This file is indexed.

/usr/share/pyshared/scitools/NumPyDB.py is in python-scitools 0.9.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#!/usr/bin/env python
"""
Efficient database for NumPy objects.
"""

import sys, os, pickle, re
from scitools.numpytools import *

class NumPyDB:
    def __init__(self, database_name, mode='store'):
        self.filename = database_name
        self.dn = self.filename + '.dat' # NumPy array data
        self.pn = self.filename + '.map' # positions & identifiers
        if mode == 'store':
            # bring files into existence:
            fd = open(self.dn, 'w');  fd.close()
            fm = open(self.pn, 'w');  fm.close()
        elif mode == 'load':
            # check if files are there:
            if not os.path.isfile(self.dn) or \
               not os.path.isfile(self.pn):
                raise IOError("Could not find the files %s and %s" %\
                              (self.dn, self.pn))
            # load mapfile into list of tuples:
            fm = open(self.pn, 'r')
            lines = fm.readlines()
            self.positions = []
            for line in lines:
                # first column contains file positions in the
                # file .dat for direct access, the rest of the
                # line is an identifier
                c = line.split()
                # append tuple (position, identifier):
                self.positions.append((int(c[0]),
                                       ' '.join(c[1:]).strip()))
            fm.close()

    def locate(self, identifier, bestapprox=None): # base class
        """
        Find position in files where data corresponding
        to identifier are stored.
        bestapprox is a user-defined function for computing
        the distance between two identifiers.
        """
        identifier = identifier.strip()
        # first search for an exact identifier match:
        selected_pos = -1
        selected_id = None
        for pos, id in self.positions:
            if id == identifier:
                selected_pos = pos;  selected_id = id; break
        if selected_pos == -1: # 'identifier' not found?
            if bestapprox is not None:
                # find the best approximation to 'identifier':
                min_dist = \
                    bestapprox(self.positions[0][1], identifier)
                for pos, id in self.positions:
                    d = bestapprox(id, identifier)
                    if d <= min_dist:
                        selected_pos = pos;  selected_id = id
                        min_dist = d
        return selected_pos, selected_id

    def dump(self, a, identifier):  # empty base class func.
        """Dump NumPy array a with identifier."""
        raise NameError("dump is not implemented; must be impl. in subclass")

    def load(self, identifier, bestapprox=None):
        """Load NumPy array with identifier or find best approx."""
        raise NameError("load is not implemented; must be impl. in subclass")


class NumPyDB_text(NumPyDB):
    """Use plain ASCII string representation."""

    def __init__(self, database_name, mode='store'):
        NumPyDB.__init__(self, database_name, mode)

    # simple dump:
    def dump(self, a, identifier):
        """Dump NumPy array a with identifier."""
        fd = open(self.dn, 'a');  fm = open(self.pn, 'a')
        fm.write("%d\t\t %s\n" % (fd.tell(), identifier))
        fd.write(repr(a))
        fd.close();  fm.close()

    # more efficient dump (due to Mario Pernici <Mario.Pernici@mi.infn.it>)
    def dump(self, a, identifier):
        """Dump NumPy array a with identifier."""
        fd = open(self.dn, 'a');  fm = open(self.pn, 'a')
        fm.write("%d\t\t %s\n" % (fd.tell(), identifier))
        fmt = 'array([' + '%s,'*(a.size-1) + '%s])\n'
        fd.write(fmt % tuple(ravel(a)))
        fd.close();  fm.close()


    def load(self, identifier, bestapprox=None):
        """
        Load NumPy array with a given identifier. In case the
        identifier is not found, bestapprox != None means that
        an approximation is sought. The bestapprox argument is
        then taken as a function that can be used for computing
        the distance between two identifiers id1 and id2.
        """
        pos, id = self.locate(identifier, bestapprox)
        if pos < 0: return [None, "not found"]
        fd = open(self.dn, 'r')
        fd.seek(pos)
        # load the correct number of bytes; look at the next pos
        # value in self.positions (impossible if a dictionary is
        # used for self.positions - we need the order of the items!)
        for j in range(len(self.positions)):
            p = self.positions[j][0]
            if p == pos:
                try:
                    s = fd.read(self.positions[j+1][0] - p)
                except IndexError:
                    # last self.positions entry reached,
                    # just read the rest of the file:
                    s = fd.read()
                break
        a = eval(s)
        fd.close()
        return [a, id]


class NumPyDB_pickle (NumPyDB):
    """Use basic Pickle class."""

    def __init__(self, database_name, mode='store'):
        NumPyDB.__init__(self,database_name, mode)

    def dump(self, a, identifier):
        """Dump NumPy array a with identifier."""
        fd = open(self.dn, 'a');  fm = open(self.pn, 'a')
        fm.write("%d\t\t %s\n" % (fd.tell(), identifier))
        pickle.dump(a, fd, 1)  # 1: binary storage
        fd.close();  fm.close()

    def load(self, identifier, bestapprox=None):
        """
        Load NumPy array with a given identifier. In case the
        identifier is not found, bestapprox != None means that
        an approximation is sought. The bestapprox argument is
        then taken as a function that can be used for computing
        the distance between two identifiers id1 and id2.
        """
        pos, id = self.locate(identifier, bestapprox)
        if pos < 0: return None, "not found"
        fd = open(self.dn, 'r')
        fd.seek(pos)
        a = pickle.load(fd)
        fd.close()
        return a, id

import cPickle

class NumPyDB_cPickle (NumPyDB):
    """Use basic cPickle class."""

    def __init__(self, database_name, mode='store'):
        NumPyDB.__init__(self,database_name, mode)

    def dump(self, a, identifier):
        """Dump NumPy array a with identifier."""
        # fd: datafile, fm: mapfile
        fd = open(self.dn, 'a');  fm = open(self.pn, 'a')
        # fd.tell(): return current position in datafile
        fm.write("%d\t\t %s\n" % (fd.tell(), identifier))
        cPickle.dump(a, fd, 1)  # 1: binary storage
        fd.close();  fm.close()

    def load(self, identifier, bestapprox=None):
        """
        Load NumPy array with a given identifier. In case the
        identifier is not found, bestapprox != None means that
        an approximation is sought. The bestapprox argument is
        then taken as a function that can be used for computing
        the distance between two identifiers id1 and id2.
        """
        pos, id = self.locate(identifier, bestapprox)
        if pos < 0: return [None, "not found"]
        fd = open(self.dn, 'r')
        fd.seek(pos)
        a = cPickle.load(fd)
        fd.close()
        return [a, id]


import shelve

class NumPyDB_shelve:
    """Implement the database via shelving."""

    def __init__(self, database_name, mode='store'):
        self.filename = database_name # no suffix, only one file
        if mode == 'load':
            # since the keys() function in a shelf object
            # is slow, we store the keys:
            fd = shelve.open(self.filename)
            self.keys = fd.keys()
            fd.close()

    def dump(self, a, identifier):
        """Dump NumPy array a with identifier."""
        identifier = identifier.strip()
        fd = shelve.open(self.filename)
        fd[identifier] = a
        fd.close()

    def locate(self, identifier, bestapprox=None):
        """Return identifier key in shelf."""
        selected_id = None
        identifier = identifier.strip()
        if identifier in self.keys:
            selected_id = identifier
        else:
            if bestapprox:
                # find the best approximation to 'identifier':
                min_dist = bestapprox(self.keys[0], identifier)
                for id in self.keys:
                    d = bestapprox(id, identifier)
                    if d <= min_dist:
                        selected_id = id
                        min_dist = d
        return selected_id

    def load(self, identifier, bestapprox=None):
        """
        Load NumPy array with a given identifier. In case the
        identifier is not found, bestapprox != None means that
        an approximation is sought. The bestapprox argument is
        then taken as a function that can be used for computing
        the distance between two identifiers id1 and id2.
        """
        id = self.locate(identifier, bestapprox)
        if not id: return None, "not found"
        fd = shelve.open(self.filename)
        a = fd[id]
        fd.close()
        return a, id

# np.load/dump
# joblib.load/dump

def float_dist(id1, id2):
    """
    Compute distance between two identities for NumPyDB.
    Assumption: id1 and id2 are real numbers (but always sent
    as strings).
    This function is typically used when time values are
    used as identifiers.
    """
    return abs(float(id1) - float(id2))


def test_dist(id1, id2):
    """
    Return distance between identifiers id1 and id2.
    The identifiers are of the form 'time=some number'.
    """
    # extract the numbers using regex:
    #t1 = re.search(r"time=(.*)", id1).group(1)
    #t2 = re.search(r"time=(.*)", id2).group(1)
    t1 = id1[5:];  t2 = id2[5:]
    d = abs(float(t1) - float(t2))
    return d

def main(n, length, method, name):
    out = "dumping/loading %d %d-arrays data with the %s method took" \
          % (n,length,method)
    if method == "pickle":
        dataout = NumPyDB_pickle(name, 'store')
    elif method == "cPickle":
        dataout = NumPyDB_cPickle(name, 'store')
    elif method == "shelve":
        dataout = NumPyDB_shelve(name, 'store')
    elif method == "text":
        dataout = NumPyDB_text(name, 'store')
    else:
        raise ValueError("illegal method name='%s'" % method)

    import time
    t0 = time.clock()
    for i in range(n):
        u = arange(i, length/2+i, 0.4999999)
        # (generate numbers with many digits so repr(u) has
        # a representative size (not just integers, for instance))

        dataout.dump(u, 'time=%e' % float(i))

    if method == "pickle":
        datain = NumPyDB_pickle(name, 'load')
    elif method == "cPickle":
        datain = NumPyDB_cPickle(name, 'load')
    elif method == "shelve":
        datain = NumPyDB_shelve(name, 'load')
    elif method == "text":
        datain = NumPyDB_text(name, 'load')
    else:
        raise ValueError("illegal method name='%s'" % method)

    w = datain.load('time=4')
    print "identifier='time=4':", w
    # not found, no exact match for 't=4', should have
    # 'time=4.000000e+00'
    w = datain.load('time=4.000000e+00')
    print "identifier='time=4.000000e+00': found"
    if len(w[0]) < 20: print w[0]

    w = datain.load('time=5', bestapprox=test_dist)
    print "identifier='time=5' and bestapprox=test_dest found"
    if len(w[0]) < 20: print w[0]
    t1 = time.clock()
    print "%s %.2f s" % (out, t1-t0)
    if os.path.isfile(name+'.dat'):
        filesize = os.path.getsize(name+'.dat')/1000000.0
    elif os.path.isfile(name):  # shelve technique leads to no extension
        filesize = os.path.getsize(name)/1000000.0
    print "filesize=%.2fMb\n\n" % filesize
    for filename in (name+'.dat', name+'.map', name):
        if os.path.isfile(filename):
            os.remove(filename)

if __name__ == '__main__':
    try:     n = int(sys.argv[1])
    except:  n = 12
    try:     length = int(sys.argv[2])
    except:  length = 10
    try:     methods = [sys.argv[3]]
    except:  methods = ['pickle','cPickle','shelve','text']
    print 'NumPy array type:', basic_NumPy
    for method in methods:
        main(n, length, method, "tmpdata_" + method)