/usr/share/pyshared/scitools/BoxGrid.py is in python-scitools 0.9.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 | #!/usr/bin/env python
"""
Class for uniform and non-uniform grid on an interval, rectangle, or box.
"""
from scitools.errorcheck import right_type, wrong_type
from scitools.numpyutils import ndgrid, ndarray, wrap2callable, array, \
zeros, linspace
# constants for indexing the space directions:
X = X1 = 0
Y = X2 = 1
Z = X3 = 2
class UniformBoxGrid(object):
"""
Simple uniform grid on an interval, rectangle, box, or hypercube.
============= ====================================================
Attributes Description
============= ====================================================
nsd no of spatial dimensions in the grid
min_coor array of minimum coordinates
max_coor array of maximum coordinates
division array of cell divisions in the
delta array of grid spacings
dirnames names of the space directions ('x', 'y', etc.)
shape (nx+1, ny+1, ...); dimension of array over grid
coor list of coordinates; self.coor[Y][j] is the
the j-th coordinate in direction Y (=1)
X, Y, Z are predefined constants 0, 1, 2
coorv expanded version of coor for vectorized expressions
(in 2D, self.coorv[0] = self.coor[0][:,newaxis])
tolerance small geometric tolerance based on grid coordinates
npoints total number of grid points
============= ====================================================
"""
def __init__(self,
min=(0,0), # minimum coordinates
max=(1,1), # maximum coordinates
division=(4,4), # cell divisions
dirnames=('x', 'y', 'z')): # names of the directions
"""
Initialize a BoxGrid by giving domain range (minimum and
maximum coordinates: min and max tuples/lists/arrays)
and number of cells in each space direction (division tuple/list/array).
The dirnames tuple/list holds the names of the coordinates in
the various spatial directions.
>>> g = UniformBoxGrid(min=0, max=1, division=10)
>>> g = UniformBoxGrid(min=(0,-1), max=(1,1), division=(10,4))
>>> g = UniformBoxGrid(min=(0,0,-1), max=(2,1,1), division=(2,3,5))
"""
# Allow int/float specifications in one-dimensional grids
# (just turn to lists for later multi-dimensional processing)
if isinstance(min, (int,float)):
min = [min]
if isinstance(max, (int,float)):
max = [max]
if isinstance(division, (int,float)):
division = [division]
if isinstance(dirnames, str):
dirnames = [dirnames]
self.nsd = len(min)
# strip dirnames down to right space dim (in case the default
# with three components were unchanged by the user):
dirnames = dirnames[:self.nsd]
# check consistent lengths:
for a in max, division:
if len(a) != self.nsd:
raise ValueError(
'Incompatible lengths of arguments to constructor'\
' (%d != %d)' % (len(a), self.nsd))
self.min_coor = array(min, float)
self.max_coor = array(max, float)
self.dirnames = dirnames
self.division = division
self.coor = [None]*self.nsd
self.shape = [0]*self.nsd
self.delta = zeros(self.nsd)
for i in range(self.nsd):
self.delta[i] = \
(self.max_coor[i] - self.min_coor[i])/float(self.division[i])
self.shape[i] = self.division[i] + 1 # no of grid points
self.coor[i] = \
linspace(self.min_coor[i], self.max_coor[i], self.shape[i])
self._more_init()
def _more_init(self):
self.shape = tuple(self.shape)
self.coorv = ndgrid(*self.coor)
if not isinstance(self.coorv, (list,tuple)):
# 1D grid, wrap self.coorv as list:
self.coorv = [self.coorv]
self.npoints = 1
for i in range(len(self.shape)):
self.npoints *= self.shape[i]
self.tolerance = (max(self.max_coor) - min(self.min_coor))*1E-14
# nicknames: xcoor, ycoor, xcoorv, ycoorv, etc
for i in range(self.nsd):
self.__dict__[self.dirnames[i]+'coor'] = self.coor[i]
self.__dict__[self.dirnames[i]+'coorv'] = self.coorv[i]
if self.nsd == 3:
# make boundary coordinates for vectorization:
xdummy, \
self.ycoorv_xfixed_boundary, \
self.zcoorv_xfixed_boundary = ndgrid(0, self.ycoor, self.zcoor)
self.xcoorv_yfixed_boundary, \
ydummy, \
self.zcoorv_yfixed_boundary = ndgrid(self.xcoor, 0, self.zcoor)
self.xcoorv_yfixed_boundary, \
self.zcoorv_yfixed_boundary, \
zdummy = ndgrid(self.xcoor, self.ycoor, 0)
# could have _ in all variable names and define read-only
# access via properties
def string2griddata(s):
"""
Turn a text specification of a grid into a dictionary
with the grid data.
For example,
>>> s = "domain=[0,10] indices=[0:11]"
>>> data = BoxGrid.string2griddata(s)
>>> data
{'dirnames': ('x', 'y'), 'division': [10], 'max': [10], 'min': [0]}
>>> s = "domain=[0.2,0.5]x[0,2E+00] indices=[0:20]x[0:100]"
>>> data = BoxGrid.string2griddata(s)
>>> data
{'dirnames': ('x', 'y', 'z'),
'division': [19, 99],
'max': [0.5, 2],
'min': [0.2, 0]}
>>> s = "[0,1]x[0,2]x[-1,1.5] [0:25]x[0:10]x[0:16]"
>>> data = BoxGrid.string2griddata(s)
>>> data
{'dirnames': ('x', 'y', 'z'),
'division': [24, 9, 15],
'max': [1.0, 2.0, 1.5],
'min': [0.0, 0.0, -1.0]}
The data dictionary can be used as keyword arguments to the
class UniformBoxGrid constructor.
"""
domain = r'\[([^,]*),([^\]]*)\]'
indices = r'\[([^:,]*):([^\]]*)\]'
import re
d = re.findall(domain, s)
i = re.findall(indices, s)
nsd = len(d)
if nsd != len(i):
raise ValueError('could not parse "%s"' % s)
kwargs = {}
dirnames = ('x', 'y', 'z')
for dir in range(nsd):
if not isinstance(d[dir], (list,tuple)) or len(d[dir]) != 2 or \
not isinstance(i[dir], (list,tuple)) or len(i[dir]) != 2:
raise ValueError('syntax error in "%s"' % s)
# old syntax (nx, xmin, xmax, ny, ymin, etc.):
#kwargs[dirnames[dir]] = (float(d[dir][0]), float(d[dir][1]))
#kwargs['n'+dirnames[dir]] = int(i[dir][1]) - int(i[dir][0]) # no of cells!
kwargs['min'] = [float(d[dir][0]) for dir in range(nsd)]
kwargs['max'] = [float(d[dir][1]) for dir in range(nsd)]
kwargs['division'] = [int(i[dir][1]) - int(i[dir][0]) \
for dir in range(nsd)]
kwargs['dirnames'] = dirnames[:nsd]
return kwargs
string2griddata = staticmethod(string2griddata)
def __getitem__(self, i):
"""
Return access to coordinate array in direction no i, or direction
name i, or return the coordinate of a point if i is an nsd-tuple.
>>> g = UniformBoxGrid(x=(0,1), y=(-1,1), nx=2, ny=4) # xy grid
>>> g[0][0] == g.min[0] # min coor in direction 0
True
>>> g['x'][0] == g.min[0] # min coor in direction 'x'
True
>>> g[0,4]
(0.0, 1.0)
>>> g = UniformBoxGrid(min=(0,-1), max=(1,1), division=(2,4), dirnames=('y', 'z'))
>>> g[1][0] == g.min[1]
True
>>> g['z'][0] == g.min[1] # min coor in direction 'z'
True
"""
if isinstance(i, str):
return self.coor[self.name2dirindex(i)]
elif isinstance(i, int):
if self.nsd > 1:
return self.coor[i] # coordinate array
else:
return self.coor[0][i] # coordinate itself in 1D
elif isinstance(i, (list,tuple)):
return tuple([self.coor[k][i[k]] for k in range(len(i))])
else:
wrong_type(i, 'i', 'Must be str, int, tuple')
def __setitem__(self, i, value):
raise AttributeError('subscript assignment is not valid for '\
'%s instances' % self.__class__.__name__)
def ncells(self, i):
"""Return no of cells in direction i."""
# i has the meaning as in __getitem__. May be removed if not much used
return len(self.coor[i])-1
def name2dirindex(self, name):
"""
Return direction index corresponding to direction name.
In an xyz-grid, 'x' is 0, 'y' is 1, and 'z' is 2.
In an yz-grid, 'x' is not defined, 'y' is 0, and 'z' is 1.
"""
try:
return self.dirnames.index(name)
except ValueError:
print name, 'is not defined'
return None
def dirindex2name(self, i):
"""Inverse of name2dirindex."""
try:
return self.dirnames[i]
except IndexError:
print i, 'is not a valid index'
return None
def ok(self):
return True # constructor init only => always ok
def __len__(self):
"""Total number of grid points."""
n = 1
for dir in self.coor:
n *= len(dir)
return n
def __repr__(self):
s = self.__class__.__name__ + \
'(min=%s, max=%s, division=%s, dirnames=%s)' % \
(self.min_coor.tolist(),
self.max_coor.tolist(),
self.division, self.dirnames)
return s
def __str__(self):
"""Pretty print, using the syntax of init_fromstring."""
domain = 'x'.join(['[%g,%g]' % (min_, max_) \
for min_, max_ in zip(self.min_coor, self.max_coor)])
indices = 'x'.join(['[0:%d]' % div for div in self.division])
return 'domain=%s indices=%s' % (domain, indices)
def interpolator(self, point_values):
"""
Given a self.nsd dimension array point_values with
values at each grid point, this method returns a function
for interpolating the scalar field defined by point_values
at an arbitrary point.
2D Example:
given a filled array point_values[i,j], compute
interpolator = grid.interpolator(point_values)
v = interpolator(0.1243, 9.231) # interpolate point_values
>>> g=UniformBoxGrid(x=(0,2), nx=2, y=(-1,1), ny=2)
>>> g
UniformBoxGrid(x=(0,2), nx=2, y=(-1,1), ny=2)
>>> def f(x,y): return 2+2*x-y
>>> f=g.vectorized_eval(f)
>>> f
array([[ 3., 2., 1.],
[ 5., 4., 3.],
[ 7., 6., 5.]])
>>> i=g.interpolator(f)
>>> i(0.1,0.234) # interpolate (not a grid point)
1.9660000000000002
>>> f(0.1,0.234) # exact answer
1.9660000000000002
"""
args = self.coor
args.append(point_values)
# make use of wrap2callable, which applies ScientificPython
return wrap2callable(args)
def vectorized_eval(self, f):
"""
Evaluate a function f (of the space directions) over a grid.
f is supposed to be vectorized.
>>> g = BoxGrid(x=(0,1), y=(0,1), nx=3, ny=3)
>>> # f(x,y) = sin(x)*exp(x-y):
>>> a = g.vectorized_eval(lambda x,y: sin(x)*exp(y-x))
>>> print a
[[ 0. 0. 0. 0. ]
[ 0.23444524 0.3271947 0.45663698 0.63728825]
[ 0.31748164 0.44308133 0.6183698 0.86300458]
[ 0.30955988 0.43202561 0.60294031 0.84147098]]
>>> # f(x,y) = 2: (requires special consideration)
>>> a = g.vectorized_eval(lambda x,y: zeros(g.shape)+2)
>>> print a
[[ 2. 2. 2. 2.]
[ 2. 2. 2. 2.]
[ 2. 2. 2. 2.]
[ 2. 2. 2. 2.]]
"""
a = f(*self.coorv)
# check if f is really vectorized:
try:
msg = 'calling %s, which is supposed to be vectorized' % f.__name__
except AttributeError: # if __name__ is missing
msg = 'calling a function, which is supposed to be vectorized'
try:
self.compatible(a)
except (IndexError,TypeError), e:
print 'e=',e, type(e), e.__class__.__name__
raise e.__class__('BoxGrid.vectorized_eval(f):\n%s, BUT:\n%s' % \
(msg, e))
return a
def init_fromstring(s):
data = UniformBoxGrid.string2griddata(s)
return UniformBoxGrid(**data)
init_fromstring = staticmethod(init_fromstring)
def compatible(self, data_array, name_of_data_array=''):
"""
Check that data_array is a NumPy array with dimensions
compatible with the grid.
"""
if not isinstance(data_array, ndarray):
raise TypeError('data %s is %s, not NumPy array' % \
(name_of_data_array, type(data_array)))
else:
if data_array.shape != self.shape:
raise IndexError("data %s of shape %s is not "\
"compatible with the grid's shape %s" % \
(name_of_data_array, data_array.shape,
self.shape))
return True # if we haven't raised any exceptions
def iter(self, domain_part='all', vectorized_version=True):
"""
Return iterator over grid points.
domain_part = 'all': all grid points
domain_part = 'interior': interior grid points
domain_part = 'all_boundary': all boundary points
domain_part = 'interior_boundary': interior boundary points
domain_part = 'corners': all corner points
domain_part = 'all_edges': all points along edges in 3D grids
domain_part = 'interior_edges': interior points along edges
vectorized_version is true if the iterator returns slice
objects for the index slice in each direction.
vectorized_version is false if the iterator visits each point
at a time (scalar version).
"""
self.iterator_domain = domain_part
self.vectorized_iter = vectorized_version
return self
def __iter__(self):
# Idea: set up slices for the various self.iterator_domain
# values. In scalar mode, make a loop over the slices and
# yield the scalar value. In vectorized mode, return the
# appropriate slices.
self._slices = [] # elements meant to be slice objects
if self.iterator_domain == 'all':
self._slices.append([])
for i in range(self.nsd):
self._slices[-1].append((i, slice(0, len(self.coor[i]), 1)))
elif self.iterator_domain == 'interior':
self._slices.append([])
for i in range(self.nsd):
self._slices[-1].append((i, slice(1, len(self.coor[i])-1, 1)))
elif self.iterator_domain == 'all_boundary':
for i in range(self.nsd):
self._slices.append([])
# boundary i fixed at 0:
for j in range(self.nsd):
if j != i:
self._slices[-1].\
append((j, slice(0, len(self.coor[j]), 1)))
else:
self._slices[-1].append((i, slice(0, 1, 1)))
# boundary i fixed at its max value:
for j in range(self.nsd):
if j != i:
self._slices[-1].\
append((j, slice(0, len(self.coor[j]), 1)))
else:
n = len(self.coor[i])
self._slices[-1].append((i, slice(n-1, n, 1)))
elif self.iterator_domain == 'interior_boundary':
for i in range(self.nsd):
self._slices.append([])
# boundary i fixed at 0:
for j in range(self.nsd):
if j != i:
self._slices[-1].\
append((j, slice(1, len(self.coor[j])-1, 1)))
else:
self._slices[-1].append((i, slice(0, 1, 1)))
# boundary i fixed at its max value:
for j in range(self.nsd):
if j != i:
self._slices[-1].\
append((j, slice(1, len(self.coor[j])-1, 1)))
else:
n = len(self.coor[i])
self._slices[-1].append((i, slice(n-1, n, 1)))
elif self.iterator_domain == 'corners':
if self.nsd == 1:
for i0 in (0, len(self.coor[0])-1):
self._slices.append([])
self._slices[-1].append((0, slice(i0, i0+1, 1)))
elif self.nsd == 2:
for i0 in (0, len(self.coor[0])-1):
for i1 in (0, len(self.coor[1])-1):
self._slices.append([])
self._slices[-1].append((0, slice(i0, i0+1, 1)))
self._slices[-1].append((0, slice(i1, i1+1, 1)))
elif self.nsd == 3:
for i0 in (0, len(self.coor[0])-1):
for i1 in (0, len(self.coor[1])-1):
for i2 in (0, len(self.coor[2])-1):
self._slices.append([])
self._slices[-1].append((0, slice(i0, i0+1, 1)))
self._slices[-1].append((0, slice(i1, i1+1, 1)))
self._slices[-1].append((0, slice(i2, i2+1, 1)))
elif self.iterator_domain == 'all_edges':
print 'iterator over "all_edges" is not implemented'
elif self.iterator_domain == 'interior_edges':
print 'iterator over "interior_edges" is not implemented'
else:
raise ValueError('iterator over "%s" is not impl.' % \
self.iterator_domain)
# "def __next__(self):"
"""
If vectorized mode:
Return list of slice instances, where the i-th element in the
list represents the slice for the index in the i-th space
direction (0,...,nsd-1).
If scalar mode:
Return list of indices (in multi-D) or the index (in 1D).
"""
if self.vectorized_iter:
for s in self._slices:
yield [slice_in_dir for dir, slice_in_dir in s]
else:
# scalar version
for s in self._slices:
slices = [slice_in_dir for dir, slice_in_dir in s]
if len(slices) == 1:
for i in xrange(slices[0].start, slices[0].stop):
yield i
elif len(slices) == 2:
for i in xrange(slices[0].start, slices[0].stop):
for j in xrange(slices[1].start, slices[1].stop):
yield [i, j]
elif len(slices) == 3:
for i in xrange(slices[0].start, slices[0].stop):
for j in xrange(slices[1].start, slices[1].stop):
for k in xrange(slices[2].start, slices[2].stop):
yield [i, j, k]
def locate_cell(self, point):
"""
Given a point (x, (x,y), (x,y,z)), locate the cell in which
the point is located, and return
1) the (i,j,k) vertex index
of the "lower-left" grid point in this cell,
2) the distances (dx, (dx,dy), or (dx,dy,dz)) from this point to
the given point,
3) a boolean list if point matches the
coordinates of any grid lines. If a point matches
the last grid point in a direction, the cell index is
set to the max index such that the (i,j,k) index can be used
directly for look up in an array of values. The corresponding
element in the distance array is then set 0.
4) the indices of the nearest grid point.
The method only works for uniform grid spacing.
Used for interpolation.
>>> g1 = UniformBoxGrid(min=0, max=1, division=4)
>>> cell_index, distance, match, nearest = g1.locate_cell(0.7)
>>> print cell_index
[2]
>>> print distance
[ 0.2]
>>> print match
[False]
>>> print nearest
[3]
>>>
>>> g1.locate_cell(0.5)
([2], array([ 0.]), [True], [2])
>>>
>>> g2 = UniformBoxGrid.init_fromstring('[-1,1]x[-1,2] [0:3]x[0:4]')
>>> print g2.coor
[array([-1. , -0.33333333, 0.33333333, 1. ]), array([-1. , -0.25, 0.5 , 1.25, 2. ])]
>>> g2.locate_cell((0.2,0.2))
([1, 1], array([ 0.53333333, 0.45 ]), [False, False], [2, 2])
>>> g2.locate_cell((1,2))
([3, 4], array([ 0., 0.]), [True, True], [3, 4])
>>>
>>>
>>>
"""
if isinstance(point, (int,float)):
point = [point]
nsd = len(point)
if nsd != self.nsd:
raise ValueError('point=%s has wrong dimension (this is a %dD grid!)' % \
(point, self.nsd))
#index = zeros(nsd, int)
index = [0]*nsd
distance = zeros(nsd)
grid_point = [False]*nsd
nearest_point = [0]*nsd
for i, coor in enumerate(point):
# is point inside the domain?
if coor < self.min_coor[i] or coor > self.max_coor[i]:
raise ValueError(
'locate_cell: point=%s is outside the domain [%s,%s]' % \
point, self.min_coor[i], self.max_coor[i])
index[i] = int((coor - self.min_coor[i])//self.delta[i]) # (need integer division)
distance[i] = coor - (self.min_coor[i] + index[i]*self.delta[i])
if distance[i] > self.delta[i]/2:
nearest_point[i] = index[i] + 1
else:
nearest_point[i] = index[i]
if abs(distance[i]) < self.tolerance:
grid_point[i] = True
nearest_point[i] = index[i]
if (abs(distance[i] - self.delta[i])) < self.tolerance:
# last cell, update index such that it coincides with the point
grid_point[i] = True
index[i] += 1
nearest_point[i] = index[i]
distance[i] = 0.0
return index, distance, grid_point, nearest_point
def interpolate(v0, v1, x0, x1, x):
return v0 + (v1-v0)/float(x1-x0)*(x-x0)
def gridline_slice(self, start_coor, direction=0, end_coor=None):
"""
Compute start and end indices of a line through the grid,
and return a tuple that can be used as slice for the
grid points along the line.
The line must be in x, y or z direction (direction=0,1 or 2).
If end_coor=None, the line ends where the grid ends.
start_coor holds the coordinates of the start of the line.
If start_coor does not coincide with one of the grid points,
the line is snapped onto the grid (i.e., the line coincides with
a grid line).
Return: tuple with indices and slice describing the grid point
indices that make up the line, plus a boolean "snapped" which is
True if the original line did not coincide with any grid line,
meaning that the returned line was snapped onto to the grid.
>>> g2 = UniformBoxGrid.init_fromstring('[-1,1]x[-1,2] [0:3]x[0:4]')
>>> print g2.coor
[array([-1. , -0.33333333, 0.33333333, 1. ]),
array([-1. , -0.25, 0.5 , 1.25, 2. ])]
>>> g2.gridline_slice((-1, 0.5), 0)
((slice(0, 4, 1), 2), False)
>>> g2.gridline_slice((-0.9, 0.4), 0)
((slice(0, 4, 1), 2), True)
>>> g2.gridline_slice((-0.2, -1), 1)
((1, slice(0, 5, 1)), True)
"""
start_cell, start_distance, start_match, start_nearest = \
self.locate_cell(start_coor)
# If snapping the line onto to the grid is not desired, the
# start_cell and start_match lists must be used for interpolation
# (i.e., interpolation is needed in the directions i where
# start_match[i] is False).
start_snapped = start_nearest[:]
if end_coor is None:
end_snapped = start_snapped[:]
end_snapped[direction] = self.division[direction] # highest legal index
else:
end_cell, end_distance, end_match, end_nearest = \
self.locate_cell(end_coor)
end_snapped = end_nearest[:]
# recall that upper index limit must be +1 in a slice:
line_slice = start_snapped[:]
line_slice[direction] = \
slice(start_snapped[direction], end_snapped[direction]+1, 1)
# note that if all start_match are true, then the plane
# was not snapped
return tuple(line_slice), not array(start_match).all()
def gridplane_slice(self, value, constant_coor=0):
"""
Compute a slice for a plane through the grid,
defined by coor[constant_coor]=value.
Return a tuple that can be used as slice, plus a boolean
parameter "snapped" reflecting if the plane was snapped
onto a grid plane (i.e., value did not correspond to
an existing grid plane).
"""
start_coor = self.min_coor.copy()
start_coor[constant_coor] = value
start_cell, start_distance, start_match, start_nearest = \
self.locate_cell(start_coor)
start_snapped = [0]*self.nsd
start_snapped[constant_coor] = start_nearest[constant_coor]
# recall that upper index limit must be +1 in a slice:
end_snapped = [self.division[i] for i in range(self.nsd)]
end_snapped[constant_coor] = start_snapped[constant_coor]
plane_slice = [slice(start_snapped[i], end_snapped[i]+1, 1) \
for i in range(self.nsd)]
plane_slice[constant_coor] = start_nearest[constant_coor]
return tuple(plane_slice), not start_match[constant_coor]
class BoxGrid(UniformBoxGrid):
"""
Extension of class UniformBoxGrid to non-uniform box grids.
The coordinate vectors (in each space direction) can have
arbitrarily spaced coordinate values.
The coor argument must be a list of nsd (number of
space dimension) components, each component contains the
grid coordinates in that space direction (stored as an array).
"""
def __init__(self, coor, dirnames=('x', 'y', 'z')):
UniformBoxGrid.__init__(self,
min=[a[0] for a in coor],
max=[a[-1] for a in coor],
division=[len(a)-1 for a in coor],
dirnames=dirnames)
# override:
self.coor = coor
def __repr__(self):
s = self.__class__.__name__ + '(coor=%s)' % self.coor
return s
def locate_cell(self, point):
raise NotImplementedError('Cannot locate point in cells in non-uniform grids')
def _test(g, points=None):
print 'g=%s' % str(g)
# dump all the contents of a grid object:
import scitools.misc; scitools.misc.dump(g, hide_nonpublic=False)
from numpy import zeros
def fv(*args):
# vectorized evaluation function
return zeros(g.shape)+2
def fs(*args):
# scalar version
return 2
fv_arr = g.vectorized_eval(fv)
fs_arr = zeros(g.shape)
coor = [0.0]*g.nsd
itparts = ['all', 'interior', 'all_boundary', 'interior_boundary',
'corners']
if g.nsd == 3:
itparts += ['all_edges', 'interior_edges']
for domain_part in itparts:
print '\niterator over "%s"' % domain_part
for i in g.iter(domain_part, vectorized_version=False):
if isinstance(i, int): i = [i] # wrap index as list (if 1D)
for k in range(g.nsd):
coor[k] = g.coor[k][i[k]]
print i, coor
if domain_part == 'all': # fs_arr shape corresponds to all points
fs_arr[i] = fs(*coor)
print 'vectorized iterator over "%s":' % domain_part
for slices in g.iter(domain_part, vectorized_version=True):
if domain_part == 'all':
fs_arr[slices] = fv(*g.coor)
# else: more complicated
print slices
# boundary slices...
if points is not None:
print '\n\nInterpolation in', g, '\n', g.coor
for p in points:
index, distance = g.locate_cell(p)
print 'point %s is in cell %s, distance=%s' % (p, index, distance)
def _test2():
g1 = UniformBoxGrid(min=0, max=1, division=4)
_test(g1, [0.7, 0.5])
spec = '[0,1]x[-1,2] with indices [0:3]x[0:2]'
g2 = UniformBoxGrid.init_fromstring(spec)
_test(g2, [(0.2,0.2), (1,2)])
g3 = UniformBoxGrid(min=(0,0,-1), max=(1,1,1), division=(4,1,2))
_test(g3)
print 'g3=\n%s' % str(g3)
print 'g3[Z]=', g3[Z]
print 'g3[Z][1] =', g3[Z][1]
print 'dx, dy, dz spacings:', g3.delta
g4 = UniformBoxGrid(min=(0,-1), max=(1,1),
division=(4,2), dirnames=('y','z'))
_test(g4)
print 'g4["y"][-1]:', g4["y"][-1]
def _test4():
from numpy import sin, zeros, exp
# check vectorization evaluation:
g = UniformBoxGrid(min=(0,0), max=(1,1), division=(3,3))
try:
g.vectorized_eval(lambda x,y: 2)
except TypeError, msg:
# fine, expect to arrive here
print '*** Expected error in this test:', msg
try:
g.vectorized_eval(lambda x,y: zeros((2,2))+2)
except IndexError, msg:
# fine, expect to arrive here
print '*** Expected error in this test:', msg
a = g.vectorized_eval(lambda x,y: sin(x)*exp(y-x))
print a
a = g.vectorized_eval(lambda x,y: zeros(g.shape)+2)
print a
if __name__ == '__main__':
_test2()
#_test4()
|