/usr/share/pyshared/scitools/_numpyload.py is in python-scitools 0.9.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | """
Note:
This module stems from the days when there were three (almost) competing
Numerical Python implementations around and people wanted to be able
to switch between these implementations in their Python programs.
Nowadays, numpy is the dominating module, and the use of _numpyload and
numpytools is no longer particularly fruitful. For backward compatibility
of scitools, the two modules still exist.
Unified array computing interface
=================================
Numeric, numarray, and numpy can be viewed as three different
implementations of Numerical Python functionality. The present module
enables writing scripts that are independent of the particular choice
of Numeric, numarray, or numpy. That is, the idea is that any of these
modules can be replaced by one of the alternatives, and the script
should still work. This requires the script to only use the set of
instructions that are common to Numeric, numarray, and numpy.
One reason for wanting the flexibility is that the different
implementations may exhibit different computational efficiency in
different applications. It also makes it trivial to adopt new versions
of Numerical Python in old scripts.
Basic Usage
-----------
To achieve a script that makes transparent use of Numeric, numarray, and
numpy, one needs to do one of the following imports::
from scitools.numpytools import *
# or
import scitools.numpytools as N
Then one should never explicitly import Numeric, numarray, or numpy,
and explicitly use functions in these modules as this may cause
different array types to be mixed in the same application. Only call
the functions that were imported by the star or prefix functions by
the N symbol.
What Gets Imported?
-------------------
All symbols from either Numeric, numarray, or numpy are imported
into the global namespace of this numpytools module::
from Numeric import *
#or
from numarray import *
#or
from numpy import *
Also the modules for random arrays, linear algebra, Matlab functions,
and FFT are imported. One problem with switching between Numeric,
numarray, and numpy is the additional modules for random arrays, etc.,
have different names in the three packages. For example::
Numeric has LinearAlgebra
numarray has numarray.linear_algebra.LinearAlgebra2
numpy has numpy.linalg
The Numeric names are always available in addition to the native names.
For example, an import numpy.linalg is associated with a::
LinearAlgebra = numpy.linalg
Note that the MA module is not imported since it redefines
the repr function (array([1,2]) becomes [1,2] as for a list) if
the Numeric is used. The user must always explicitly import this package
if Numeric is used as basic array module.
Note that the numpytools module also makes some extensions of Numerical
Python available, see the section "Functionality of this module that
extends Numerical Python" (below).
What to use: Numeric, numarray, or numpy?
-----------------------------------------
The present module defines a global variable basic_NumPy holding
either "Numeric", "numarray", or "numpy", depending on which module
that was actually imported.
To determine whether Numeric, numarray, or numpy is to be imported,
the following procedure is applied:
1. The command line arguments are checked for a --numarray,
--Numeric, or --numpy option.
2. If the user has already imported Numeric, numarray, or numpy by an::
import Numeric
#or
import numarray
#or
import numpy
statement, the present module continues to import from the same
module (module in sys.modules is used to check whether it should
be Numeric, numarray, or numpy). If the user has imported more than
one of the three module alternatives, numpy is used.
3. The environment variable NUMPYARRAY is checked.
If this variable contains "numarray", "Numeric", or "numpy" the
corresponding module is imported.
If neither 1., 2., nor 3. determines the import, i.e., the user has not
explicitly indicated what to use, the new numpy is the default choice.
Some Functions for Unified Usage
--------------------------------
Some operations, like finding the maximum and minimum values in an array,
or controlling the output format when printing arrays, have different
syntax in the different Numerical Python implementations. The functions
below attempt to provide a uniform syntax to functionality with
different names in Numeric, numarray, and numpy:
- NumPyArray:
the type used in isinstance(a,NumPyArray) for
checking if a is a NumPy array
- arrmin, arrmax:
compute maximum and minimum of all array entries
(same as amin(a,None) and amax(a,None) in scipy)
- array_output_precision(n):
print arrays with n decimals
- NumPy_type:
returns the type of an array, i.e., "Numeric", "numarray",
or "numpy"
- NumPy_dtype:
returns the type of the data in an array, i.e., 'd', 'i', etc.
- fortran_storage:
transparent transform of an array to column major (Fortran) storage
that preserves the nature (Numeric, numarray, numpy) of the array
Some frequently standard modules like sys, os, and operator are
imported into the namespace of the present module.
"""
import sys, os
# The first task to accomplish in this module is to determine
# whether to use Numeric, numarray, or numpy
basic_NumPy = None # will later hold 'Numeric', 'numarray', or 'numpy'
# check the command line (this code is similar to matplotlib.numerix):
if basic_NumPy is None:
if hasattr(sys, 'argv'): # Apache mod_python has no argv
for _a in sys.argv:
if _a in ["--Numeric", "--numeric", "--NUMERIC"]:
basic_NumPy = 'Numeric'
break
if _a in ["--Numarray", "--numarray", "--NUMARRAY"]:
basic_NumPy = 'numarray'
break
if _a in ["--NumPy", "--numpy", "--NUMPY"]:
basic_NumPy = 'numpy'
break
del _a # don't pollute the global namespace
# check if the user has already done an import Numeric, import numarray,
# or import numpy; use the module that was imported
if basic_NumPy is None:
if 'numpy' in sys.modules:
basic_NumPy = 'numpy'
elif 'numarray' in sys.modules:
basic_NumPy = 'numarray'
elif 'Numeric' in sys.modules:
basic_NumPy = 'Numeric'
# check the environment variable NUMPYARRAY:
if basic_NumPy is None:
if os.environ.has_key('NUMPYARRAY'):
if os.environ['NUMPYARRAY'] == 'numpy':
basic_NumPy = 'numpy'
elif os.environ['NUMPYARRAY'] == 'numarray':
basic_NumPy = 'numarray'
elif os.environ['NUMPYARRAY'] == 'Numeric':
basic_NumPy = 'Numeric'
if basic_NumPy is None: basic_NumPy = 'numpy' # final default choice
if basic_NumPy not in ('Numeric', 'numarray', 'numpy'):
raise ImportError('cannot decide which Numerical Python '\
'implementation to use (ended up with "%s")' % basic_NumPy)
#print 'from', basic_NumPy, 'import *'
# table of equivalent names of Numerical Python modules:
# (used to import modules under Numeric, numarray, or numpy name)
_NumPy_modules = (
('Numeric', 'numarray', 'numpy'),
# umath and Precision are included as part of Numeric, numarray, numpy
('LinearAlgebra', 'numarray.linear_algebra.LinearAlgebra2',
'numpy.linalg'),
('RandomArray', 'numarray.random_array.RandomArray2', 'numpy.random'),
('RNG', '', 'numpy.random'),
('FFT', 'numarray.fft', 'numpy.fft'),
('MLab', 'numarray.linear_algebra.mlab', 'numpy.oldnumeric.mlab'),
('MA', 'numarray.ma.MA', 'numpy.ma'),
)
if basic_NumPy == 'numpy':
try:
# fix backward compatibility with Numeric names:
import numpy
oldversion = (numpy.version.version[0] == '0')
majorversion = int(numpy.version.version[0])
minorversion = int(numpy.version.version[2])
for _Numeric_name, _dummy1, _numpy_name in _NumPy_modules[1:]:
if oldversion and (_Numeric_name in ['RNG', 'FFT']):
n, module = _numpy_name.split('.')
exec "from %s import %s as %s" %(n, module, _Numeric_name)
elif oldversion and (_Numeric_name == 'MLab'):
from numpy.lib import mlab as MLab
elif (oldversion or (majorversion == 1 and minorversion < 1)) \
and (_Numeric_name == 'MA'):
import numpy.core.ma; MA = numpy.core.ma
elif _numpy_name != '':
exec 'import %s; %s = %s' % \
(_numpy_name, _Numeric_name, _numpy_name)
del _Numeric_name, _dummy1, _numpy_name, _NumPy_modules
from numpy import *
if not oldversion:
# get the old names too (NewAxis, Float, etc.):
from numpy.oldnumeric import *
del oldversion
# define new names compatible with Numeric:
LinearAlgebra.solve_linear_equations = linalg.solve
LinearAlgebra.inverse = linalg.inv
LinearAlgebra.determinant = linalg.det
LinearAlgebra.eigenvalues = linalg.eigvals
LinearAlgebra.eigenvectors = linalg.eig
except ImportError, e:
raise ImportError('%s\nnumpy import failed!\n'\
'see doc of %s module for how to choose Numeric instead' % \
(e, __name__))
def array_output_precision(no_of_decimals):
"""Set no of decimals in printout of arrays."""
arrayprint.set_precision(no_of_decimals)
def arrmax(a):
"""Compute the maximum of all the entries in a."""
try:
return a.max()
except AttributeError:
# not a NumPy array
if operator.isSequenceType(a):
return max(a) # does not work for nested sequences
elif operator.isNumberType(a):
return a
else:
raise TypeError('arrmax of %s not supported' % type(a))
def arrmin(a):
"""Compute the minimum of all the entries in a."""
try:
return a.min()
except AttributeError:
# not a NumPy array
if operator.isSequenceType(a):
return min(a) # does not work for nested sequences
elif operator.isNumberType(a):
return a
else:
raise TypeError('arrmin of %s not supported' % type(a))
NumPyArray = ndarray
if basic_NumPy == 'numarray':
try:
for _Numeric_name, _numarray_name, _dummy1 in _NumPy_modules[1:]:
if _numarray_name:
exec 'import %s; %s = %s' % \
(_numarray_name, _Numeric_name, _numarray_name)
# RNG is not supported, make an object that gives an error message:
class __Dummy:
def __getattr__(self, name):
raise ImportError('You have chosen the numarray package, '\
'but it does not have the functionality of the RNG module')
RNG = __Dummy()
del _Numeric_name, _numarray_name, _dummy1, __Dummy, _NumPy_modules
from numarray import *
except ImportError, e:
raise ImportError('%s\nnumarray import failed!\n'\
'see doc of %s module for how to choose Numeric instead' % \
(e, __name__))
def array_output_precision(no_of_decimals):
"""Set no of decimals in printout of arrays."""
arrayprint.set_precision(no_of_decimals)
def arrmax(a):
"""Compute the maximum of all the entries in a."""
try:
return a.max()
except AttributeError:
# not a NumPy array
if operator.isSequenceType(a):
return max(a) # does not work for nested sequences
elif operator.isNumberType(a):
return a
else:
raise TypeError('arrmax of %s not supported' % type(a))
def arrmin(a):
"""Compute the minimum of all the entries in a."""
try:
return a.min()
except AttributeError:
# not a NumPy array
if operator.isSequenceType(a):
return min(a) # does not work for nested sequences
elif operator.isNumberType(a):
return a
else:
raise TypeError('arrmin of %s not supported' % type(a))
NumPyArray = NumArray
if basic_NumPy == 'Numeric':
try:
for _Numeric_name, _dummy1, _dummy2 in _NumPy_modules[1:]:
if _Numeric_name != 'MA': # exclude MA, see comment above
exec 'import %s' % _Numeric_name
del _Numeric_name, _dummy1, _dummy2, _NumPy_modules
from Numeric import *
# the following is perhaps not a good idea;
# Numeric.UserArray and numarray.NumArray have different
# data attributes!
from UserArray import UserArray as NumArray
# define new numpy names:
newaxis = NewAxis
def linspace(start, stop, num=50, endpoint=True, retstep=False):
return asarray(numpy.linspace(start, stop, num, endpoint, retstep))
# hack if LinearAlgebra.eigenvalues hang (because of trouble
# with gcc and Numeric and -ffloat-store flag):
_problems = False
if _problems:
def numpy_eigenvalues(A):
"""
Temporary wrapper for Numeric's LinearAlgebra.eigenvalues.
Convert A to numpy, call numpy's eigenvalues,
convert back to Numeric.
"""
import numpy
A = numpy.array(A)
E = numpy.linalg.eigenvalues(A)
import Numeric
E = Numeric.array(E)
return E
def numpy_eigenvectors(A):
"""
Temporary wrapper for Numeric's LinearAlgebra.eigenvectors.
Convert A to numpy, call numpy's eigenvalues,
convert back to Numeric.
"""
import numpy
A = numpy.array(A)
E, V = numpy.linalg.eigenvectors(A)
import Numeric
E = Numeric.array(E)
V = Numeric.array(V)
return E, V
LinearAlgebra.eigenvalues = numpy_eigenvalues
LinearAlgebra.eigenvectors = numpy_eigenvectors
del _problems
except ImportError, e:
raise ImportError('%s\nNumeric import failed!\n'\
'see doc of %s module for how to choose numarray instead' % \
(e, __name__))
# fix of matrixmultiply bug in Numeric (according to Fernando Perez,
# SciPy-dev mailing list, Sep 28, 2004:
# http://www.scipy.net/pipermail/scipy-dev/2004-September/002267.html,
# matrixmultiply is dot if not dotblas is used, otherwise dot is
# imported from dotblas, and matrixmultiply becomes the unoptimized
# version (Perez timed the difference to be 0.55 vs 122.6 on his
# computer)):
matrixmultiply = dot
def array_output_precision(no_of_decimals):
"""Set no of decimals in printout of arrays."""
sys.float_output_precision = no_of_decimals
def arrmax(a):
"""Compute the maximum of all the entries in a."""
# could set arrmax = amax in scipy if scipy is installed
try:
return max(a.flat) # use Python's list min
except AttributeError:
# not a NumPy array
if operator.isSequenceType(a):
return max(a)
elif operator.isNumberType(a):
return a
else:
raise TypeError('arrmax of %s not supported' % type(a))
def arrmin(a):
"""Compute the minimum of all the entries in a."""
# could set arrmin = amin in scipy if scipy is installed
try:
return min(a.flat)
except AttributeError:
# not a NumPy array
if operator.isSequenceType(a):
return min(a)
elif operator.isNumberType(a):
return a
else:
raise TypeError('arrmin of %s not supported' % type(a))
NumPyArray = ArrayType
# support numpy types:
int_ = Int
int0 = Int0
int8 = Int8
int16 = Int16
int32 = Int32
float_ = Float
float32 = Float32
float64 = Float64
complex_ = Complex
complex64 = Complex64
_N = __import__(basic_NumPy)
NumPy_version = _N.__version__
del _N
# Short forms:
fft = FFT
mlab = MLab
try:
ma = MA
except NameError:
# for Numeric we do not import MA since it affects output format
pass
ra = RandomArray
la = LinearAlgebra
def NumPy_type(a):
"""
@param a: NumPy array
@return: "Numeric", "numarray", or "numpy", depending on which
module that was used to generate the a array
If type is list or tuple then the corresponding typename will be returned
"""
# check basic_NumPy type first to avoid possible import errors
types = {'Numeric': 'Numeric.ArrayType',
'numarray': 'numarray.NumArray',
'numpy': 'numpy.ndarray'}
# Check for non NumPy types first
if isinstance(a, tuple):
return "tuple"
elif isinstance(a, list):
return "list"
exec "import %s" % basic_NumPy # Why isn't basic_NumPy imported?
if isinstance(a, eval(types[basic_NumPy])):
return basic_NumPy
# not the main NumPy type, try the others:
import numpy
if isinstance(a, numpy.ndarray):
return 'numpy'
import Numeric
if isinstance(a, Numeric.ArrayType):
return 'Numeric'
import numarray
if isinstance(a, numarray.NumArray):
return 'numarray'
def NumPy_dtype(a):
"""
@param a: NumPy array
@return: array data type, as a character,
depending on which module that was
used to generate the a array (a.typecode() for Numeric and
numarray, a.dtype for numpy).
"""
if NumPy_type(a) == 'Numeric':
return a.typecode()
elif NumPy_type(a) == 'numarray':
return a.typecode()
elif NumPy_type(a) == 'numpy':
return a.dtype
else:
raise TypeError("array should be NumPy array, not %s" % type(a))
def fortran_storage(a):
"""
Transparent transform of a NumPy array to Fortran (column major)
storage.
@param a: NumPy array (generated in Python or C with C storage)
@return: a new NumPy array with column major storage.
Method: If a is of numpy type, numpy.asarray(a, fortran=True)
is used to produce the new array.
If a is of Numeric or numarray type, we want to preserve the array type
and use a simple (and slower) transpose(transpose(a).copy()) instead.
"""
if NumPy_type(a) == 'Numeric' or NumPy_type(a) == 'numarray':
return transpose(transpose(a).copy())
else:
import numpy
return numpy.asarray(a, fortran=True)
|