newkey = 1
i = j+1
break
if newkey == 1:
continue
cur += l + '\n'
# modulus length
v = fields_dict["Private-Key: ("]
self.modulusLen = None
if v:
self.modulusLen = int(v.split(' bit', 1)[0])
if self.modulusLen is None:
raise Exception(error_msg)
# public exponent
v = fields_dict["publicExponent:"]
self.pubExp = None
if v:
self.pubExp = long(v.split('(', 1)[0])
if self.pubExp is None:
raise Exception(error_msg)
tmp = {}
for k in ["modulus:", "privateExponent:", "prime1:", "prime2:",
"exponent1:", "exponent2:", "coefficient:"]:
v = fields_dict[k]
if v:
s = v.replace('\n', '').replace(' ', '').replace(':', '')
tmp[k] = long(s, 16)
else:
raise Exception(error_msg)
self.modulus = tmp["modulus:"]
self.privExp = tmp["privateExponent:"]
self.prime1 = tmp["prime1:"]
self.prime2 = tmp["prime2:"]
self.exponent1 = tmp["exponent1:"]
self.exponent2 = tmp["exponent2:"]
self.coefficient = tmp["coefficient:"]
self.key = RSA.construct((self.modulus, self.pubExp, self.privExp))
def __str__(self):
return self.derkey
# We inherit from PubKey to get access to all encryption and verification
# methods. To have that working, we simply need Cert to provide
# modulusLen and key attribute.
# XXX Yes, it is a hack.
class Cert(OSSLHelper, _EncryptAndVerify):
# Below are the fields we recognize in the -text output of openssl
# and from which we extract information. We expect them in that
# order. Number of spaces does matter.
possible_fields = [ " Version:",
" Serial Number:",
" Signature Algorithm:",
" Issuer:",
" Not Before:",
" Not After :",
" Subject:",
" Public Key Algorithm:",
" Modulus (",
" Exponent:",
" X509v3 Subject Key Identifier:",
" X509v3 Authority Key Identifier:",
" keyid:",
" DirName:",
" serial:",
" X509v3 Basic Constraints:",
" X509v3 Key Usage:",
" X509v3 Extended Key Usage:",
" X509v3 CRL Distribution Points:",
" Authority Information Access:",
" Signature Algorithm:" ]
possible_fields_count = len(possible_fields)
def __init__(self, certpath):
error_msg = "Unable to import certificate."
fields_dict = {}
for k in self.possible_fields:
fields_dict[k] = None
self.certpath = None
rawcert = None
if (not '\x00' in certpath) and os.path.isfile(certpath): # file
self.certpath = certpath
cert_size = os.path.getsize(certpath)
if cert_size > MAX_CERT_SIZE:
raise Exception(error_msg)
try:
f = open(certpath)
rawcert = f.read()
f.close()
except:
raise Exception(error_msg)
else:
rawcert = certpath
if rawcert is None:
raise Exception(error_msg)
self.rawcert = rawcert
# Let's try to get file format : PEM or DER.
fmtstr = 'openssl x509 -text -inform %s -noout '
convertstr = 'openssl x509 -inform %s -outform %s '
cert_header = "-----BEGIN CERTIFICATE-----"
cert_footer = "-----END CERTIFICATE-----"
l = rawcert.split(cert_header, 1)
if len(l) == 2: # looks like PEM
tmp = l[1]
l = tmp.split(cert_footer, 1)
if len(l) == 2:
tmp = l[0]
rawcert = "%s%s%s\n" % (cert_header, tmp, cert_footer)
else:
raise Exception(error_msg)
r,w,e = popen2.popen3(fmtstr % "PEM")
w.write(rawcert)
w.close()
textcert = r.read()
r.close()
res = e.read()
e.close()
if res == '':
self.format = "PEM"
self.pemcert = rawcert
self.textcert = textcert
cmd = convertstr % ("PEM", "DER")
self.dercert = self._apply_ossl_cmd(cmd, rawcert)
else:
raise Exception(error_msg)
else: # not PEM, try DER
r,w,e = popen2.popen3(fmtstr % "DER")
w.write(rawcert)
w.close()
textcert = r.read()
r.close()
res = e.read()
if res == '':
self.format = "DER"
self.dercert = rawcert
self.textcert = textcert
cmd = convertstr % ("DER", "PEM")
self.pemcert = self._apply_ossl_cmd(cmd, rawcert)
cmd = convertstr % ("DER", "DER")
self.dercert = self._apply_ossl_cmd(cmd, rawcert)
else:
raise Exception(error_msg)
self.osslcmdbase = 'openssl x509 -inform %s ' % self.format
r,w,e = popen2.popen3('openssl asn1parse -inform DER ')
w.write(self.dercert)
w.close()
self.asn1parsecert = r.read()
r.close()
res = e.read()
e.close()
if res != '':
raise Exception(error_msg)
# Grab _raw_ X509v3 Authority Key Identifier, if any.
tmp = self.asn1parsecert.split(":X509v3 Authority Key Identifier", 1)
self.authorityKeyID = None
if len(tmp) == 2:
tmp = tmp[1]
tmp = tmp.split("[HEX DUMP]:", 1)[1]
self.authorityKeyID=tmp.split('\n',1)[0]
# Grab _raw_ X509v3 Subject Key Identifier, if any.
tmp = self.asn1parsecert.split(":X509v3 Subject Key Identifier", 1)
self.subjectKeyID = None
if len(tmp) == 2:
tmp = tmp[1]
tmp = tmp.split("[HEX DUMP]:", 1)[1]
self.subjectKeyID=tmp.split('\n',1)[0]
# Get tbsCertificate using the worst hack. output of asn1parse
# looks like that:
#
# 0:d=0 hl=4 l=1298 cons: SEQUENCE
# 4:d=1 hl=4 l=1018 cons: SEQUENCE
# ...
#
l1,l2 = self.asn1parsecert.split('\n', 2)[:2]
hl1 = int(l1.split("hl=",1)[1].split("l=",1)[0])
rem = l2.split("hl=",1)[1]
hl2, rem = rem.split("l=",1)
hl2 = int(hl2)
l = int(rem.split("cons",1)[0])
self.tbsCertificate = self.dercert[hl1:hl1+hl2+l]
# Parse the -text output of openssl to make things available
tmp = self.textcert.split('\n', 2)[2]
l = tmp.split('\n', 1)
if len(l) != 2:
raise Exception(error_msg)
cur, tmp = l
i = 0
k = self.possible_fields[i] # Version:
cur = cur[len(k):] + '\n'
while k:
l = tmp.split('\n', 1)
if len(l) != 2: # Over
fields_dict[k] = cur
break
l, tmp = l
newkey = 0
# skip fields we have already seen, this is the purpose of 'i'
for j in range(i, self.possible_fields_count):
f = self.possible_fields[j]
if l.startswith(f):
fields_dict[k] = cur
cur = l[len(f):] + '\n'
k = f
newkey = 1
i = j+1
break
if newkey == 1:
continue
cur += l + '\n'
# version
v = fields_dict[" Version:"]
self.version = None
if v:
self.version = int(v[1:2])
if self.version is None:
raise Exception(error_msg)
# serial number
v = fields_dict[" Serial Number:"]
self.serial = None
if v:
v = v.replace('\n', '').strip()
if "0x" in v:
v = v.split("0x", 1)[1].split(')', 1)[0]
v = v.replace(':', '').upper()
if len(v) % 2:
v = '0' + v
self.serial = v
if self.serial is None:
raise Exception(error_msg)
# Signature Algorithm
v = fields_dict[" Signature Algorithm:"]
self.sigAlg = None
if v:
v = v.split('\n',1)[0]
v = v.strip()
self.sigAlg = v
if self.sigAlg is None:
raise Exception(error_msg)
# issuer
v = fields_dict[" Issuer:"]
self.issuer = None
if v:
v = v.split('\n',1)[0]
v = v.strip()
self.issuer = v
if self.issuer is None:
raise Exception(error_msg)
# not before
v = fields_dict[" Not Before:"]
self.notBefore_str = None
if v:
v = v.split('\n',1)[0]
v = v.strip()
self.notBefore_str = v
if self.notBefore_str is None:
raise Exception(error_msg)
try:
self.notBefore = time.strptime(self.notBefore_str,
"%b %d %H:%M:%S %Y %Z")
except:
self.notBefore = time.strptime(self.notBefore_str,
"%b %d %H:%M:%S %Y")
self.notBefore_str_simple = time.strftime("%x", self.notBefore)
# not after
v = fields_dict[" Not After :"]
self.notAfter_str = None
if v:
v = v.split('\n',1)[0]
v = v.strip()
self.notAfter_str = v
if self.notAfter_str is None:
raise Exception(error_msg)
try:
self.notAfter = time.strptime(self.notAfter_str,
"%b %d %H:%M:%S %Y %Z")
except:
self.notAfter = time.strptime(self.notAfter_str,
"%b %d %H:%M:%S %Y")
self.notAfter_str_simple = time.strftime("%x", self.notAfter)
# subject
v = fields_dict[" Subject:"]
self.subject = None
if v:
v = v.split('\n',1)[0]
v = v.strip()
self.subject = v
if self.subject is None:
raise Exception(error_msg)
# Public Key Algorithm
v = fields_dict[" Public Key Algorithm:"]
self.pubKeyAlg = None
if v:
v = v.split('\n',1)[0]
v = v.strip()
self.pubKeyAlg = v
if self.pubKeyAlg is None:
raise Exception(error_msg)
# Modulus
v = fields_dict[" Modulus ("]
self.modulus = None
if v:
v,t = v.split(' bit):',1)
self.modulusLen = int(v)
t = t.replace(' ', '').replace('\n', ''). replace(':', '')
self.modulus_hexdump = t
self.modulus = long(t, 16)
if self.modulus is None:
raise Exception(error_msg)
# Exponent
v = fields_dict[" Exponent:"]
self.exponent = None
if v:
v = v.split('(',1)[0]
self.exponent = long(v)
if self.exponent is None:
raise Exception(error_msg)
# Public Key instance
self.key = RSA.construct((self.modulus, self.exponent, ))
# Subject Key Identifier
# Authority Key Identifier: keyid, dirname and serial
self.authorityKeyID_keyid = None
self.authorityKeyID_dirname = None
self.authorityKeyID_serial = None
if self.authorityKeyID: # (hex version already done using asn1parse)
v = fields_dict[" keyid:"]
if v:
v = v.split('\n',1)[0]
v = v.strip().replace(':', '')
self.authorityKeyID_keyid = v
v = fields_dict[" DirName:"]
if v:
v = v.split('\n',1)[0]
self.authorityKeyID_dirname = v
v = fields_dict[" serial:"]
if v:
v = v.split('\n',1)[0]
v = v.strip().replace(':', '')
self.authorityKeyID_serial = v
# Basic constraints
self.basicConstraintsCritical = False
self.basicConstraints=None
v = fields_dict[" X509v3 Basic Constraints:"]
if v:
self.basicConstraints = {}
v,t = v.split('\n',2)[:2]
if "critical" in v:
self.basicConstraintsCritical = True
if "CA:" in t:
self.basicConstraints["CA"] = t.split('CA:')[1][:4] == "TRUE"
if "pathlen:" in t:
self.basicConstraints["pathlen"] = int(t.split('pathlen:')[1])
# X509v3 Key Usage
self.keyUsage = []
v = fields_dict[" X509v3 Key Usage:"]
if v:
# man 5 x509v3_config
ku_mapping = {"Digital Signature": "digitalSignature",
"Non Repudiation": "nonRepudiation",
"Key Encipherment": "keyEncipherment",
"Data Encipherment": "dataEncipherment",
"Key Agreement": "keyAgreement",
"Certificate Sign": "keyCertSign",
"CRL Sign": "cRLSign",
"Encipher Only": "encipherOnly",
"Decipher Only": "decipherOnly"}
v = v.split('\n',2)[1]
l = map(lambda x: x.strip(), v.split(','))
while l:
c = l.pop()
if ku_mapping.has_key(c):
self.keyUsage.append(ku_mapping[c])
else:
self.keyUsage.append(c) # Add it anyway
print "Found unknown X509v3 Key Usage: '%s'" % c
print "Report it to arno (at) natisbad.org for addition"
# X509v3 Extended Key Usage
self.extKeyUsage = []
v = fields_dict[" X509v3 Extended Key Usage:"]
if v:
# man 5 x509v3_config:
eku_mapping = {"TLS Web Server Authentication": "serverAuth",
"TLS Web Client Authentication": "clientAuth",
"Code Signing": "codeSigning",
"E-mail Protection": "emailProtection",
"Time Stamping": "timeStamping",
"Microsoft Individual Code Signing": "msCodeInd",
"Microsoft Commercial Code Signing": "msCodeCom",
"Microsoft Trust List Signing": "msCTLSign",
"Microsoft Encrypted File System": "msEFS",
"Microsoft Server Gated Crypto": "msSGC",
"Netscape Server Gated Crypto": "nsSGC",
"IPSec End System": "iPsecEndSystem",
"IPSec Tunnel": "iPsecTunnel",
"IPSec User": "iPsecUser"}
v = v.split('\n',2)[1]
l = map(lambda x: x.strip(), v.split(','))
while l:
c = l.pop()
if eku_mapping.has_key(c):
self.extKeyUsage.append(eku_mapping[c])
else:
self.extKeyUsage.append(c) # Add it anyway
print "Found unknown X509v3 Extended Key Usage: '%s'" % c
print "Report it to arno (at) natisbad.org for addition"
# CRL Distribution points
self.cRLDistributionPoints = []
v = fields_dict[" X509v3 CRL Distribution Points:"]
if v:
v = v.split("\n\n", 1)[0]
v = v.split("URI:")[1:]
self.CRLDistributionPoints = map(lambda x: x.strip(), v)
# Authority Information Access: list of tuples ("method", "location")
self.authorityInfoAccess = []
v = fields_dict[" Authority Information Access:"]
if v:
v = v.split("\n\n", 1)[0]
v = v.split("\n")[1:]
for e in v:
method, location = map(lambda x: x.strip(), e.split(" - ", 1))
self.authorityInfoAccess.append((method, location))
# signature field
v = fields_dict[" Signature Algorithm:" ]
self.sig = None
if v:
v = v.split('\n',1)[1]
v = v.replace(' ', '').replace('\n', '')
self.sig = "".join(map(lambda x: chr(int(x, 16)), v.split(':')))
self.sigLen = len(self.sig)
if self.sig is None:
raise Exception(error_msg)
def isIssuerCert(self, other):
"""
True if 'other' issued 'self', i.e.:
- self.issuer == other.subject
- self is signed by other
"""
# XXX should be done on raw values, instead of their textual repr
if self.issuer != other.subject:
return False
# Sanity check regarding modulus length and the
# signature length
keyLen = (other.modulusLen + 7)/8
if keyLen != self.sigLen:
return False
unenc = other.encrypt(self.sig) # public key encryption, i.e. decrypt
# XXX Check block type (00 or 01 and type of padding)
unenc = unenc[1:]
if not '\x00' in unenc:
return False
pos = unenc.index('\x00')
unenc = unenc[pos+1:]
found = None
for k in _hashFuncParams.keys():
if self.sigAlg.startswith(k):
found = k
break
if not found:
return False
hlen, hfunc, digestInfo = _hashFuncParams[k]
if len(unenc) != (hlen+len(digestInfo)):
return False
if not unenc.startswith(digestInfo):
return False
h = unenc[-hlen:]
myh = hfunc(self.tbsCertificate)
return h == myh
def chain(self, certlist):
"""
Construct the chain of certificates leading from 'self' to the
self signed root using the certificates in 'certlist'. If the
list does not provide all the required certs to go to the root
the function returns a incomplete chain starting with the
certificate. This fact can be tested by tchecking if the last
certificate of the returned chain is self signed (if c is the
result, c[-1].isSelfSigned())
"""
d = {}
for c in certlist:
# XXX we should check if we have duplicate
d[c.subject] = c
res = [self]
cur = self
while not cur.isSelfSigned():
if d.has_key(cur.issuer):
possible_issuer = d[cur.issuer]
if cur.isIssuerCert(possible_issuer):
res.append(possible_issuer)
cur = possible_issuer
else:
break
return res
def remainingDays(self, now=None):
"""
Based on the value of notBefore field, returns the number of
days the certificate will still be valid. The date used for the
comparison is the current and local date, as returned by
time.localtime(), except if 'now' argument is provided another
one. 'now' argument can be given as either a time tuple or a string
representing the date. Accepted format for the string version
are:
- '%b %d %H:%M:%S %Y %Z' e.g. 'Jan 30 07:38:59 2008 GMT'
- '%m/%d/%y' e.g. '01/30/08' (less precise)
If the certificate is no more valid at the date considered, then,
a negative value is returned representing the number of days
since it has expired.
The number of days is returned as a float to deal with the unlikely
case of certificates that are still just valid.
"""
if now is None:
now = time.localtime()
elif type(now) is str:
try:
if '/' in now:
now = time.strptime(now, '%m/%d/%y')
else:
now = time.strptime(now, '%b %d %H:%M:%S %Y %Z')
except:
warning("Bad time string provided '%s'. Using current time" % now)
now = time.localtime()
now = time.mktime(now)
nft = time.mktime(self.notAfter)
diff = (nft - now)/(24.*3600)
return diff
# return SHA-1 hash of cert embedded public key
# !! At the moment, the trailing 0 is in the hashed string if any
def keyHash(self):
m = self.modulus_hexdump
res = []
i = 0
l = len(m)
while i<l: # get a string version of modulus
res.append(struct.pack("B", int(m[i:i+2], 16)))
i += 2
return sha.new("".join(res)).digest()
def output(self, fmt="DER"):
if fmt == "DER":
return self.dercert
elif fmt == "PEM":
return self.pemcert
elif fmt == "TXT":
return self.textcert
def export(self, filename, fmt="DER"):
"""
Export certificate in 'fmt' format (PEM, DER or TXT) to file 'filename'
"""
f = open(filename, "wb")
f.write(self.output(fmt))
f.close()
def isSelfSigned(self):
"""
Return True if the certificate is self signed:
- issuer and subject are the same
- the signature of the certificate is valid.
"""
if self.issuer == self.subject:
return self.isIssuerCert(self)
return False
# Print main informations stored in certificate
def show(self):
print "Serial: %s" % self.serial
print "Issuer: " + self.issuer
print "Subject: " + self.subject
print "Validity: %s to %s" % (self.notBefore_str_simple,
self.notAfter_str_simple)
def __repr__(self):
return "[X.509 Cert. Subject:%s, Issuer:%s]" % (self.subject, self.issuer)
def __str__(self):
return self.dercert
def verifychain(self, anchors, untrusted=None):
"""
Perform verification of certificate chains for that certificate. The
behavior of verifychain method is mapped (and also based) on openssl
verify userland tool (man 1 verify).
A list of anchors is required. untrusted parameter can be provided
a list of untrusted certificates that can be used to reconstruct the
chain.
If you have a lot of certificates to verify against the same
list of anchor, consider constructing this list as a cafile
and use .verifychain_from_cafile() instead.
"""
cafile = create_temporary_ca_file(anchors)
if not cafile:
return False
untrusted_file = None
if untrusted:
untrusted_file = create_temporary_ca_file(untrusted) # hack
if not untrusted_file:
os.unlink(cafile)
return False
res = self.verifychain_from_cafile(cafile,
untrusted_file=untrusted_file)
os.unlink(cafile)
if untrusted_file:
os.unlink(untrusted_file)
return res
def verifychain_from_cafile(self, cafile, untrusted_file=None):
"""
Does the same job as .verifychain() but using the list of anchors
from the cafile. This is useful (because more efficient) if
you have a lot of certificates to verify do it that way: it
avoids the creation of a cafile from anchors at each call.
As for .verifychain(), a list of untrusted certificates can be
passed (as a file, this time)
"""
u = ""
if untrusted_file:
u = "-untrusted %s" % untrusted_file
try:
cmd = "openssl verify -CAfile %s %s " % (cafile, u)
pemcert = self.output(fmt="PEM")
cmdres = self._apply_ossl_cmd(cmd, pemcert)
except:
return False
return cmdres.endswith("\nOK\n") or cmdres.endswith(": OK\n")
def verifychain_from_capath(self, capath, untrusted_file=None):
"""
Does the same job as .verifychain_from_cafile() but using the list
of anchors in capath directory. The directory should contain
certificates files in PEM format with associated links as
created using c_rehash utility (man c_rehash).
As for .verifychain_from_cafile(), a list of untrusted certificates
can be passed as a file (concatenation of the certificates in
PEM format)
"""
u = ""
if untrusted_file:
u = "-untrusted %s" % untrusted_file
try:
cmd = "openssl verify -CApath %s %s " % (capath, u)
pemcert = self.output(fmt="PEM")
cmdres = self._apply_ossl_cmd(cmd, pemcert)
except:
return False
return cmdres.endswith("\nOK\n") or cmdres.endswith(": OK\n")
def is_revoked(self, crl_list):
"""
Given a list of trusted CRL (their signature has already been
verified with trusted anchors), this function returns True if
the certificate is marked as revoked by one of those CRL.
Note that if the Certificate was on hold in a previous CRL and
is now valid again in a new CRL and bot are in the list, it
will be considered revoked: this is because _all_ CRLs are
checked (not only the freshest) and revocation status is not
handled.
Also note that the check on the issuer is performed on the
Authority Key Identifier if available in _both_ the CRL and the
Cert. Otherwise, the issuers are simply compared.
"""
for c in crl_list:
if (self.authorityKeyID is not None and
c.authorityKeyID is not None and
self.authorityKeyID == c.authorityKeyID):
return self.serial in map(lambda x: x[0], c.revoked_cert_serials)
elif (self.issuer == c.issuer):
return self.serial in map(lambda x: x[0], c.revoked_cert_serials)
return False
def print_chain(l):
llen = len(l) - 1
if llen < 0:
return ""
c = l[llen]
llen -= 1
s = "_ "
if not c.isSelfSigned():
s = "_ ... [Missing Root]\n"
else:
s += "%s [Self Signed]\n" % c.subject
i = 1
while (llen != -1):
c = l[llen]
s += "%s\_ %s" % (" "*i, c.subject)
if llen != 0:
s += "\n"
i += 2
llen -= 1
print s
# import popen2
# a=popen2.Popen3("openssl crl -text -inform DER -noout ", capturestderr=True)
# a.tochild.write(open("samples/klasa1.crl").read())
# a.tochild.close()
# a.poll()
class CRL(OSSLHelper):
# Below are the fields we recognize in the -text output of openssl
# and from which we extract information. We expect them in that
# order. Number of spaces does matter.
possible_fields = [ " Version",
" Signature Algorithm:",
" Issuer:",
" Last Update:",
" Next Update:",
" CRL extensions:",
" X509v3 Issuer Alternative Name:",
" X509v3 Authority Key Identifier:",
" keyid:",
" DirName:",
" serial:",
" X509v3 CRL Number:",
"Revoked Certificates:",
"No Revoked Certificates.",
" Signature Algorithm:" ]
possible_fields_count = len(possible_fields)
def __init__(self, crlpath):
error_msg = "Unable to import CRL."
fields_dict = {}
for k in self.possible_fields:
fields_dict[k] = None
self.crlpath = None
rawcrl = None
if (not '\x00' in crlpath) and os.path.isfile(crlpath):
self.crlpath = crlpath
cert_size = os.path.getsize(crlpath)
if cert_size > MAX_CRL_SIZE:
raise Exception(error_msg)
try:
f = open(crlpath)
rawcrl = f.read()
f.close()
except:
raise Exception(error_msg)
else:
rawcrl = crlpath
if rawcrl is None:
raise Exception(error_msg)
self.rawcrl = rawcrl
# Let's try to get file format : PEM or DER.
fmtstr = 'openssl crl -text -inform %s -noout '
convertstr = 'openssl crl -inform %s -outform %s '
crl_header = "-----BEGIN X509 CRL-----"
crl_footer = "-----END X509 CRL-----"
l = rawcrl.split(crl_header, 1)
if len(l) == 2: # looks like PEM
tmp = l[1]
l = tmp.split(crl_footer, 1)
if len(l) == 2:
tmp = l[0]
rawcrl = "%s%s%s\n" % (crl_header, tmp, crl_footer)
else:
raise Exception(error_msg)
r,w,e = popen2.popen3(fmtstr % "PEM")
w.write(rawcrl)
w.close()
textcrl = r.read()
r.close()
res = e.read()
e.close()
if res == '':
self.format = "PEM"
self.pemcrl = rawcrl
self.textcrl = textcrl
cmd = convertstr % ("PEM", "DER")
self.dercrl = self._apply_ossl_cmd(cmd, rawcrl)
else:
raise Exception(error_msg)
else: # not PEM, try DER
r,w,e = popen2.popen3(fmtstr % "DER")
w.write(rawcrl)
w.close()
textcrl = r.read()
r.close()
res = e.read()
if res == '':
self.format = "DER"
self.dercrl = rawcrl
self.textcrl = textcrl
cmd = convertstr % ("DER", "PEM")
self.pemcrl = self._apply_ossl_cmd(cmd, rawcrl)
cmd = convertstr % ("DER", "DER")
self.dercrl = self._apply_ossl_cmd(cmd, rawcrl)
else:
raise Exception(error_msg)
self.osslcmdbase = 'openssl crl -inform %s ' % self.format
r,w,e = popen2.popen3('openssl asn1parse -inform DER ')
w.write(self.dercrl)
w.close()
self.asn1parsecrl = r.read()
r.close()
res = e.read()
e.close()
if res != '':
raise Exception(error_msg)
# Grab _raw_ X509v3 Authority Key Identifier, if any.
tmp = self.asn1parsecrl.split(":X509v3 Authority Key Identifier", 1)
self.authorityKeyID = None
if len(tmp) == 2:
tmp = tmp[1]
tmp = tmp.split("[HEX DUMP]:", 1)[1]
self.authorityKeyID=tmp.split('\n',1)[0]
# Parse the -text output of openssl to make things available
tmp = self.textcrl.split('\n', 1)[1]
l = tmp.split('\n', 1)
if len(l) != 2:
raise Exception(error_msg)
cur, tmp = l
i = 0
k = self.possible_fields[i] # Version
cur = cur[len(k):] + '\n'
while k:
l = tmp.split('\n', 1)
if len(l) != 2: # Over
fields_dict[k] = cur
break
l, tmp = l
newkey = 0
# skip fields we have already seen, this is the purpose of 'i'
for j in range(i, self.possible_fields_count):
f = self.possible_fields[j]
if l.startswith(f):
fields_dict[k] = cur
cur = l[len(f):] + '\n'
k = f
newkey = 1
i = j+1
break
if newkey == 1:
continue
cur += l + '\n'
# version
v = fields_dict[" Version"]
self.version = None
if v:
self.version = int(v[1:2])
if self.version is None:
raise Exception(error_msg)
# signature algorithm
v = fields_dict[" Signature Algorithm:"]
self.sigAlg = None
if v:
v = v.split('\n',1)[0]
v = v.strip()
self.sigAlg = v
if self.sigAlg is None:
raise Exception(error_msg)
# issuer
v = fields_dict[" Issuer:"]
self.issuer = None
if v:
v = v.split('\n',1)[0]
v = v.strip()
self.issuer = v
if self.issuer is None:
raise Exception(error_msg)
# last update
v = fields_dict[" Last Update:"]
self.lastUpdate_str = None
if v:
v = v.split('\n',1)[0]
v = v.strip()
self.lastUpdate_str = v
if self.lastUpdate_str is None:
raise Exception(error_msg)
self.lastUpdate = time.strptime(self.lastUpdate_str,
"%b %d %H:%M:%S %Y %Z")
self.lastUpdate_str_simple = time.strftime("%x", self.lastUpdate)
# next update
v = fields_dict[" Next Update:"]
self.nextUpdate_str = None
if v:
v = v.split('\n',1)[0]
v = v.strip()
self.nextUpdate_str = v
if self.nextUpdate_str is None:
raise Exception(error_msg)
self.nextUpdate = time.strptime(self.nextUpdate_str,
"%b %d %H:%M:%S %Y %Z")
self.nextUpdate_str_simple = time.strftime("%x", self.nextUpdate)
# XXX Do something for Issuer Alternative Name
# Authority Key Identifier: keyid, dirname and serial
self.authorityKeyID_keyid = None
self.authorityKeyID_dirname = None
self.authorityKeyID_serial = None
if self.authorityKeyID: # (hex version already done using asn1parse)
v = fields_dict[" keyid:"]
if v:
v = v.split('\n',1)[0]
v = v.strip().replace(':', '')
self.authorityKeyID_keyid = v
v = fields_dict[" DirName:"]
if v:
v = v.split('\n',1)[0]
self.authorityKeyID_dirname = v
v = fields_dict[" serial:"]
if v:
v = v.split('\n',1)[0]
v = v.strip().replace(':', '')
self.authorityKeyID_serial = v
# number
v = fields_dict[" X509v3 CRL Number:"]
self.number = None
if v:
v = v.split('\n',2)[1]
v = v.strip()
self.number = int(v)
# Get the list of serial numbers of revoked certificates
self.revoked_cert_serials = []
v = fields_dict["Revoked Certificates:"]
t = fields_dict["No Revoked Certificates."]
if (t is None and v is not None):
v = v.split("Serial Number: ")[1:]
for r in v:
s,d = r.split('\n', 1)
s = s.split('\n', 1)[0]
d = d.split("Revocation Date:", 1)[1]
d = time.strptime(d.strip(), "%b %d %H:%M:%S %Y %Z")
self.revoked_cert_serials.append((s,d))
# signature field
v = fields_dict[" Signature Algorithm:" ]
self.sig = None
if v:
v = v.split('\n',1)[1]
v = v.replace(' ', '').replace('\n', '')
self.sig = "".join(map(lambda x: chr(int(x, 16)), v.split(':')))
self.sigLen = len(self.sig)
if self.sig is None:
raise Exception(error_msg)
def __str__(self):
return self.dercrl
# Print main informations stored in CRL
def show(self):
print "Version: %d" % self.version
print "sigAlg: " + self.sigAlg
print "Issuer: " + self.issuer
print "lastUpdate: %s" % self.lastUpdate_str_simple
print "nextUpdate: %s" % self.nextUpdate_str_simple
def verify(self, anchors):
"""
Return True if the CRL is signed by one of the provided
anchors. False on error (invalid signature, missing anchorand, ...)
"""
cafile = create_temporary_ca_file(anchors)
if cafile is None:
return False
try:
cmd = self.osslcmdbase + '-noout -CAfile %s 2>&1' % cafile
cmdres = self._apply_ossl_cmd(cmd, self.rawcrl)
except:
os.unlink(cafile)
return False
os.unlink(cafile)
return "verify OK" in cmdres
|