This file is indexed.

/usr/share/pyshared/scitools/BoxGrid.py is in python-scitools 0.9.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
#!/usr/bin/env python
"""
Class for uniform and non-uniform grid on an interval, rectangle, or box.
"""

from scitools.errorcheck import right_type, wrong_type
from scitools.numpyutils import ndgrid, ndarray, wrap2callable, array, \
     zeros, linspace

# constants for indexing the space directions:
X = X1 = 0
Y = X2 = 1
Z = X3 = 2


class UniformBoxGrid(object):
    """
    Simple uniform grid on an interval, rectangle, box, or hypercube.

    =============      ====================================================
      Attributes                           Description
    =============      ====================================================
    nsd                no of spatial dimensions in the grid
    min_coor           array of minimum coordinates
    max_coor           array of maximum coordinates
    division           array of cell divisions in the 
    delta              array of grid spacings
    dirnames           names of the space directions ('x', 'y', etc.)
    shape              (nx+1, ny+1, ...); dimension of array over grid
    coor               list of coordinates; self.coor[Y][j] is the
                       the j-th coordinate in direction Y (=1)
                       X, Y, Z are predefined constants 0, 1, 2
    coorv              expanded version of coor for vectorized expressions
                       (in 2D, self.coorv[0] = self.coor[0][:,newaxis])
    tolerance          small geometric tolerance based on grid coordinates
    npoints            total number of grid points
    =============      ====================================================

    """
    def __init__(self,
                 min=(0,0),                  # minimum coordinates
                 max=(1,1),                  # maximum coordinates
                 division=(4,4),             # cell divisions
                 dirnames=('x', 'y', 'z')):  # names of the directions
        """
        Initialize a BoxGrid by giving domain range (minimum and
        maximum coordinates: min and max tuples/lists/arrays)
        and number of cells in each space direction (division tuple/list/array).
        The dirnames tuple/list holds the names of the coordinates in
        the various spatial directions.

        >>> g = UniformBoxGrid(min=0, max=1, division=10)
        >>> g = UniformBoxGrid(min=(0,-1), max=(1,1), division=(10,4))
        >>> g = UniformBoxGrid(min=(0,0,-1), max=(2,1,1), division=(2,3,5))
        """
        # Allow int/float specifications in one-dimensional grids
        # (just turn to lists for later multi-dimensional processing)
        if isinstance(min, (int,float)):
            min = [min]
        if isinstance(max, (int,float)):
            max = [max]
        if isinstance(division, (int,float)):
            division = [division]
        if isinstance(dirnames, str):
            dirnames = [dirnames]
        
        self.nsd = len(min)
        # strip dirnames down to right space dim (in case the default
        # with three components were unchanged by the user):
        dirnames = dirnames[:self.nsd]

        # check consistent lengths:
        for a in max, division:
            if len(a) != self.nsd:
                raise ValueError(
                    'Incompatible lengths of arguments to constructor'\
                    ' (%d != %d)' % (len(a), self.nsd))

        self.min_coor = array(min, float)
        self.max_coor = array(max, float)
        self.dirnames = dirnames
        self.division = division
        self.coor = [None]*self.nsd
        self.shape = [0]*self.nsd
        self.delta = zeros(self.nsd)

        for i in range(self.nsd):
            self.delta[i] = \
                 (self.max_coor[i] -  self.min_coor[i])/float(self.division[i])
            self.shape[i] = self.division[i] + 1  # no of grid points
            self.coor[i] = \
                 linspace(self.min_coor[i], self.max_coor[i], self.shape[i])
        self._more_init()

    def _more_init(self):
        self.shape = tuple(self.shape)
        self.coorv = ndgrid(*self.coor)
        if not isinstance(self.coorv, (list,tuple)):
            # 1D grid, wrap self.coorv as list:
            self.coorv = [self.coorv]

        self.npoints = 1
        for i in range(len(self.shape)):
            self.npoints *= self.shape[i]
            
        self.tolerance = (max(self.max_coor) - min(self.min_coor))*1E-14

        # nicknames: xcoor, ycoor, xcoorv, ycoorv, etc
        for i in range(self.nsd):
            self.__dict__[self.dirnames[i]+'coor'] = self.coor[i]
            self.__dict__[self.dirnames[i]+'coorv'] = self.coorv[i]

        if self.nsd == 3:
            # make boundary coordinates for vectorization:
            xdummy, \
            self.ycoorv_xfixed_boundary, \
            self.zcoorv_xfixed_boundary = ndgrid(0, self.ycoor, self.zcoor)
            
            self.xcoorv_yfixed_boundary, \
            ydummy, \
            self.zcoorv_yfixed_boundary = ndgrid(self.xcoor, 0, self.zcoor)
            
            self.xcoorv_yfixed_boundary, \
            self.zcoorv_yfixed_boundary, \
            zdummy = ndgrid(self.xcoor, self.ycoor, 0)
            
    # could have _ in all variable names and define read-only
    # access via properties

    def string2griddata(s):
        """
        Turn a text specification of a grid into a dictionary
        with the grid data.
        For example,

        >>> s = "domain=[0,10] indices=[0:11]"
        >>> data = BoxGrid.string2griddata(s)
        >>> data
        {'dirnames': ('x', 'y'), 'division': [10], 'max': [10], 'min': [0]}

        >>> s = "domain=[0.2,0.5]x[0,2E+00] indices=[0:20]x[0:100]"
        >>> data = BoxGrid.string2griddata(s)
        >>> data
        {'dirnames': ('x', 'y', 'z'),
         'division': [19, 99],
         'max': [0.5, 2],
         'min': [0.2, 0]}

        >>> s = "[0,1]x[0,2]x[-1,1.5] [0:25]x[0:10]x[0:16]"
        >>> data = BoxGrid.string2griddata(s)
        >>> data
        {'dirnames': ('x', 'y', 'z'),
         'division': [24, 9, 15],
         'max': [1.0, 2.0, 1.5],
         'min': [0.0, 0.0, -1.0]}

        The data dictionary can be used as keyword arguments to the
        class UniformBoxGrid constructor.
        """
        
        domain  = r'\[([^,]*),([^\]]*)\]'
        indices = r'\[([^:,]*):([^\]]*)\]'
        import re
        d = re.findall(domain, s)
        i = re.findall(indices, s)
        nsd = len(d)
        if nsd != len(i):
            raise ValueError('could not parse "%s"' % s)
        kwargs = {}
        dirnames = ('x', 'y', 'z')
        for dir in range(nsd):
            if not isinstance(d[dir], (list,tuple)) or len(d[dir]) != 2 or \
               not isinstance(i[dir], (list,tuple)) or len(i[dir]) != 2:
                raise ValueError('syntax error in "%s"' % s)

            # old syntax (nx, xmin, xmax, ny, ymin, etc.):
            #kwargs[dirnames[dir]] = (float(d[dir][0]), float(d[dir][1]))
            #kwargs['n'+dirnames[dir]] = int(i[dir][1]) - int(i[dir][0]) # no of cells!
            kwargs['min'] = [float(d[dir][0]) for dir in range(nsd)]
            kwargs['max'] = [float(d[dir][1]) for dir in range(nsd)]
            kwargs['division'] = [int(i[dir][1]) - int(i[dir][0]) \
                                  for dir in range(nsd)]
            kwargs['dirnames'] = dirnames[:nsd]
        return kwargs
    string2griddata = staticmethod(string2griddata)

    def __getitem__(self, i):
        """
        Return access to coordinate array in direction no i, or direction
        name i, or return the coordinate of a point if i is an nsd-tuple.
        
        >>> g = UniformBoxGrid(x=(0,1), y=(-1,1), nx=2, ny=4)  # xy grid
        >>> g[0][0] == g.min[0]   # min coor in direction 0
        True
        >>> g['x'][0] == g.min[0]   # min coor in direction 'x'
        True
        >>> g[0,4]
        (0.0, 1.0)
        >>> g = UniformBoxGrid(min=(0,-1), max=(1,1), division=(2,4), dirnames=('y', 'z'))
        >>> g[1][0] == g.min[1]
        True
        >>> g['z'][0] == g.min[1]   # min coor in direction 'z'
        True
        """
        if isinstance(i, str):
            return self.coor[self.name2dirindex(i)]
        elif isinstance(i, int):
            if self.nsd > 1:
                return self.coor[i]     # coordinate array
            else:
                return self.coor[0][i]  # coordinate itself in 1D
        elif isinstance(i, (list,tuple)):
            return tuple([self.coor[k][i[k]] for k in range(len(i))])
        else:
            wrong_type(i, 'i', 'Must be str, int, tuple')
            

    def __setitem__(self, i, value):
        raise AttributeError('subscript assignment is not valid for '\
                             '%s instances' % self.__class__.__name__)

    def ncells(self, i):
        """Return no of cells in direction i."""
        # i has the meaning as in __getitem__. May be removed if not much used
        return len(self.coor[i])-1

    def name2dirindex(self, name):
        """
        Return direction index corresponding to direction name.
        In an xyz-grid, 'x' is 0, 'y' is 1, and 'z' is 2.
        In an yz-grid, 'x' is not defined, 'y' is 0, and 'z' is 1.
        """
        try:
            return self.dirnames.index(name)
        except ValueError:
            print name, 'is not defined'
            return None

    def dirindex2name(self, i):
        """Inverse of name2dirindex."""
        try:
            return self.dirnames[i]
        except IndexError:
            print i, 'is not a valid index'
            return None
    
    def ok(self):
        return True  # constructor init only => always ok

    def __len__(self):
        """Total number of grid points."""
        n = 1
        for dir in self.coor:
            n *= len(dir)
        return n

    def __repr__(self):
        s = self.__class__.__name__ + \
            '(min=%s, max=%s, division=%s, dirnames=%s)' % \
            (self.min_coor.tolist(),
             self.max_coor.tolist(),
             self.division, self.dirnames)
        return s

    def __str__(self):
        """Pretty print, using the syntax of init_fromstring."""
        domain = 'x'.join(['[%g,%g]' % (min_, max_) \
                           for min_, max_ in zip(self.min_coor, self.max_coor)])
        indices = 'x'.join(['[0:%d]' % div for div in self.division])
        return 'domain=%s  indices=%s' % (domain, indices)
                      
    def interpolator(self, point_values):
        """
        Given a self.nsd dimension array point_values with
        values at each grid point, this method returns a function
        for interpolating the scalar field defined by point_values
        at an arbitrary point.

        2D Example:
        given a filled array point_values[i,j], compute
        interpolator = grid.interpolator(point_values)
        v = interpolator(0.1243, 9.231)  # interpolate point_values
        
        >>> g=UniformBoxGrid(x=(0,2), nx=2, y=(-1,1), ny=2)
        >>> g
        UniformBoxGrid(x=(0,2), nx=2, y=(-1,1), ny=2)
        >>> def f(x,y): return 2+2*x-y

        >>> f=g.vectorized_eval(f)
        >>> f
        array([[ 3.,  2.,  1.],
               [ 5.,  4.,  3.],
               [ 7.,  6.,  5.]])
        >>> i=g.interpolator(f)
        >>> i(0.1,0.234)        # interpolate (not a grid point)
        1.9660000000000002
        >>> f(0.1,0.234)        # exact answer
        1.9660000000000002
        """
        args = self.coor
        args.append(point_values)
        # make use of wrap2callable, which applies ScientificPython
        return wrap2callable(args)

    def vectorized_eval(self, f):
        """
        Evaluate a function f (of the space directions) over a grid.
        f is supposed to be vectorized.

        >>> g = BoxGrid(x=(0,1), y=(0,1), nx=3, ny=3)
        >>> # f(x,y) = sin(x)*exp(x-y):
        >>> a = g.vectorized_eval(lambda x,y: sin(x)*exp(y-x))
        >>> print a
        [[ 0.          0.          0.          0.        ]
         [ 0.23444524  0.3271947   0.45663698  0.63728825]
         [ 0.31748164  0.44308133  0.6183698   0.86300458]
         [ 0.30955988  0.43202561  0.60294031  0.84147098]]

        >>> # f(x,y) = 2: (requires special consideration)
        >>> a = g.vectorized_eval(lambda x,y: zeros(g.shape)+2)
        >>> print a
        [[ 2.  2.  2.  2.]
         [ 2.  2.  2.  2.]
         [ 2.  2.  2.  2.]
         [ 2.  2.  2.  2.]]
        """
        a = f(*self.coorv)

        # check if f is really vectorized:
        try:
            msg = 'calling %s, which is supposed to be vectorized' % f.__name__
        except AttributeError:  # if __name__ is missing
            msg = 'calling a function, which is supposed to be vectorized'
        try:
            self.compatible(a)
        except (IndexError,TypeError), e:
            print 'e=',e, type(e), e.__class__.__name__
            raise e.__class__('BoxGrid.vectorized_eval(f):\n%s, BUT:\n%s' % \
                              (msg, e))
        return a
        
    def init_fromstring(s):
        data = UniformBoxGrid.string2griddata(s)
        return UniformBoxGrid(**data)
    init_fromstring = staticmethod(init_fromstring)

    def compatible(self, data_array, name_of_data_array=''):
        """
        Check that data_array is a NumPy array with dimensions
        compatible with the grid.
        """
        if not isinstance(data_array, ndarray):
            raise TypeError('data %s is %s, not NumPy array' % \
                            (name_of_data_array, type(data_array)))
        else:
            if data_array.shape != self.shape:
                raise IndexError("data %s of shape %s is not "\
                                 "compatible with the grid's shape %s" % \
                                 (name_of_data_array, data_array.shape,
                                  self.shape))
        return True # if we haven't raised any exceptions

    def iter(self, domain_part='all', vectorized_version=True):
        """
        Return iterator over grid points.
        domain_part = 'all':  all grid points
        domain_part = 'interior':  interior grid points
        domain_part = 'all_boundary':  all boundary points
        domain_part = 'interior_boundary':  interior boundary points
        domain_part = 'corners':  all corner points
        domain_part = 'all_edges':  all points along edges in 3D grids
        domain_part = 'interior_edges':  interior points along edges

        vectorized_version is true if the iterator returns slice
        objects for the index slice in each direction.
        vectorized_version is false if the iterator visits each point
        at a time (scalar version).
        """
        self.iterator_domain = domain_part
        self.vectorized_iter = vectorized_version
        return self

    def __iter__(self):
        # Idea: set up slices for the various self.iterator_domain
        # values. In scalar mode, make a loop over the slices and
        # yield the scalar value. In vectorized mode, return the
        # appropriate slices.
        
        self._slices = []  # elements meant to be slice objects
                    
        if self.iterator_domain == 'all':
            self._slices.append([])
            for i in range(self.nsd):
                self._slices[-1].append((i, slice(0, len(self.coor[i]), 1)))

        elif self.iterator_domain == 'interior':
            self._slices.append([])
            for i in range(self.nsd):
                self._slices[-1].append((i, slice(1, len(self.coor[i])-1, 1)))

        elif self.iterator_domain == 'all_boundary':
            for i in range(self.nsd):
                self._slices.append([])
                # boundary i fixed at 0:
                for j in range(self.nsd):
                    if j != i:
                        self._slices[-1].\
                           append((j, slice(0, len(self.coor[j]), 1)))
                    else:
                        self._slices[-1].append((i, slice(0, 1, 1)))
                # boundary i fixed at its max value:
                for j in range(self.nsd):
                    if j != i:
                        self._slices[-1].\
                           append((j, slice(0, len(self.coor[j]), 1)))
                    else:
                        n = len(self.coor[i])
                        self._slices[-1].append((i, slice(n-1, n, 1)))
                        
        elif self.iterator_domain == 'interior_boundary':
            for i in range(self.nsd):
                self._slices.append([])
                # boundary i fixed at 0:
                for j in range(self.nsd):
                    if j != i:
                        self._slices[-1].\
                           append((j, slice(1, len(self.coor[j])-1, 1)))
                    else:
                        self._slices[-1].append((i, slice(0, 1, 1)))
                # boundary i fixed at its max value:
                for j in range(self.nsd):
                    if j != i:
                        self._slices[-1].\
                           append((j, slice(1, len(self.coor[j])-1, 1)))
                    else:
                        n = len(self.coor[i])
                        self._slices[-1].append((i, slice(n-1, n, 1)))

        elif self.iterator_domain == 'corners':
            if self.nsd == 1:
                for i0 in (0, len(self.coor[0])-1):
                    self._slices.append([])
                    self._slices[-1].append((0, slice(i0, i0+1, 1)))
            elif self.nsd == 2:
                for i0 in (0, len(self.coor[0])-1):
                    for i1 in (0, len(self.coor[1])-1):
                        self._slices.append([])
                        self._slices[-1].append((0, slice(i0, i0+1, 1)))
                        self._slices[-1].append((0, slice(i1, i1+1, 1)))
            elif self.nsd == 3:
                for i0 in (0, len(self.coor[0])-1):
                    for i1 in (0, len(self.coor[1])-1):
                        for i2 in (0, len(self.coor[2])-1):
                            self._slices.append([])
                            self._slices[-1].append((0, slice(i0, i0+1, 1)))
                            self._slices[-1].append((0, slice(i1, i1+1, 1)))
                            self._slices[-1].append((0, slice(i2, i2+1, 1)))

        elif self.iterator_domain == 'all_edges':
            print 'iterator over "all_edges" is not implemented'
        elif self.iterator_domain == 'interior_edges':
            print 'iterator over "interior_edges" is not implemented'
        else:
            raise ValueError('iterator over "%s" is not impl.' % \
                             self.iterator_domain)
        
#    "def __next__(self):"
        """
        If vectorized mode:
        Return list of slice instances, where the i-th element in the
        list represents the slice for the index in the i-th space
        direction (0,...,nsd-1).

        If scalar mode:
        Return list of indices (in multi-D) or the index (in 1D).
        """
        if self.vectorized_iter:
            for s in self._slices:
                yield [slice_in_dir for dir, slice_in_dir in s]
        else:
            # scalar version
            for s in self._slices:
                slices = [slice_in_dir for dir, slice_in_dir in s]
                if len(slices) == 1:
                    for i in xrange(slices[0].start, slices[0].stop):
                        yield i
                elif len(slices) == 2:
                    for i in xrange(slices[0].start, slices[0].stop):
                        for j in xrange(slices[1].start, slices[1].stop):
                            yield [i, j]
                elif len(slices) == 3:
                    for i in xrange(slices[0].start, slices[0].stop):
                        for j in xrange(slices[1].start, slices[1].stop):
                            for k in xrange(slices[2].start, slices[2].stop):
                                yield [i, j, k]
                             

    def locate_cell(self, point):
        """
        Given a point (x, (x,y), (x,y,z)), locate the cell in which
        the point is located, and return
        1) the (i,j,k) vertex index
        of the "lower-left" grid point in this cell,
        2) the distances (dx, (dx,dy), or (dx,dy,dz)) from this point to
        the given point,
        3) a boolean list if point matches the
        coordinates of any grid lines. If a point matches
        the last grid point in a direction, the cell index is
        set to the max index such that the (i,j,k) index can be used
        directly for look up in an array of values. The corresponding
        element in the distance array is then set 0.
        4) the indices of the nearest grid point.
        
        The method only works for uniform grid spacing.
        Used for interpolation.

        >>> g1 = UniformBoxGrid(min=0, max=1, division=4)
        >>> cell_index, distance, match, nearest = g1.locate_cell(0.7)
        >>> print cell_index
        [2]
        >>> print distance
        [ 0.2]
        >>> print match
        [False]
        >>> print nearest
        [3]
        >>>
        >>> g1.locate_cell(0.5)
        ([2], array([ 0.]), [True], [2])
        >>>
        >>> g2 = UniformBoxGrid.init_fromstring('[-1,1]x[-1,2] [0:3]x[0:4]')
        >>> print g2.coor
        [array([-1.        , -0.33333333,  0.33333333,  1.        ]), array([-1.  , -0.25,  0.5 ,  1.25,  2.  ])]
        >>> g2.locate_cell((0.2,0.2))
        ([1, 1], array([ 0.53333333,  0.45      ]), [False, False], [2, 2])
        >>> g2.locate_cell((1,2))
        ([3, 4], array([ 0.,  0.]), [True, True], [3, 4])
        >>>
        >>>
        >>>
        """
        if isinstance(point, (int,float)):
            point = [point]
        nsd = len(point)
        if nsd != self.nsd:
            raise ValueError('point=%s has wrong dimension (this is a %dD grid!)' % \
                             (point, self.nsd))
        #index = zeros(nsd, int)
        index = [0]*nsd
        distance = zeros(nsd)
        grid_point = [False]*nsd
        nearest_point = [0]*nsd
        for i, coor in enumerate(point):
            # is point inside the domain?
            if coor < self.min_coor[i] or coor > self.max_coor[i]:
                raise ValueError(
                    'locate_cell: point=%s is outside the domain [%s,%s]' % \
                    point, self.min_coor[i], self.max_coor[i])
            index[i] = int((coor - self.min_coor[i])//self.delta[i])  # (need integer division)
            distance[i] = coor - (self.min_coor[i] + index[i]*self.delta[i])
            if distance[i] > self.delta[i]/2:
                nearest_point[i] = index[i] + 1
            else:
                nearest_point[i] = index[i]
            if abs(distance[i]) < self.tolerance:
                grid_point[i] = True
                nearest_point[i] = index[i]
            if (abs(distance[i] - self.delta[i])) < self.tolerance:
                # last cell, update index such that it coincides with the point
                grid_point[i] = True
                index[i] += 1
                nearest_point[i] = index[i]
                distance[i] = 0.0
                
        return index, distance, grid_point, nearest_point

    def interpolate(v0, v1, x0, x1, x):
        return v0 + (v1-v0)/float(x1-x0)*(x-x0)

    def gridline_slice(self, start_coor, direction=0, end_coor=None):
        """
        Compute start and end indices of a line through the grid,
        and return a tuple that can be used as slice for the
        grid points along the line.
        
        The line must be in x, y or z direction (direction=0,1 or 2).
        If end_coor=None, the line ends where the grid ends.
        start_coor holds the coordinates of the start of the line.
        If start_coor does not coincide with one of the grid points,
        the line is snapped onto the grid (i.e., the line coincides with
        a grid line).

        Return: tuple with indices and slice describing the grid point
        indices that make up the line, plus a boolean "snapped" which is
        True if the original line did not coincide with any grid line,
        meaning that the returned line was snapped onto to the grid.

        >>> g2 = UniformBoxGrid.init_fromstring('[-1,1]x[-1,2] [0:3]x[0:4]')
        >>> print g2.coor
        [array([-1.        , -0.33333333,  0.33333333,  1.        ]),
         array([-1.  , -0.25,  0.5 ,  1.25,  2.  ])]

        >>> g2.gridline_slice((-1, 0.5), 0)
        ((slice(0, 4, 1), 2), False)

        >>> g2.gridline_slice((-0.9, 0.4), 0)
        ((slice(0, 4, 1), 2), True)

        >>> g2.gridline_slice((-0.2, -1), 1)
        ((1, slice(0, 5, 1)), True)

        """
        
        start_cell, start_distance, start_match, start_nearest = \
                    self.locate_cell(start_coor)
        # If snapping the line onto to the grid is not desired, the
        # start_cell and start_match lists must be used for interpolation
        # (i.e., interpolation is needed in the directions i where
        # start_match[i] is False).
        
        start_snapped = start_nearest[:]
        if end_coor is None:
            end_snapped = start_snapped[:]
            end_snapped[direction] = self.division[direction] # highest legal index
        else:
            end_cell, end_distance, end_match, end_nearest = \
                      self.locate_cell(end_coor)
            end_snapped = end_nearest[:]
        # recall that upper index limit must be +1 in a slice:
        line_slice = start_snapped[:]
        line_slice[direction] = \
            slice(start_snapped[direction], end_snapped[direction]+1, 1)
        # note that if all start_match are true, then the plane
        # was not snapped
        return tuple(line_slice), not array(start_match).all()

        
    def gridplane_slice(self, value, constant_coor=0):
        """
        Compute a slice for a plane through the grid,
        defined by coor[constant_coor]=value.
        
        Return a tuple that can be used as slice, plus a boolean
        parameter "snapped" reflecting if the plane was snapped
        onto a grid plane (i.e., value did not correspond to
        an existing grid plane).
        """
        start_coor = self.min_coor.copy()
        start_coor[constant_coor] = value
        start_cell, start_distance, start_match, start_nearest = \
                    self.locate_cell(start_coor)
        start_snapped = [0]*self.nsd
        start_snapped[constant_coor] = start_nearest[constant_coor]
        # recall that upper index limit must be +1 in a slice:
        end_snapped = [self.division[i] for i in range(self.nsd)]
        end_snapped[constant_coor] = start_snapped[constant_coor]
        plane_slice = [slice(start_snapped[i], end_snapped[i]+1, 1) \
                       for i in range(self.nsd)]
        plane_slice[constant_coor] = start_nearest[constant_coor]
        return tuple(plane_slice), not start_match[constant_coor]
        

        
class BoxGrid(UniformBoxGrid):
    """
    Extension of class UniformBoxGrid to non-uniform box grids.
    The coordinate vectors (in each space direction) can have
    arbitrarily spaced coordinate values.

    The coor argument must be a list of nsd (number of
    space dimension) components, each component contains the
    grid coordinates in that space direction (stored as an array).
    """
    def __init__(self, coor, dirnames=('x', 'y', 'z')):
        
        UniformBoxGrid.__init__(self,
                                min=[a[0] for a in coor],
                                max=[a[-1] for a in coor],
                                division=[len(a)-1 for a in coor],
                                dirnames=dirnames)
        # override:
        self.coor = coor

    def __repr__(self):
        s = self.__class__.__name__ + '(coor=%s)' % self.coor
        return s

    def locate_cell(self, point):
        raise NotImplementedError('Cannot locate point in cells in non-uniform grids')
    
        
def _test(g, points=None):
    print 'g=%s' % str(g)
    # dump all the contents of a grid object:
    import scitools.misc;  scitools.misc.dump(g, hide_nonpublic=False)
    from numpy import zeros
    def fv(*args):
        # vectorized evaluation function
        return zeros(g.shape)+2
    def fs(*args):
        # scalar version
        return 2
    fv_arr = g.vectorized_eval(fv)
    fs_arr = zeros(g.shape)

    coor = [0.0]*g.nsd
    itparts = ['all', 'interior', 'all_boundary', 'interior_boundary',
               'corners']
    if g.nsd == 3:
        itparts += ['all_edges', 'interior_edges']
    for domain_part in itparts:
        print '\niterator over "%s"' % domain_part
        for i in g.iter(domain_part, vectorized_version=False):
            if isinstance(i, int):  i = [i]  # wrap index as list (if 1D)
            for k in range(g.nsd):
                coor[k] = g.coor[k][i[k]]
            print i, coor
            if domain_part == 'all':  # fs_arr shape corresponds to all points
                fs_arr[i] = fs(*coor)
        print 'vectorized iterator over "%s":' % domain_part
        for slices in g.iter(domain_part, vectorized_version=True):
            if domain_part == 'all':
                fs_arr[slices] = fv(*g.coor)
            # else: more complicated
            print slices
    # boundary slices...

    if points is not None:
        print '\n\nInterpolation in', g, '\n', g.coor
        for p in points:
            index, distance = g.locate_cell(p)
            print 'point %s is in cell %s, distance=%s' % (p, index, distance)
    

def _test2():
    g1 = UniformBoxGrid(min=0, max=1, division=4)
    _test(g1, [0.7, 0.5])
    spec = '[0,1]x[-1,2] with indices [0:3]x[0:2]'
    g2 = UniformBoxGrid.init_fromstring(spec)
    _test(g2, [(0.2,0.2), (1,2)])
    g3 = UniformBoxGrid(min=(0,0,-1), max=(1,1,1), division=(4,1,2))
    _test(g3)
    print 'g3=\n%s' % str(g3)
    print 'g3[Z]=', g3[Z]
    print 'g3[Z][1] =', g3[Z][1]
    print 'dx, dy, dz spacings:', g3.delta
    g4 = UniformBoxGrid(min=(0,-1), max=(1,1),
                        division=(4,2), dirnames=('y','z'))
    _test(g4)
    print 'g4["y"][-1]:', g4["y"][-1]
    
def _test4():
    from numpy import sin, zeros, exp
    # check vectorization evaluation:
    g = UniformBoxGrid(min=(0,0), max=(1,1), division=(3,3))
    try:
        g.vectorized_eval(lambda x,y: 2)
    except TypeError, msg:
        # fine, expect to arrive here
        print '*** Expected error in this test:', msg
    try:
        g.vectorized_eval(lambda x,y: zeros((2,2))+2)
    except IndexError, msg:
        # fine, expect to arrive here
        print '*** Expected error in this test:', msg

    a = g.vectorized_eval(lambda x,y: sin(x)*exp(y-x))
    print a
    a = g.vectorized_eval(lambda x,y: zeros(g.shape)+2)
    print a

        
if __name__ == '__main__':
    _test2()
    #_test4()