This file is indexed.

/usr/share/pyshared/scitools/convergencerate.py is in python-scitools 0.9.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#!/usr/bin/env python
'''
Module for estimating convergence rate of numerical algorithms,
based on data from a set of experiments.

It is recommended to vary only
one discretization parameter h. In spatial problems, h is the mesh
spacing dx, dy, or dz.
In time-dependent problems, where the expected convergence rate is
h^p + dt^q, choose h^p/dt^q = const.
Use class ``OneDiscretizationPrm``, or the function ``convergence_rate``,
or the ``analyze_filedata`` convenience function.

Here is a simple example::

    h = [0.2, 0.1, 0.05, 0.025]  # discretization parameters
    e = [compute_error(hi) for hi in h]

    rates, C = OneDiscretizationPrm.pairwise_rates(h, e)
    print C, rates  # see if rates converges
    print 'final rate:', rates[-1]

There is support for fitting more general error models, like
C1*h^r1 + C2*h*dt^r2, with nonlinear least squares, but in that case it
is more challenging to find sound fits.
'''

from scitools.misc import import_module
from numpy import zeros, array, asarray, log10, transpose, linalg, linspace
import sys
from scitools.std import plot

__all__ = ['ManyDiscretizationPrm',
           'OneDiscretizationPrm',
           ]

log = log10
inv_log = lambda x: 10**x

# The classes in this module have only static methods, i.e.,
# classes are merely name spaces for related functions.


class OneDiscretizationPrm(object):
    """
    Tools for fitting an error model with only one discretization
    parameter: e = C*h^2.
    """

    def error_model(p, d):
        """Return e = C*h**a, where p=[C, a] and h=d[0]."""
        C, a = p
        h = d[0]
        return C*h**a

    def loglog_error_model(p, d):
        """As ``error_model``, but log-log data was used in the estimation."""
        C, a = p
        h = d[0]
        return log(C) + a*log(h)


    def linear_loglog_fit(d, e):
        """
        Linear least squares algorithm.
        Suitable for problems with only one distinct
        discretization parameter.
        `d` is the sequence of discretization parameter values, and
        `e` is the sequence of corresponding error values.

        The error model the data is supposed to fit reads
        ``log(e[i]) = log(C[i]) + a*log(d[i])``.
        """
        A = transpose(array([d, zeros(len(d))+1]))
        sol = linalg.lstsq(A, e)
        a, logC = sol[0]
        C = inv_log(logC)
        return a, C

    def nonlinear_fit(d, e, p0):
        """
        ======== ===========================================================
        Name     Description
        ======== ===========================================================
        d        list of values of the (single) discretization
                 parameter in each experiment:
                 ``d[i]`` provides the values of the discretization,
                 parameter in experiement no. i.
        e        list of error values; ``e = (e_1, e_2, ...)``,
                 ``e[i]`` is the error associated with the parameters
                 ``d[i]``
        p0       starting values for the unknown parameters vector
        return   r, C; r is the exponent, C is the factor in front
        ======== ===========================================================
        """
        if len(d) != len(e):
            raise ValueError('d and e must have the same length')
        if not isinstance(d[0], (float,int)):
            raise TypeError('d must be an array of numbers, not %s' % \
                            str(type(d[0])))
        # transform d and e to the data format required by
        # the Scientific package:
        data = []
        for d_i, e_i in zip(d, e):
            data.append(((d_i,) , e_i))  # recall (a,) conversion to tuple
        leastSquaresFit = import_module('Scientific.Functions.LeastSquares',
                                        'leastSquaresFit')
        sol = leastSquaresFit(OneDiscretizationPrm.error_model, p0, data)
        C = sol[0][0]
        a = sol[0][1]
        return a, C


    def pairwise_rates(d, e):
        """
        Compare convergence rates, where each rate is based on
        a formula for two successive experiments.
        """
        if len(d) != len(e):
            raise ValueError('d and e must have the same length')

        rates = []
        for i in range(1, len(d)):
            try:
                rates.append( log(e[i-1]/e[i])/log(float(d[i-1])/d[i]) )
            except (ZeroDivisionError, OverflowError):
                rates.append(0)
        # estimate C from the last data point:
        try:
            C = e[-1]/d[-1]**rates[-1]
        except:
            C = 0
        return rates, C


    def analyze(d, e, initial_guess=None,
                plot_title='', filename='tmp.ps'):
        """
        Run linear, nonlinear and successive rates models.
        Plot results for comparison of the three approaches.

        ============== =================================================
        Argument       Description
        ============== =================================================
        d              list/array of discretization parameter
        e              errors corresponding to d
        initial_guess  estimate of convergence rate parameters
        plot_title     title in plot
        filename       name of plot file
        ============== =================================================
        """
        # convert to NumPy arrays:
        d = asarray(d, float);  e = asarray(e, float)

        # linear least squares fit:
        a1, C1 = OneDiscretizationPrm.linear_loglog_fit(log(d), log(e))
        print "linear LS fit: const=%e rate=%.1f" % (C1, a1)

        # nonlinear least squares fit (no log-log):
        a2, C2 = OneDiscretizationPrm.nonlinear_fit(d, e, initial_guess)
        print "nonlinear LS fit: const=%e rate=%.1f" % (C2, a2)

        # pairwise estimate of the rate:
        rates, C3 = OneDiscretizationPrm.pairwise_rates(d, e)
        a3 = rates[-1]
        print "pairwise fit: const=%e rate=%.1f" % (C3, a3)
        print "all rates:", rates

        if C1 < 0 or C2 < 0 or C3 < 0:
            raise ValueError('Some fits give negative const value! Cannot plot.')
            return

        # else log plot:
        log_d1 = linspace(log(d[0]), log(d[-1]), 2)
        log_e1 = log(C1) + a1*log_d1
        log_e2 = log(C2) + a2*log_d1
        log_e3 = log(C3) + a3*log_d1
        plot(log(d), log(e), 'yo',
             log_d1, log_e1, 'r-',
             log_d1, log_e2, 'b-',
             log_d1, log_e3, 'g-',
             legend=('data',
                     'linear LS log-log fit: %.1f*h^%.1f' % (log(C1), a1),
                     'nonlinear LS fit: %.1f*h^%.1f' % (log(C2), a2),
                     'successive rates, last two experiments: %.1f*h^%.1f' % (log(C3), a3)),
             #axis=[log_d1[-1], log_d1[0], 1.3*log(e[-1]), 1.5*log(e[0])],
             hardcopy=filename)

    analyze = staticmethod(analyze)

    error_model = staticmethod(error_model)
    loglog_error_model = staticmethod(loglog_error_model)
    linear_loglog_fit = staticmethod(linear_loglog_fit)
    nonlinear_fit = staticmethod(nonlinear_fit)
    pairwise_rates = staticmethod(pairwise_rates)

# convenience function:
def convergence_rate(discretization_prm, error):
    """
    Given two lists/arrays with discretization parameters and
    corresponding errors in a numerical method (element no. i
    in the two lists must correspond to each other), this
    function assumes an error formula of the form E=C*d^r,
    where E is the error and d is the discretization parameter.
    The function returns C and r.

    Method used: OneDiscretizationPrm.pairwise_rates is called
    and the final r value is used for return. A check that
    the rates are converging (the last three) is done.
    """
    rates, C = OneDiscretizationPrm.pairwise_rates(discretization_prm, error)
    # check that there is no divergence at the end of
    # the series of experiments
    differences = [rates[i] - rates[i-1] for i in range(len(rates)-1)]
    # the differences between the rates should decrease, at least
    # toward the end
    try:
        if differences[-1] > differences[-2]:
            raise ValueError('The pairwise convergence rates do not '\
                             'decrease toward the end:\n%s' % \
                             str(rates))
    except IndexError:
        pass  # not enough data to check the differences list
    return C, rates[-1]

class ManyDiscretizationPrm(object):
    """
    General tool for fitting an error model containing an
    arbitrary number of discretization parameters.
    The error is a weighted sum of each discretization parameter
    raised to a real expoenent. The weights and exponents are
    the unknown parameters to be fitted by a nonlinear
    least squares procedure.
    """

    def error_model(p, d):
        """
        Evaluate the theoretical error model (sum of C*h^r terms):
        sum_i p[2*i]*d[i]**p[2*i+1]

        ====== =======================================================
        Name   Description
        ====== =======================================================
        p      sequence ofvalues of  parameters (estimated)
        d      sequence of values of (known) discretization parameters
        return error evaluated
        ====== =======================================================

        Note that ``len(p)`` must be ``2*len(d)`` in this model since
        there are two parameters (constant and exponent) for each
        discretization parameter.
        """
        if len(p) != 2*len(d):
            raise ValueError('len(p)=%d != 2*len(d)=%d' % (len(p),2*len(d)))
        sum = 0
        for i in range(len(d)):
            sum += p[2*i] * d[i]**p[2*i+1]
        return sum

    def nonlinear_fit(d, e, initial_guess):
        """
        ============== ================================================
        Argument       Description
        ============== ================================================
        d              list of values of the set of discretization
                       parameters in each experiment:
                       ``d = ((d_1,d_2,d_3),(d_1,d_2,d_3,),...)``;
                       ``d[i]`` provides the values of the
                       discretization parameters in experiement no. i.
        e              list of error values; ``e = (e_1, e_2, ...)``:
                       ``e[i]`` is the error associated with the
                       parameters ``d[i]``
        initial_guess  the starting value for the unknown
                       parameters vector
        return         list of fitted parameters
        ============== ================================================
        """
        if len(d) != len(e):
            raise ValueError('len(d) != len(e)')
        # transform d and e to the data format required by
        # the Scientific package:
        data = []
        for d_i, e_i in zip(d, e):
            if isinstance(d_i, (float, int)):
                data.append(((d_i,), e_i))
            else:  # d_i is tuple, list, array, NumArray, ...
                data.append((d_i, e_i))
        leastSquaresFit = import_module('Scientific.Functions.LeastSquares',
                                        'leastSquaresFit')
        sol = leastSquaresFit(ManyDiscretizationPrm.error_model,
                              initial_guess, data)
        # return list of fitted parameters (p in error_model)
        # (sol[1] is a measure of the quality of the fit)
        return sol[0]

    error_model = staticmethod(error_model)
    nonlinear_fit = staticmethod(nonlinear_fit)


def _test1():
    """Single discretization parameter test."""
    import random
    random.seed(1234)
    n = 7
    h = 1
    e = [];  d = []
    for i in range(7):
        h /= 2.0
        error = OneDiscretizationPrm.error_model((4,2), (h,))
        error += random.gauss(0, 0.1*error)  # perturb data
        d.append(h)
        e.append(error)
    OneDiscretizationPrm.analyze(d, e, initial_guess=(3,2))

def analyze_filedata():
    """
    Reads ``f C r`` from the command line, where ``f`` is the name of
    a file, ``C`` and ``r`` are the initial guesses of the parameters
    in the error model E = C*h^r. A 4th command-line argument can be
    the plot title.
    """
    # read filename and initial guess of C and r in error formula E=C*h^r
    f = open(sys.argv[1], 'r')
    C = float(sys.argv[2])
    r = float(sys.argv[3])
    try:
        plot_title = sys.argv[4]
    except:
        plot_title = ''
    from scitools.filetable import read
    data = read(f)
    print data
    OneDiscretizationPrm.analyze(data[:,0], data[:,1],
                                 initial_guess=(C,r),
                                 plot_title=plot_title)

# extensions:
# example with dx, dy and dt
# same example, but with factors to get a common rate
# dx, dt tables and experiments with whole table, one
# column and one row, and the diagonal

if __name__ == '__main__':
    if len(sys.argv) == 1:
        print 'Usage: %s filename C-guess r-guess [plot-title]' % sys.argv[0]
    elif sys.argv[1] == 'example':
        _test1()
    else:
        analyze_filedata()