/usr/share/pyshared/scitools/easyviz/common.py is in python-scitools 0.9.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 | import pickle, os, operator, pprint
from scitools.numpyutils import seq, iseq, asarray, ones, zeros, sqrt, shape, \
ravel, meshgrid, rank, squeeze, reshape, ndgrid, size
from scitools.numpytools import arrmin, arrmax, NumPyArray
from scitools.globaldata import backend
from misc import _check_xyz, _check_xyuv, _check_xyzuvw, _check_xyzv, \
_check_size, _check_type, _toggle_state, _update_from_config_file
from warnings import warn
def docadd(comment, *lists, **kwargs):
"""
Format a string, intended to be appended to or inserted in a doc
string, containing a comment and a nicely formatted sequence of
lists. Typically used for adding lists of options to a doc string,
where the lists of options are available as static list data in
a class.
Example on usage:
# add to the class doc string:
__doc__ += docadd('Keywords for the setp method', _local_attrs.keys())
# add to a method (get) doc string:
get.__doc__ += docadd('Keywords for the setp method',
BaseClass._local_attrs.keys(),
SomeSubClass._local_attrs.keys())
"""
lst = []
for l in lists:
lst.extend(l)
lst.sort()
s = '\n' + comment + ':\n'
s += ' ' + pprint.pformat(lst)[1:-1] # strip off leading [ and trailing ]
# add indent:
indent = kwargs.get('indent', 4)
indent = ' '*indent
lines = s.split('\n')
for i in range(2,len(lines)): # skip first 2 lines (heading)
if lines[i].strip() != '':
lines[i] = indent + '- ' + lines[i] # add - for list syntax in some markup languages
s = '\n'.join(lines)
return s
class MaterialProperties(object):
"""
Storage of various properties for a material on a PlotProperties object.
"""
_local_prop = {
'opacity': None,
'ambient': None,
'diffuse': None,
'specular': None,
'specularpower': None,
}
_update_from_config_file(_local_prop) # get defaults from scitools.cfg
__doc__ += docadd('Keywords for the setp method', _local_prop.keys())
def __init__(self, **kwargs):
self._prop = {}
self._prop.update(self._local_prop)
self.setp(**kwargs)
def __str__(self):
return pprint.pformat(self._prop)
def setp(self, **kwargs):
for key in self._prop.keys():
if key in kwargs:
_check_type(kwargs[key], key, (int,float))
self._prop[key] = float(kwargs[key])
def getp(self, name):
try:
return self._prop[name]
except:
raise KeyError('%s.getp: no parameter with name "%s"' % \
(self.__class__.__name__, name) )
class PlotProperties(object):
"""
Storage of various properties needed for plotting, such as line types,
surface features, contour values, etc.
Different subclasses (Line, Surface, Contours) are specialized
for different kinds of plots.
All properties are stored in the dictionary self._prop.
"""
_colors = "b g r m c y k w".split()
_markers = "o + x * s d v ^ < > p h .".split()
_linestyles = ": -. -- -".split()
_sizes = "1 2 3 4 5 6 7 8 9".split()
_styledoc = {'y': 'yellow',
'm': 'magenta',
'c': 'cyan',
'r': 'red',
'g': 'green',
'b': 'blue',
'w': 'white',
'k': 'black',
'.': 'point',
'o': 'circle',
'x': 'x-mark',
'+': 'plus',
'*': 'star',
's': 'square',
'd': 'diamond',
'v': 'triangle (down)',
'^': 'triangle (up)',
'<': 'triangle (left)',
'>': 'triangle (right)',
'p': 'pentagram',
'h': 'hexagram',
'-': 'solid',
':': 'dotted',
'-.':'dashdot',
'--':'dashed',
}
__doc__ += 'Valid symbols::\n - Colors: %s\n - Markers: %s\n - Linestyles: %s\n - Sizes: %s\n - Styles:\n%s' % (_colors, _markers, _linestyles, _sizes, pprint.pformat(_styledoc)[1:-1])
_local_prop = {
'description': '',
'legend': '',
'xlim': (0,0), 'ylim': (0,0), 'zlim': (0,0),
'dims': (0,0,0),
'numberofpoints': 0,
'function': '', # the function that created this item
'linecolor': '',
'linewidth': '',
'linetype': '',
'linemarker': '',
'facecolor': '',
'edgecolor': '',
'pointsize': 1.0,
'material': None,
'memoryorder': 'yxz', # FIXME: this is deprecated and will be removed
'indexing': 'ij', # 'xy' is Cartesian indexing, 'ij' matrix indexing
}
_update_from_config_file(_local_prop) # get defaults from scitools.cfg
__doc__ += docadd('Keywords for the setp method', _local_prop.keys())
def __init__(self, **kwargs):
self._prop = {}
self._prop.update(PlotProperties._local_prop)
self._prop['material'] = MaterialProperties()
def __str__(self):
props = {}
for key in self._prop.keys():
prop = self._prop[key]
if isinstance(prop, (list,tuple,NumPyArray)) and \
len(ravel(prop)) > 3:
props[key] = '%s with shape %s' % (type(prop), shape(prop))
else:
props[key] = self._prop[key]
return pprint.pformat(props)
# repr is maybe not smart since
# >>> plot(...)
# will then return Line, Surface,
# etc which automatically gets printed.
# Better to make a dump function
# that one can call on the current figure f.ex.
#def __repr__(self):
# return self.__str__()
def dump(self):
"""Dump the parameters of this object."""
return str(self)
def setp(self, **kwargs):
"""
Set plot properties.
The method adds the argument value to the self._prop
(if the value is legal).
"""
if 'description' in kwargs:
descr = kwargs['description']
self._prop['description'] = descr
# descr is on the form 'mesh: 3D mesh' (say)
self._prop['function'] = descr.split(':')[0]
if 'legend' in kwargs:
self._prop['legend'] = str(kwargs['legend'])
if 'linewidth' in kwargs:
_check_type(kwargs['linewidth'], 'linewidth', (float,int))
self._prop['linewidth'] = float(kwargs['linewidth'])
if 'linecolor' in kwargs:
color = kwargs['linecolor']
if isinstance(color, str) and color in self._colors:
self._prop['linecolor'] = color
elif isinstance(color, (list,tuple)) and len(color) == 3:
self._prop['linecolor'] = color
else:
raise ValueError("linecolor must be '%s', not '%s'" % \
(self._colors, kwargs['linecolor']))
if 'linetype' in kwargs:
if kwargs['linetype'] in self._linestyles:
self._prop['linetype'] = kwargs['linetype']
else:
raise ValueError("linetype must be '%s', not '%s'" % \
(self._linestyles, kwargs['linetype']))
if 'linemarker' in kwargs:
if kwargs['linemarker'] in self._markers:
self._prop['linemarker'] = kwargs['linemarker']
else:
raise ValueError("linemarker must be '%s', not '%s'" % \
(self._markers, kwargs['linemarker']))
if 'facecolor' in kwargs:
self._prop['facecolor'] = kwargs['facecolor']
if 'edgecolor' in kwargs:
self._prop['edgecolor'] = kwargs['edgecolor']
if 'memoryorder' in kwargs:
msg = "Keyword argument 'memoryorder' is deprecated and will be " \
"removed in the future. Please use the 'indexing' keyword " \
"argument instead."
warn(msg, DeprecationWarning)
if kwargs['memoryorder'] == 'xyz':
self._prop['indexing'] = 'ij'
self._prop['memoryorder'] = 'xyz'
elif kwargs['memoryorder'] == 'yxz':
self._prop['indexing'] = 'xy'
self._prop['memoryorder'] = 'yxz'
else:
raise ValueError("memoryorder must be 'xyz' or 'yxz', not %s"\
% kwargs['memoryorder'])
if 'indexing' in kwargs:
if kwargs['indexing'] in ['xy', 'ij']:
self._prop['indexing'] = kwargs['indexing']
else:
raise ValueError("indexing must be 'xy' or 'ij', not '%s'" \
% kwargs['indexing'])
# set material properties:
self._prop['material'].setp(**kwargs)
def getp(self, prm_name=None):
"""
Return the value of the parameter with name prm_name.
If the name is None, the dictionary with all parameters
is returned.
"""
if prm_name == 'memoryorder':
msg = "Keyword argument 'memoryorder' is deprecated and will be " \
"removed in the future. Please use the 'indexing' keyword " \
"argument instead."
warn(msg, DeprecationWarning)
if prm_name is None:
return self._prop
else:
try:
return self._prop[prm_name]
except:
raise KeyError('%s.getp: no parameter with name "%s"' % \
(self.__class__.__name__, prm_name))
def setformat(self, format):
"""
Extract the right values for color, linetype, marker, etc. given
a Matlab-like format string for a curve (e.g., 'r-').
The extracted values are stored in self._prop (with keys like
'linecolor', 'linetype', etc.).
Erroneous chars will be ignored.
When there are multiple format characters for a property, the last
one will count.
"""
if isinstance(format,str) and len(format) > 0:
color = ""
linetype = ""
marker = ""
linewidth = ""
pointsize = ""
# Notice that '--' and '-.' are before '-' in the _linestyles
# alphabet.
for item in self._linestyles:
if item in format:
linetype = item
break
for item in format:
if item in self._colors:
color = item
elif item in self._markers:
if item == '.':
if ('.' in linetype) and (format.count('.') == 1):
pass
else:
marker = item # same as '.'
else:
marker = item
elif item in self._sizes:
# this int describes pointsize or linewidth
self._prop['pointsize'] = item
self._prop['linewidth'] = item
if color in self._colors or color == "":
self._prop['linecolor'] = color
else:
print "Illegal line color choice, %s is not known" % color
if linetype != "" or marker != "":
if linetype in self._linestyles:
self._prop['linetype'] = linetype
elif linetype == "":
self._prop['linetype'] = linetype # Since marker is known
else:
print "Illegal line style choice, %s is not known" % \
linetype
if marker in self._markers:
self._prop['linemarker'] = marker
elif marker == "":
self._prop['linemarker'] = marker # Since linetype is known
else:
print "Illegal line marker choice, %s is not known" % \
marker
def get_limits(self):
"""
Return limits on the x, y, and z axis:
xmin, xmax, ymin, ymax, zmin, zmax.
"""
return self._prop['xlim']+self._prop['ylim']+self._prop['zlim']
def _set_lim(self, a, name, adj_step=0.03):
try:
amin = arrmin(a)
amax = arrmax(a)
except ValueError:
amin = min(ravel(a))
amax = max(ravel(a))
if (amax - amin) == 0:
#print 'empty %s-range [%g,%g], adjusting to [%g,%g]' % \
# (name[0], amin, amax, amin-adj_step, amax+adj_step)
amin -= adj_step; amax += adj_step
self._prop[name] = (amin,amax)
class Line(PlotProperties):
"""
Storage of information about lines in curve plots.
"""
_local_prop = {
'xdata': None,
'ydata': None,
'zdata': None,
}
__doc__ += docadd('Keywords for the setp method',
PlotProperties._local_prop.keys(),
_local_prop.keys())
def __init__(self, *args, **kwargs):
PlotProperties.__init__(self, **kwargs)
self._prop.update(Line._local_prop)
self.setp(**kwargs)
def setp(self, **kwargs):
"""
Set line properties. Legal keyword arguments: x, y, format.
The x and y arguments hold the x and y points of a curve.
The format string is just passed on to setformat, which parses the
contents and sets the format information.
"""
PlotProperties.setp(self, **kwargs)
# Here x,y values can be any SequenceType
# The proper casting should be in the backends plotroutine
if 'z' in kwargs:
if not operator.isSequenceType(kwargs['z']):
raise TypeError("Can only plot sequence types, "\
"z is %s" % type(kwargs['z']))
z = kwargs['z']
if 'format' in kwargs:
self.setformat(kwargs['format'])
if 'y' in kwargs: # will only set y variable if z is set
if isinstance(kwargs['y'], basestring) \
and kwargs['y'] == 'auto':
# now y is the indicies of z
y = range(len(z))
else:
if not operator.isSequenceType(kwargs['y']):
raise TypeError("Can only plot sequence types, "\
"y is %s" % type(kwargs['y']))
y = kwargs['y']
if 'x' in kwargs: # will only set x variable if y is set
if isinstance(kwargs['x'], basestring) \
and kwargs['x'] == 'auto':
# now x is the indicies of y
x = range(len(y))
else:
if not operator.isSequenceType(kwargs['x']):
raise TypeError("Can only plot sequence types, "\
"x is %s" % type(kwargs['x']))
x = kwargs['x']
# Consitency check
assert size(x) == size(y), \
'Line.setp: x has size %d, expected y to have size %d, ' \
'not %d' % (size(x),size(x),size(y))
assert size(x) == size(z), \
'Line.setp: x has size %d, expected z to have size %d, ' \
'not %d' % (size(x),size(x),size(z))
self._set_data(x, y, z)
elif 'y' in kwargs:
if not operator.isSequenceType(kwargs['y']):
raise TypeError("Can only plot sequence types, "\
"y is %s" % type(kwargs['y']))
y = kwargs['y']
if 'format' in kwargs:
self.setformat(kwargs['format'])
if 'x' in kwargs: # will only set x variable if y is set
if isinstance(kwargs['x'], basestring) \
and kwargs['x'] == 'auto':
# now x is the indicies of y
x = range(len(y))
else:
if not operator.isSequenceType(kwargs['x']):
raise TypeError("Can only plot sequence types, "\
"x is %s" % type(kwargs['x']))
x = kwargs['x']
# Consitency check
assert size(x) == size(y), \
'Line.setp: x has size %d, expected y to have size %d, ' \
'not %d.' % (size(x),size(x),size(y))
self._set_data(x, y)
def _set_data(self, x, y, z=None):
self._set_lim(x, 'xlim')
self._set_lim(y, 'ylim')
self._prop['xdata'] = x
self._prop['ydata'] = y
self._prop['dims'] = (len(x), 1, 1)
self._prop['numberofpoints'] = len(x)
if z is not None:
self._set_lim(z, 'zlim')
self._prop['zdata'] = z
self._prop['dims'] = (len(x), len(y), 1)
class Bars(PlotProperties):
"""
Properties of bars in bar graphs.
"""
_local_prop = {
'xdata': None,
'ydata': None,
'barwidth': 0.8,
'barstepsize': 1.0,
'barticks': None,
'rotated_barticks': False,
}
__doc__ += docadd('Keywords for the setp method',
PlotProperties._local_prop.keys(),
_local_prop.keys())
def __init__(self, *args, **kwargs):
PlotProperties.__init__(self, **kwargs)
self._prop.update(Bars._local_prop)
self.setp(**kwargs)
self._parseargs(*args)
def setp(self, **kwargs):
PlotProperties.setp(self, **kwargs)
if 'barwidth' in kwargs:
self._prop['barwidth'] = float(kwargs['barwidth'])
if 'barstepsize' in kwargs:
self._prop['barstepsize'] = float(kwargs['barstepsize'])
if 'barticks' in kwargs:
self._prop['barticks'] = kwargs['barticks']
if 'rotated_barticks' in kwargs:
self._prop['rotated_barticks'] = bool(kwargs['rotated_barticks'])
def _parseargs(self, *args):
# allow both bar(...,LineSpec,width) and bar(...,width,LineSpec):
for i in range(2):
arg = args[-1]
if isinstance(arg, str) and arg in self._colors:
self._prop['linecolor'] = arg
args = args[:-1]
elif isinstance(arg, (float,int)):
self._prop['barwidth'] = float(arg)
args = args[:-1]
nargs = len(args)
if nargs == 2: # bar(x,Y)
x = args[0]
y = args[1]
self._prop['barticks'] = x
elif nargs == 1: # bar(Y)
y = args[0]
if isinstance(y, dict):
a = []
keys = y.keys()
keys.sort()
for key in keys:
a.append(y[key].values())
self._prop['barticks'] = keys
y = asarray(a)
x = range(len(y))
else:
raise TypeError("Bars._parseargs: wrong number of arguments")
self._set_data(x, y)
def _set_data(self, x, y):
if x is None:
pass
self._set_lim(x, 'xlim')
self._set_lim(y, 'ylim')
self._prop['xdata'] = asarray(x)
self._prop['ydata'] = asarray(y)
n = len(x)
self._prop['dims'] = (n, 1, 1)
self._prop['numberofpoints'] = n
class Surface(PlotProperties):
"""
Properties of surfaces in scalar field plots.
"""
_local_prop = {
'cdata': None,
'wireframe': True,
'contours': None,
'xdata': None,
'ydata': None,
'zdata': None,
}
__doc__ += docadd('Keywords for the setp method',
PlotProperties._local_prop.keys(),
_local_prop.keys())
def __init__(self, *args, **kwargs):
PlotProperties.__init__(self, **kwargs)
self._prop.update(Surface._local_prop)
self.setp(**kwargs)
self._parseargs(*args)
if self._prop['function'] in ['meshc', 'surfc']:
self._prop['contours'] = Contours(self._prop['xdata'],
self._prop['ydata'],
self._prop['zdata'],
**kwargs)
def setp(self, **kwargs):
PlotProperties.setp(self, **kwargs)
if 'wireframe' in kwargs:
self._prop['wireframe'] = _toggle_state(kwargs['wireframe'])
def _parseargs(self, *args):
kwargs = {'indexing': self._prop['indexing']}
nargs = len(args)
if nargs >= 3 and nargs <= 4: # mesh(X,Y,Z) or mesh(x,y,Z)
x, y, z = _check_xyz(*args[:3], **kwargs)
elif nargs >= 1 and nargs <= 2: # mesh(Z)
x, y, z = _check_xyz(args[0], indexing=kwargs['indexing'])
else:
raise TypeError("Surface._parseargs: wrong number of arguments")
if nargs == 2 or nargs == 4: # mesh(...,C)
self._prop['cdata'] = args[-1]
self._set_data(x, y, z)
def _set_data(self, x, y, z):
self._set_lim(x, 'xlim')
self._set_lim(y, 'ylim')
self._set_lim(z, 'zlim')
self._prop['xdata'] = x
self._prop['ydata'] = y
self._prop['zdata'] = z
nx, ny = shape(z)
self._prop['dims'] = (nx, ny, 1)
self._prop['numberofpoints'] = nx*ny
if not 'mesh' in self._prop['function']:
self._prop['wireframe'] = False
class Contours(PlotProperties):
"""
Information about contours for plot of scalar fields.
"""
_local_prop = {
'cvector': None, # vector of contour heights
'clevels': 8, # default number of contour levels
'clabels': False, # display contour labels
'clocation': 'base', # location of cntr levels (surface or base)
'filled': False, # fill contours
'xdata': None,
'ydata': None,
'zdata': None,
}
_update_from_config_file(_local_prop) # get defaults from scitools.cfg
__doc__ += docadd('Keywords for the setp method',
PlotProperties._local_prop.keys(),
_local_prop.keys())
def __init__(self, *args, **kwargs):
PlotProperties.__init__(self, **kwargs)
self._prop.update(Contours._local_prop)
self.setp(**kwargs)
self._parseargs(*args)
def setp(self, **kwargs):
PlotProperties.setp(self, **kwargs)
if 'cvector' in kwargs:
_check_type(kwargs['cvector'], 'cvector', (tuple,list,NumPyArray))
self._prop['cvector'] = kwargs['cvector']
self._prop['clevels'] = len(kwargs['cvector'])
if 'clevels' in kwargs:
clevels = kwargs['clevels']
_check_type(clevels, 'clevels', int)
cvector = self._prop['cvector']
if cvector is not None and clevels > len(cvector):
clevels = len(cvector)
self._prop['clevels'] = clevels
if 'clabels' in kwargs:
self._prop['clabels'] = _toggle_state(kwargs['clabels'])
def _parseargs(self, *args):
if isinstance(args[-1], str): # contour(...,LineSpec)
self.setformat(args[-1]); args = args[:-1]
kwargs = {'indexing': self._prop['indexing']}
nargs = len(args)
if nargs >= 3 and nargs <= 4:
x, y, z = _check_xyz(*args[:3], **kwargs)
elif nargs >= 1:
x, y, z = _check_xyz(args[0], indexing=kwargs['indexing'])
else:
raise TypeError("Contours._parseargs: wrong number of arguments")
if nargs == 2 or nargs == 4:
tmp = args[-1]
if operator.isSequenceType(tmp):
self._prop['cvector'] = tmp
self._prop['clevels'] = len(tmp)
elif isinstance(tmp, int):
self._prop['clevels'] = tmp
else:
raise TypeError(
"Contours._parseargs: expected array or integer for " \
" argument %d, not %s" % (nargs, type(tmp)))
self._set_data(x, y, z)
def _set_data(self, x, y, z):
self._set_lim(x, 'xlim')
self._set_lim(y, 'ylim')
self._set_lim(z, 'zlim')
self._prop['xdata'] = x
self._prop['ydata'] = y
self._prop['zdata'] = z
nx, ny = shape(z)
self._prop['dims'] = (nx, ny, 1)
self._prop['numberofpoints'] = len(ravel(z))
if self._prop['function'] == 'contour3':
self._prop['clocation'] = 'surface'
elif self._prop['function'] == 'contourf':
self._prop['filled'] = True
class VelocityVectors(PlotProperties):
"""
Information about velocity vectors in a vector plot.
"""
_local_prop = {
'arrowscale': 1.0,
'filledarrows': False,
'xdata': None, 'ydata': None, 'zdata': None, # grid components
'udata': None, 'vdata': None, 'wdata': None, # vector components
}
__doc__ += docadd('Keywords for the setp method',
PlotProperties._local_prop.keys(),
_local_prop.keys())
def __init__(self, *args, **kwargs):
PlotProperties.__init__(self, **kwargs)
self._prop.update(VelocityVectors._local_prop)
self.setp(**kwargs)
self._parseargs(*args)
def setp(self, **kwargs):
PlotProperties.setp(self, **kwargs)
if 'arrowscale' in kwargs:
_check_type(kwargs['arrowscale'], 'arrowscale', (int,float))
self._prop['arrowscale'] = float(kwargs['arrowscale'])
if 'filledarrows' in kwargs:
self._prop['filledarrows'] = _toggle_state(kwargs['filledarrows'])
def _parseargs(self, *args):
# allow both quiver(...,LineSpec,'filled') and quiver(...,'filled',LS):
for i in range(2):
if isinstance(args[-1], str):
if args[-1] == 'filled':
self._prop['filledarrows'] = True; args = args[:-1]
else:
self.setformat(args[-1]); args = args[:-1]
z, w = [None]*2
func = self._prop['function']
kwargs = {'indexing': self._prop['indexing']}
nargs = len(args)
if nargs >= 6 and nargs <= 7: # quiver3(X,Y,Z,U,V,W)
x, y, z, u, v, w = _check_xyzuvw(*args[:6], **kwargs)
elif nargs >= 4 and nargs <= 5: # quiver(X,Y,U,V) or quiver3(Z,U,V,W)
if func == 'quiver3':
x, y, z, u, v, w = _check_xyzuvw(*args[:4], **kwargs)
else:
x, y, u, v = _check_xyuv(*args[:4], **kwargs)
elif func == 'quiver' and nargs >= 2 and nargs <= 3: # quiver(U,V)
x, y, u, v = _check_xyuv(*args[:2], **kwargs)
else:
raise TypeError(
"VelocityVectors._parseargs: wrong number of arguments")
if (func == 'quiver3' and nargs in (5,7)) or \
(func == 'quiver' and nargs in (3,5)): # quiver?(...,arrowscale)
_check_type(args[-1], 'arrowscale', (float,int))
self._prop['arrowscale'] = float(args[-1])
self._set_data(x, y, z, u, v, w)
def scale_vectors(self):
as_ = self._prop['arrowscale']
if as_:
u = self._prop['udata']
v = self._prop['vdata']
w = self._prop['wdata']
dims = self._prop['dims']
xmin, xmax, ymin, ymax, zmin, zmax = self.get_limits()
dx = (xmax - xmin)/dims[1]
dy = (ymax - ymin)/dims[0]
d = dx**2 + dy**2
if w is not None:
dz = (zmax - zmin)/max(dims[0],dims[1])
d += dx**2
if d > 0:
if w is not None:
length = sqrt((u/d)**2 + (v/d)**2 + (w/d)**2)
else:
length = sqrt((u/d)**2 + (v/d)**2)
maxlen = max(length.flat)
else:
maxlen = 0
if maxlen > 0:
as_ = as_*0.9/maxlen
else:
as_ = as_*0.9
self._prop['udata'] = u*as_
self._prop['vdata'] = v*as_
if w is not None:
self._prop['wdata'] = w*as_
def _set_data(self, x, y, z, u, v, w):
self._set_lim(x, 'xlim')
self._set_lim(y, 'ylim')
if z is not None:
self._set_lim(z, 'zlim')
self._prop['xdata'] = x
self._prop['ydata'] = y
self._prop['zdata'] = z
self._prop['udata'] = u
self._prop['vdata'] = v
self._prop['wdata'] = w
if rank(u) == 1:
self._prop['dims'] = (len(u), 1, 1)
elif rank(u) == 2:
nx, ny = shape(u)
self._prop['dims'] = (nx, ny, 1)
else:
self._prop['dims'] = u.shape
self._prop['numberofpoints'] = len(ravel(u))
class Streams(PlotProperties):
"""
Information about stream lines, stream tubes, and similar
vector field visualization techniques.
"""
_local_prop = {
'stepsize': 0.1,
'numberofstreams': 0,
'tubes': False,
'tubescale': 1.0,
'n': 20, # number of points along the circumference of the tube
'ribbons': False,
'ribbonwidth': 0.5,
'xdata': None, 'ydata': None, 'zdata': None, # grid components
'udata': None, 'vdata': None, 'wdata': None, # vector components
'startx': None, 'starty': None, 'startz': None, # starting points
}
__doc__ += docadd('Keywords for the setp method',
PlotProperties._local_prop.keys(),
_local_prop.keys())
def __init__(self, *args, **kwargs):
PlotProperties.__init__(self, **kwargs)
self._prop.update(Streams._local_prop)
self.setp(**kwargs)
self._parseargs(*args)
def setp(self, **kwargs):
PlotProperties.setp(self, **kwargs)
for key in 'stepsize tubescale ribbonwidth'.split():
if key in kwargs:
_check_type(kwargs[key], key, (float,int))
self._prop[key] = float(kwargs[key])
# set whether we should use lines, tubes, or ribbons:
func = self._prop['function']
self._prop['tubes'] = func == 'streamtube'
self._prop['ribbons'] = func == 'streamribbon'
def _parseargs(self, *args):
# TODO: do more error checking and add support for indexing='ij'.
z, w, sz, option = [None]*4
#kwargs = {'indexing': self._prop['indexing']}
nargs = len(args)
if nargs >= 9 and nargs <= 10:
x, y, z, u, v, w, sx, sy, sz = [asarray(a) for a in args[:9]]
#x, y, z, u, v, w = _check_xyzuvw(*args[:6])
#x, y, z = [asarray(a) for a in args[:3]] #_check_xyz(*args[:3])
#u, v, w = [asarray(a) for a in args[3:6]]
#sx, sy, sz = [asarray(a) for a in args[6:9]]
elif nargs >= 6 and nargs <= 7:
u, v = [asarray(a) for a in args[:2]]
if rank(u) == 3: # streamline(U,V,W,startx,starty,startz)
nx, ny, nz = shape(u)
x, y, z = ndgrid(seq(nx-1), seq(ny-1), seq(nz-1))
#w = asarray(args[2])
w, sx, sy, sz = [asarray(a) for a in args[2:6]]
else: # streamline(X,Y,U,V,startx,starty)
x = u; y = v
#u, v = [asarray(a) for a in args[2:4]]
u, v, sx, sy = [asarray(a) for a in args[2:6]]
elif nargs >= 4 and nargs <= 5: # streamline(U,V,startx,starty)
u, v = [asarray(a) for a in args[:2]]
try:
nx, ny = shape(u)
except:
raise ValueError("u must be 2D, not %dD" % rank(u))
x, y = ndgrid(seq(nx-1), seq(ny-1))
sx, sy = [asarray(a) for a in args[2:4]]
elif nargs >= 1 and nargs <= 2: # streamline(XYZ) or streamline(XY)
raise NotImplementedError('Streams._parseargs: not implemented')
else:
raise TypeError('wrong number of arguments')
if nargs in (5,7,10): # streamline(...,options)
func = self._prop['function']
options = args[-1]
if isinstance(options, (tuple,list)) and len(options) in (1,2):
if func == 'streamtube':
self._prop['tubescale'] = float(options[0])
else:
self._prop['stepsize'] = float(options[0])
if len(options) == 2:
if func == 'streamtube':
self._prop['n'] = int(options[1])
else:
maxverts = float(options[1])
elif isinstance(options, (float,int)):
if func == 'streamtube':
self._prop['tubescale'] = float(options)
elif func == 'streamribbon':
self._prop['ribbonwidth'] = float(options)
else:
self._prop['stepsize'] = float(options)
else:
msg = "options must be [stepsize[,maxverts]], not '%s'" % \
options
if func == 'streamtube':
msg = "options must be [scale[,n]], not '%s'" % options
elif func == 'streamribbon':
msg = "options must be a [width], not %s" % options
raise ValueError(msg)
## if len(u.shape) == 3:
## assert shape(x) == shape(y) == shape(z) == \
## shape(u) == shape(v) == shape(w), \
## "x, y, z, u, v, and z must be 3D arrays and of same shape"
## assert shape(sx) == shape(sy) == shape(sz), \
## "startx, starty, and startz must all be of same shape"
## else:
## assert shape(x) == shape(y) == shape(u) == shape(v), \
## "x, y, u, and v must be 2D arrays and of same shape"
## assert shape(sx) == shape(sy), \
## "startx and starty must be of same shape"
z = w = zeros(shape(u))
sz = zeros(shape(sx))
self._set_data(x, y, z, u, v, w, sx, sy, sz)
def _set_data(self, x, y, z, u, v, w, sx, sy, sz):
self._set_lim(x, 'xlim')
self._set_lim(y, 'ylim')
if z is not None:
self._set_lim(z, 'zlim')
self._prop['xdata'] = x
self._prop['ydata'] = y
self._prop['zdata'] = z
self._prop['udata'] = u
self._prop['vdata'] = v
self._prop['wdata'] = w
self._prop['startx'] = sx
self._prop['starty'] = sy
self._prop['startz'] = sz
if rank(u) == 2:
nx, ny = shape(u)
self._prop['dims'] = (nx, ny, 1)
else:
self._prop['dims'] = shape(u)
self._prop['numberofpoints'] = len(ravel(u))
self._prop['numberofstreams'] = len(ravel(sx))
class Volume(PlotProperties):
"""
Information about volume visualization techniques.
"""
_local_prop = {
'slices': None,
'isovalue': None,
'clevels': 5, # default number of contour lines per plane
'cvector': None,
'xdata': None, 'ydata': None, 'zdata': None, # grid components
'vdata': None, # data values at grid points
'cdata': None, # pseudocolor data
}
_update_from_config_file(_local_prop) # get defaults from scitools.cfg
__doc__ += docadd('Keywords for the setp method',
PlotProperties._local_prop.keys(),
_local_prop.keys())
def __init__(self, *args, **kwargs):
PlotProperties.__init__(self, **kwargs)
self._prop.update(Volume._local_prop)
self.setp(**kwargs)
self._parseargs(*args)
def setp(self, **kwargs):
PlotProperties.setp(self, **kwargs)
if 'isovalue' in kwargs:
_check_type(kwargs['isovalue'], 'isovalue', (float,int))
self._prop['isovalue'] = float(kwargs['isovalue'])
if 'clevels' in kwargs:
clevels = kwargs['clevels']
_check_type(kwargs['clevels'], 'clevels', int)
cvector = self._prop['cvector']
if cvector is not None and clevels > len(cvector):
clevels = len(cvector)
self._prop['clevels'] = clevels
if 'cvector' in kwargs:
_check_type(kwargs['cvector'], 'cvector', (tuple,list))
self._prop['cvector'] = kwargs['cvector']
self._prop['clevels'] = len(kwargs['cvector'])
def _parseargs(self, *args):
func = self._prop['function']
if func in ['slice_', 'contourslice']:
self._parseargs_slice_(*args)
elif func == 'isosurface':
self._parseargs_isosurface(*args)
def _parseargs_slice_(self, *args):
# this method also works for contourslice
kwargs = {'indexing': self._prop['indexing']}
nargs = len(args)
if nargs >= 7 and nargs <= 8:
# slice_(X,Y,Z,V,Sx,Sy,Sz) or slice_(X,Y,Z,V,XI,YI,ZI)
x, y, z, v = _check_xyzv(*args[:4], **kwargs)
slices = [asarray(a) for a in args[4:7]]
elif nargs >= 4 and nargs <= 5:
# slice_(V,Sx,Sy,Sz) or slice_(V,XI,YI,ZI)
x, y, z, v = _check_xyzv(args[0], indexing=kwargs['indexing'])
slices = [asarray(a) for a in args[1:4]]
else:
raise TypeError("Wrong number of arguments")
if nargs == 5 or nargs == 8:
func = self._prop['function']
tmparg = args[-1]
if func == 'slice_': # slice_(...,'method')
intrp_methods = 'linear cubic nearest'.split()
method = str(tmparg)
if not method in interp_methods:
raise ValueError(
'interpolation method must be %s, not %s' % \
(interp_methods, method))
#self._prop['interpolationmethod'] = method
elif func == 'contourslice': # contourslice(...,
if isinstance(tmparg, int) and tmparg >= 0:
self._prop['clevels'] = tmparg
elif isinstance(tmparg, (list,tuple)):
self._prop['cvector'] = tmparg
self._prop['clevels'] = len(tmparg)
self._set_data(x, y, z, v, slices=slices)
def _parseargs_isosurface(self, *args):
kwargs = {'indexing': self._prop['indexing']}
nargs = len(args)
if nargs >= 5 and nargs <= 6: # isosurface(X,Y,Z,V,isovalue)
x, y, z, v = _check_xyzv(*args[:4], **kwargs)
isovalue = float(args[4])
elif nargs >= 2 and nargs <= 3: # isosurface(V,isovalue)
x, y, z, v = _check_xyzv(args[0], indexing=kwargs['indexing'])
isovalue = float(args[1])
else:
raise TypeError("Wrong number of arguments")
if nargs in (3,6): # isosurface(...,COLORS)
cdata = asarray(args[-1])
assert v.shape == cdata.shape, \
"COLORS must have shape %s (as V), not %s" % \
(v.shape, cdata.shape)
self._prop['cdata'] = cdata
self._set_data(x, y, z, v, isovalue=isovalue)
def _set_data(self, x, y, z, v, slices=None, isovalue=None):
self._set_lim(x, 'xlim')
self._set_lim(y, 'ylim')
self._set_lim(z, 'zlim')
self._prop['xdata'] = x
self._prop['ydata'] = y
self._prop['zdata'] = z
self._prop['vdata'] = v
if slices:
self._prop['slices'] = slices
if isovalue is not None:
self._prop['isovalue'] = isovalue
self._prop['dims'] = v.shape
self._prop['numberofpoints'] = len(ravel(v))
class Colorbar(object):
"""
Information about color bars in color plots.
"""
_local_prop = {
'cblocation': 'EastOutside',
'cbtitle': '',
'visible': False,
}
_update_from_config_file(_local_prop) # get defaults from scitools.cfg
__doc__ += docadd('Keywords for the setp method', _local_prop.keys())
_locations = 'North South East West NorthOutside SouthOutside ' \
'EastOutside WestOutside'.split()
__doc__ += docadd('Legal values for color bar location',
_locations)
def __init__(self, **kwargs):
self._prop = {}
self._prop.update(Colorbar._local_prop)
self._defaults = self._prop.copy()
self.setp(**kwargs)
def __str__(self):
return pprint.pformat(self._prop)
def setp(self, **kwargs):
if 'cblocation' in kwargs:
if kwargs['cblocation'] in self._locations:
self._prop['cblocation'] = kwargs['cblocation']
else:
print "colorbar location must be one of %s, not %s" % \
(self._locations, kwargs['cblocation'])
if 'cbtitle' in kwargs:
self._prop['cbtitle'] = str(kwargs['cbtitle'])
if 'visible' in kwargs:
self._prop['visible'] = _toggle_state(kwargs['visible'])
def getp(self, prm_name):
try:
return self._prop[prm_name]
except:
raise KeyError("%s.getp: no parameter with name '%s'" % \
(self.__class__.__name__, prm_name))
def reset(self):
self._prop = self._defaults.copy()
class Light(object):
"""
Information about light in a visualization.
"""
_local_prop = {
'lightcolor': (1,1,1),
'lightpos': (1,0,1),
'lighttarget': (0,0,0),
'intensity': 1,
'visible': True,
}
_update_from_config_file(_local_prop) # get defaults from scitools.cfg
__doc__ += docadd('Keywords for the setp method', _local_prop.keys())
def __init__(self, **kwargs):
self._prop = {}
self._prop.update(Light._local_prop)
self._defaults = self._prop.copy()
self.setp(**kwargs)
def __str__(self):
return pprint.pformat(self._prop)
def setp(self, **kwargs):
if 'lightcolor' in kwargs:
color = kwargs['lightcolor']
_check_type(color, 'lightcolor', (list,tuple))
_check_size(color, 'lightcolor', 3)
for i in range(3):
_check_type(color[i], 'lightcolor', (float,int))
self._prop['lightcolor'] = color
if 'lightpos' in kwargs:
self._prop['lightpos'] = kwargs['lightpos']
if 'lighttarget' in kwargs:
self._prop['lighttarget'] = kwargs['lighttarget']
if 'itensity' in kwargs:
self._prop['itensity'] = kwargs['itensity']
if 'visible' in kwargs:
self._prop['visible'] = _toggle_state(kwargs['visible'])
def getp(self, name):
try:
return self._prop[name]
except:
raise KeyError("%s.getp: no parameter with name '%s'." % \
(self.__class__.__name__, name))
def reset(self):
self._prop = self._defaults.copy()
class Camera(object):
"""
Information about the camera in a visualization.
"""
_local_prop = {
'cammode': 'auto',
'camtarget': (0,0,0),
'camva': None, # view angle
'azimuth': None,
'elevation': None,
'view': 2,
'camup': (0,1,0),
'camdolly': (0,0,0),
'camroll': None, # angle
'camzoom': 1,
'campos': (0,0,0),
'camproj': 'orthographic'
}
_update_from_config_file(_local_prop) # get defaults from scitools.cfg
__doc__ += docadd('Keywords for the setp method', _local_prop.keys())
_modes = ['auto', 'manual']
_camprojs = ['orthographic', 'perspective']
__doc__ += docadd('Legal values for the mode keyword', _modes)
__doc__ += docadd('Legal values for the camproj keyword', _camprojs)
def __init__(self, axis, **kwargs):
self._prop = {}
self._prop.update(Camera._local_prop)
self._ax = axis
self._defaults = self._prop.copy()
self.setp(**kwargs)
def __str__(self):
return pprint.pformat(self._prop)
def setp(self, **kwargs):
if 'cammode' in kwargs:
if kwargs['cammode'] in self._modes:
self._prop['cammode'] = kwargs['cammode']
else:
raise ValueError("Camera.setp: cammode must be %s, not %s" % \
(self._modes, kwargs['cammode']))
if 'view' in kwargs:
view = kwargs['view']
if view in (2,3):
self._set_default_view(view)
elif isinstance(view, (tuple,list)) and len(view) == 2:
self._prop['azimuth'], self._prop['elevation'] = view
else:
raise ValueError(
"Camera.setp: view must be either [az,el], 2, or 3.")
if 'camproj' in kwargs:
if kwargs['camproj'] in self._camprojs:
self._prop['camproj'] = kwargs['camproj']
else:
raise ValueError("projection must one of %s, not %s" % \
(self._camprojs, kwargs['camproj']))
for prop in 'camzoom camva camroll'.split():
if prop in kwargs:
_check_type(kwargs[prop], prop, (int,float))
self._prop[prop] = float(kwargs[prop])
if 'azimuth' in kwargs:
_check_type(kwargs['azimuth'], 'azimuth', (int,float))
self._prop['azimuth'] = float(kwargs['azimuth'])
if self._prop['elevation'] is None:
self._prop['elevation'] = 0
if 'elevation' in kwargs:
_check_type(kwargs['elevation'], 'elevation', (int,float))
self._prop['elevation'] = float(kwargs['elevation'])
if self._prop['azimuth'] is None:
self._prop['azimuth'] = 0
if self._prop['azimuth'] is not None: # elevation is also != None
self._prop['view'] = 3
self._prop['camup'] = (0,0,1)
for prop in 'camtarget campos camup camdolly'.split():
if prop in kwargs:
_check_type(kwargs[prop], prop, (list,tuple))
_check_size(kwargs[prop], prop, 3)
self._prop[prop] = kwargs[prop]
def getp(self, name):
try:
return self._prop[name]
except:
raise KeyError("%s.getp: no parameter with name '%s'." % \
(self.__class__.__name__, name))
def reset(self):
"""Reset camera to defaults."""
self._prop = self._defaults.copy()
def _set_default_view(self, view):
self.reset()
self._prop['view'] = view
self._prop['camtarget'] = self._ax.getp('center')
if self._prop['view'] == 3:
self._prop['camup'] = (0,0,1)
class Axis(object):
"""
Information about the axis in curve, surface, and volume plots.
"""
_local_prop = {
'plotitems': [],
'numberofitems': 0,
'mode': 'auto',
'method': 'normal',
'direction': 'xy',
'hold': False,
'hidden': True,
'box': False,
'grid': False,
'camera': None,
'cameramode': 'auto',
'lights': [],
'colorbar': None,
'colormap': None,
'caxis': [None]*2,
'caxismode': 'auto',
'axiscolor': (0,0,0),
'bgcolor': (1,1,1), # background color
'fgcolor': (0,0,0), # foreground color
'fontname': 'Helvetica',
'fontsize': 12,
'shading': 'faceted',
'scale': 'linear',
'xmin': None, 'xmax': None,
'ymin': None, 'ymax': None,
'zmin': None, 'zmax': None,
'xlim': [None]*2,
'ylim': [None]*2,
'zlim': [None]*2,
'title': '',
'xlabel': '', 'ylabel': '', 'zlabel': '',
'center': (0,0,0),
'daspect': [None]*3,
'daspectmode': 'auto',
'visible': True,
'viewport': None, # viewport coords (list with 4 elm, backend specific)
'ambientcolor': None,
'diffusecolor': None,
'speculartcolor': None,
'pth': None, # this is the p-th axis in subplot(m,n,p)
'colororder': 'b g r c m y k'.split(),
'curcolor': 0,
}
_update_from_config_file(_local_prop) # get defaults from scitools.cfg
__doc__ += docadd('Keywords for the setp method', _local_prop.keys())
_directions = "ij xy".split()
_methods = "equal image square normal vis3d".split()
_modes = "auto manual tight fill".split()
_ranges = "xmin xmax ymin ymax zmin zmax".split()
_shadings = "flat interp faceted".split()
_legend_locs = {'upper right': 1, 'upper left': 2,
'lower left': 3, 'lower right': 4,
'center left': 6, 'center right': 7,
'lower center': 8, 'upper center': 9,
'best': 0, 'right': 5, 'center': 10}
__doc__ += docadd('Legal values for direction keyword', _directions)
__doc__ += docadd('Legal values for method keyword', _methods)
__doc__ += docadd('Legal values for mode keyword', _modes)
__doc__ += docadd('Legal values for range keyword', _ranges)
__doc__ += docadd('Legal values for shading keyword', _shadings)
__doc__ += docadd('Legal values for legend locations',
list(_legend_locs.keys()))
def __init__(self, *args, **kwargs):
self._prop = {}
self._prop.update(Axis._local_prop)
self._defaults = self._prop.copy()
# self was not available when _local_prop was defined:
self._prop['camera'] = Camera(self)
self._prop['colorbar'] = Colorbar()
def __str__(self):
return pprint.pformat(self._prop)
def dump(self):
"""Dump the parameters of this object."""
return str(self)
def setp(self, **kwargs):
if 'mode' in kwargs:
mode = kwargs['mode']
if mode in self._modes:
self._prop['mode'] = mode
if mode in ['auto', 'tight']:
# clear the current axis ranges:
for r in self._ranges:
self._prop[r] = None
else:
raise ValueError("Axis.setp: mode must be %s, not %s" % \
(self._modes, mode))
if 'method' in kwargs:
if kwargs['method'] in self._methods:
self._prop['method'] = kwargs['method']
else:
raise ValueError("Axis.setp: method must be %s, not %s" % \
(self._methods, kwargs['method']))
if 'direction' in kwargs:
if kwargs['direction'] in self._directions:
self._prop['direction'] = kwargs['direction']
else:
raise ValueError("Axis.setp: direction must be %s, not %s" % \
(self._directions, kwargs['direction']))
for key in 'hold hidden box grid'.split():
if key in kwargs:
self._toggle_state(key, kwargs[key])
del kwargs[key]
if 'colorbar' in kwargs:
if isinstance(kwargs['colorbar'], Colorbar):
self._prop['colorbar'] = kwargs['colorbar']
else:
self._prop['colorbar'].setp(visible=kwargs['colorbar'])
if 'colormap' in kwargs:
self._prop['colormap'] = kwargs['colormap'] # backend dependent
if 'caxis' in kwargs:
ca = kwargs['caxis']
if isinstance(ca, (tuple,list)) and len(ca) == 2:
_check_type(ca[0], 'cmin', (int,float))
_check_type(ca[1], 'cmax', (int,float))
self._prop['caxis'] = ca
self._prop['caxismode'] = 'manual'
else:
raise ValueError("%s.setp: caxis must be a two element vector" \
" [cmin,cmax], not '%s'." \
% (self.__class__.__name__,ca))
if 'caxismode' in kwargs:
mode = kwargs['caxismode']
if kwargs['caxismode'] in self._modes:
self._prop['caxismode'] = mode
if mode == 'auto':
self._prop['caxis'] = [None]*2
elif mode == 'manual':
if None in self._prop['caxis']:
zmin, zmax = self._prop['zlim']
if zmin is None or zmax is not None:
self._prop['caxis'] = (zmin, zmax)
else:
self._prop['caxis'] = (0,1)
else:
raise ValueError("Axis.setp: caxismode must be %s, not %s" \
(self._modes, mode))
if 'shading' in kwargs:
if kwargs['shading'] in self._shadings:
self._prop['shading'] = kwargs['shading']
#self._update_shading()
else:
raise ValueError("Axis.setp: '%s' not a valid shading mode" \
% kwargs['shading'])
if 'light' in kwargs:
if isinstance(kwargs['light'], Light):
self._prop['lights'].append(kwargs['light'])
else:
raise ValueError("Axis.setp: light must be %s, not %s" % \
(type(Light), type(self._prop['light'])))
# Set scale
if 'log' in kwargs:
if kwargs['log'] == 'x':
self._prop['scale'] = 'logx'
elif kwargs['log'] == 'y':
self._prop['scale'] = 'logy'
elif kwargs['log'] == 'xy':
self._prop['scale'] = 'loglog'
# Note: The only way to reset scale to linear after log is to
# use plot(args,log=None)
elif kwargs['log'] == None:
self._prop['scale'] = 'linear'
for key in self._ranges:
if key in kwargs and isinstance(kwargs[key], (float,int)):
self._prop[key] = kwargs[key]
for key in 'xlim ylim zlim'.split():
if key in kwargs and isinstance(kwargs[key], (tuple,list)):
_check_size(kwargs[key], key, 2)
self._prop[key[0]+'min'] = kwargs[key][0]
self._prop[key[0]+'max'] = kwargs[key][1]
if 'axis' in kwargs:
axis = kwargs['axis']
if isinstance(axis, (tuple,list)):
n = len(axis)
if n in (4,6):
for i in range(n):
_check_type(axis[i], self._ranges[i], (float,int))
self._prop[self._ranges[i]] = axis[i]
elif axis in ['on', 'off']: #, None, True, False]:
self._prop['visible'] = _toggle_state(axis)
elif axis in self._methods:
self._prop['method'] = axis
elif axis in self._modes:
self._prop['mode'] = axis
elif axis in self._directions:
self._prop['direction'] = axis
else:
raise ValueError("not a valid axis specification")
for key in 'title xlabel ylabel zlabel'.split():
if key in kwargs and isinstance(kwargs[key], str):
self._prop[key] = kwargs[key]
if 'daspect' in kwargs:
daspect = kwargs['daspect']
if isinstance(daspect, (int,float)):
daspect = [daspect]*3
_check_type(daspect, 'daspect', (tuple,list))
_check_size(daspect, 'daspect', 3)
self._prop['daspect'] = [float(elm) for elm in daspect]
self._prop['daspectmode'] = 'manual'
if 'daspectmode' in kwargs:
self._prop['daspectmode'] = kwargs['daspectmode']
if 'fgcolor' in kwargs:
self._prop['fgcolor'] = kwargs['fgcolor']
if 'bgcolor' in kwargs:
self._prop['bgcolor'] = kwargs['bgcolor']
if 'visible' in kwargs:
self._toggle_state('visible', kwargs['visible'])
del kwargs['visible']
if 'viewport' in kwargs:
viewport = kwargs['viewport']
_check_type(viewport, 'viewport', (list,tuple))
_check_size(viewport, 'viewport', 4)
#for i in range(4):
# _check_type(viewport[i], 'viewport coor', (int,float))
self._prop['viewport'] = viewport
if 'pth' in kwargs:
pth = kwargs['pth']
_check_type(pth, 'pth', int)
self._prop['pth'] = pth
if 'legend_loc' in kwargs:
self._prop['legend_loc'] = kwargs['legend_loc']
if 'legend_fancybox' in kwargs:
self._prop['legend_fancybox'] = kwargs['legend_fancybox']
# set properties for camera and colorbar:
self._prop['camera'].setp(**kwargs)
self._prop['colorbar'].setp(**kwargs)
# update the axis:
self.update()
def getp(self, name):
"""Return parameter with name 'name'."""
try:
return self._prop[name]
except:
raise KeyError("%s.getp: no parameter with name '%s'" % \
(self.__class__.__name__, name))
def get_next_color(self):
"""Return the next color defined in the 'colororder' property."""
colors = self._prop['colororder']
if self._prop['curcolor'] == len(colors):
self._prop['curcolor'] = 0
curcolor = colors[self._prop['curcolor']]
self._prop['curcolor'] += 1
return curcolor
def reset(self):
"""Reset axis attributes to default values."""
viewport = self._prop['viewport'] # don't reset viewport coords
pth = self._prop['pth'] # don't reset p-th axis information
self._prop = self._defaults.copy()
self._prop['viewport'] = viewport
self._prop['pth'] = pth
self._prop['plotitems'] = []
#self._prop['camera'].reset()
del self._prop['camera']
self._prop['camera'] = Camera(self)
#for l in self._prop['lights']:
# l.reset()
self._prop['lights'] = []
#self._prop['colorbar'].reset()
self._prop['colorbar'] = Colorbar()
def add(self, items):
"""Add all items in 'items' to this axis."""
if not self._prop['hold']:
self.reset()
if not isinstance(items, (tuple,list)):
items = (items,)
for item in items:
if not isinstance(item, PlotProperties):
raise ValueError("item must be %s (or a subclass), not %s" % \
(type(PlotProperties), type(item)))
self._prop['plotitems'].append(item)
self.update()
def get_limits(self):
"""Return axis limits."""
return self._prop['xlim']+self._prop['ylim']+self._prop['zlim']
def toggle(self, name):
"""Toggle axis parameter with name 'name'."""
if self._prop[name]:
self._prop[name] = False
else:
self._prop[name] = True
def update(self):
"""Update axis."""
if len(self._prop['plotitems']) > self._prop['numberofitems']:
self._prop['numberofitems'] = len(self._prop['plotitems'])
for item in self._prop['plotitems']:
self._update_limits(item)
if len(self._prop['plotitems']) > 0:
if None in self._prop['daspect'] or \
self._prop['daspectmode'] == 'auto':
self._update_daspect()
self._set_center()
p = self._prop
if (p['xmin'] is not None and p['xmax'] is not None) or \
(p['ymin'] is not None and p['ymax'] is not None) or \
(p['zmin'] is not None and p['zmax'] is not None):
self._prop['mode'] = 'manual'
method = self._prop['method']
if method == 'equal':
self._prop['daspect'] = (1.,1.,1.)
elif method == 'image':
self._prop['daspect'] = (1.,1.,1.)
self._prop['mode'] = 'tight'
elif method == 'square':
#print "axis method 'square' not implemented yet"
pass
elif method == 'normal':
if None in self._prop['daspect'] or \
self._prop['daspectmode'] == 'auto':
self._update_daspect()
def _toggle_state(self, name, state):
self._prop[name] = _toggle_state(state)
def _set_center(self):
center = [None]*3
xmin, xmax, ymin, ymax, zmin, zmax = self.get_limits()
center[0] = (xmax + xmin) / 2.0
center[1] = (ymax + ymin) / 2.0
center[2] = (zmax + zmin) / 2.0
self._prop['center'] = tuple(center)
def _check_lim(self, l1, l2):
"""Return a tuple with the "larger" values of 'l1' and 'l2'."""
lim = [None]*2
if l1[0] > l2[0]:
lim[0] = l2[0]
else:
lim[0] = l1[0]
if l1[1] < l2[1]:
lim[1] = l2[1]
else:
lim[1] = l1[1]
return tuple(lim)
def _update_limits(self, item):
"""
Update axis limits according to the PlotProperties given in 'item'.
"""
xlim = item.getp('xlim')
ylim = item.getp('ylim')
zlim = item.getp('zlim')
if not None in self._prop['xlim']:
xlim = self._check_lim(self._prop['xlim'], xlim)
if not None in self._prop['ylim']:
ylim = self._check_lim(self._prop['ylim'], ylim)
if not None in self._prop['zlim']:
zlim = self._check_lim(self._prop['zlim'], zlim)
self._prop['xlim'] = xlim
self._prop['ylim'] = ylim
self._prop['zlim'] = zlim
def _update_daspect(self):
lim = list(self.get_limits())
xmin, xmax = self._prop['xmin'], self._prop['xmax']
ymin, ymax = self._prop['ymin'], self._prop['ymax']
zmin, zmax = self._prop['zmin'], self._prop['zmax']
if not None in [xmin, xmax]:
lim[0] = xmin
lim[1] = xmax
if not None in [ymin, ymax]:
lim[2] = ymin
lim[3] = ymax
if not None in [zmin, zmax]:
lim[4] = zmin
lim[5] = zmax
if self._prop['method'] == 'normal':
if not None in lim: # limits are set
sx = float(lim[1] - lim[0])
sy = float(lim[3] - lim[2])
sz = float(lim[5] - lim[4])
scale = max([sx,sy,sz])
if not scale > 0:
scale = 1
if sz == 0:
daspect = (sx/scale, sy/scale, 1.0)
else:
daspect = (sx/scale, sy/scale, sz/scale)
self._prop['daspect'] = daspect
class Figure(object):
"""Hold figure attributtes like axes, size, ...."""
_local_prop = {
'axes': None, # dictionary of axis instances
'curax': 1, # current axis
'axshape': (1,1), # shape of axes
'size': [None]*2, # size of figure ([width, height])
'number': 1, # this figures number
}
_update_from_config_file(_local_prop) # get defaults from scitools.cfg
__doc__ += docadd('Keywords for the setp method', _local_prop.keys())
def __init__(self, **kwargs):
self._prop = {}
self._prop.update(Figure._local_prop)
# store a copy of the default values for use when figure is reset:
self._defaults = self._prop.copy()
self._prop['axes'] = {1: Axis()}
self.setp(**kwargs)
def __str__(self):
return pprint.pformat(self._prop)
def dump(self):
"""Dump the contents of the figure (all axes)."""
s = '\nFigure object:\n'
if self._prop['size'] is not None:
s += pprint.pformat(self._prop['size']) + '\n'
for ax in self._prop['axes']:
s += 'axis %d:\n' % ax
#s += pprint.pformat(str(self._prop['axes'][ax]))
s += pprint.pformat(self._prop['axes'][ax]._prop)
return s
def gca(self):
"""Return current axis."""
return self._prop['axes'][self._prop['curax']]
def reset(self):
"""Reset figure attributes and backend to defaults."""
self._prop = self._defaults.copy()
self._prop['axes'] = {1: Axis()}
self._prop['axes'][1].reset()
def setp(self, **kwargs):
if 'axshape' in kwargs:
shape = kwargs['axshape']
_check_type(shape, 'axshape', (tuple,list))
_check_size(shape, 'axshape', 2)
_check_type(shape[0], 'm', int)
_check_type(shape[1], 'n', int)
self._prop['axshape'] = shape
dx = 1./shape[1]; dy = 1./shape[0]
last_x = 0; last_y = 1-dy
viewport_coords = []
for y in seq(dy,1,dy):
for x in seq(dx,1,dx):
if backend.startswith('vtk'):
viewport_coords.append((last_x,last_y,x,last_y+dy))
else:
viewport_coords.append((last_x,last_y,x,y))
last_x = x
last_x = 0
last_y = last_y - dy
self._prop['axes'] = {}
for i in iseq(1,len(viewport_coords)):
ax = Axis()
ax.setp(viewport=viewport_coords[i-1])
self._prop['axes'][i] = ax
ax.setp(pth=i)
if 'curax' in kwargs:
curax = kwargs['curax']
#_check_type(curax, 'curax', int)
self._set_current_axis(curax)
if 'size' in kwargs:
size = kwargs['size']
# size should be a list/tuple with two elements [width, height]
_check_type(size, 'size', (list,tuple))
_check_size(size, 'size', 2)
self._prop['size'] = size
if 'number' in kwargs:
number = kwargs['number']
_check_type(number, 'number', int)
self._prop['number'] = number
def getp(self, prm_name):
try:
return self._prop[prm_name]
except:
raise KeyError("%s.getp: no parameter with name '%s'" % \
(self.__class__.__name__, prm_name))
def _set_current_axis_old(self, ax):
if isinstance(ax, int):
# check if it is inside axshape
self._prop['curax'] = ax # no good!
elif isinstance(ax, Axis):
self._prop['axes'] = {1:ax}
self._prop['axshape'] = (1,1)
self._prop['curax'] = 1
def _set_current_axis(self, ax):
if isinstance(ax, int) and ax in self._prop['axes'].keys():
self._prop['curax'] = ax
elif isinstance(ax, Axis):
if ax in self._prop['axes'].values():
for i in self._prop['axes'].keys():
if ax == self._prop['axes'][i]:
self._prop['curax'] = i
break
else:
n = max(self._prop['axes'].keys()) + 1
self._prop['axes'][n] = ax
self._prop['curax'] = n
class BaseClass(object):
"""
Subclasses implement different backends
(GnuplotBackend for Gnuplot, for instance).
This base class saves info about plotting to instances of class Figure,
Line, and PlotItem.
List of internal helper functions (for subclasses):
...
"""
_matlab_like_cmds = [
'autumn', 'axes', 'axis', 'bone', 'box', 'brighten',
'camdolly', 'camlight', 'camlookat', 'campos',
'camproj', 'camroll', 'camtarget', 'camup', 'camva',
'camzoom', 'caxis', 'cla', 'clabel', 'clf', 'close',
'closefig', 'closefigs', 'coneplot', 'colorbar',
'colorcube', 'colormap', 'contour', 'contour3',
'contourf', 'contourslice', 'cool', 'copper',
'daspect', 'figure', 'fill', 'fill3', 'flag', 'gca',
'gcf', 'get', 'gray', 'grid', 'hardcopy', 'hidden',
'hold', 'hot', 'hsv', 'ishold', 'isocaps',
'isosurface', 'jet', 'legend', 'light', 'lines',
'loglog', 'material', 'mesh', 'meshc', 'openfig',
'savefig', 'pcolor', 'pink', 'plot', 'plot3', 'prism',
'quiver', 'quiver3', 'reducevolum', 'semilogx',
'semilogy', 'set', 'shading', 'show', 'slice_',
'spring', 'streamline', 'streamribbon', 'streamslice',
'streamtube', 'savefig', 'subplot', 'subvolume',
'summer', 'surf', 'surfc', 'surfl', 'title', 'vga', 'view',
'white', 'winter', 'xlabel', 'ylabel', 'zlabel']
__doc__ += docadd('List of "Matlab-like" interface functions (for ' + \
'the user)', _matlab_like_cmds)
_local_attrs = {
'curfig': 1, # current figure
'show': True, # screenplot after each plot command
#'changed': False, # sync state
'interactive': True, # update backend after each change
'color': False, # hardcopy with color?
}
_update_from_config_file(_local_attrs) # get defaults from scitools.cfg
__doc__ += docadd('Keywords for the setp method', _local_attrs.keys())
# Dictionary of functions testing legal types
_attrs_type = {'curfig': lambda arg: isinstance(arg, (int)),
'show': lambda arg: isinstance(arg, (bool)),
'interactive': lambda arg: isinstance(arg,(bool)),
#'changed': lambda arg: isinstance(arg, (bool)),
'color': lambda arg: isinstance(arg,(bool))
}
def __init__(self):
BaseClass.init(self)
def init(self):
"""Initialize internal data structures."""
self._g = None # Pointer to the backend for manual labour.
self._figs = {1: Figure()} # dictionary of figure instances
self._attrs = {}
self._attrs.update(BaseClass._local_attrs)
def __str__(self):
return pprint.pformat(self._attrs)
def setp(self, *args, **kwargs):
"""
Set object properties or attributes in this backend instance.
Calling::
setp([obj,] prop1=value1, prop2=value2, ...)
will set the attributes as given in this backend instance. If the
optional positional argument obj is a given object with a set method
(like Figure, Axis, and PlotProperties objects), the (relevant)
properties and values are also set in this object. This also works on
a list with objects.
"""
nargs = len(args)
if nargs > 0:
arg = args[0]
if not isinstance(arg, (tuple,list)):
arg = (arg,)
for obj in arg:
if hasattr(obj, 'setp'):
obj.setp(**kwargs)
if 'savefig' in kwargs: # synonym: hardcopy
kwargs['hardcopy'] = kwargs['savefig']
for key in kwargs:
value = kwargs[key]
if key in self._attrs: # legal key?
if self._attrs_type[key](value): # legal type?
self._attrs[key] = value
else:
raise TypeError(
'BaseClass.setp: keyword "%s" %s is illegal.' % \
(key, type(key)))
if 'hardcopy' in kwargs:
self.hardcopy(kwargs['hardcopy'])
if 'material' in kwargs:
self.material(kwargs['material'])
# subclasses should extend the doc string like this:
#set.__doc__ += docadd('Keywords for the setp method',
# BaseClass._local_attrs.keys(),
# SomeSubClass._local_attrs.keys())
def getp(self, *args):
"""
Get object properties or an attribute in this backend instance.
Calling::
getp('name')
returns the attribute with name 'name' in this backend instance.
Calling::
getp(obj, 'name')
returns the property with name 'name' of the object given in obj. This
object must have a get method (like Figure, Axis, or PlotProperties
objects).
Calling::
getp(obj)
displays all property names and values for the object given in obj.
"""
nargs = len(args)
if nargs > 0:
if hasattr(args[0], 'getp'):
obj = args[0]
if nargs == 1:
print obj
else:
return obj.getp(args[1])
else:
prm_name = args[0]
try:
return self._attrs[prm_name]
except:
raise KeyError('%s.getp: no parameter with name "%s"' % \
(self.__class__.__name__, prm_name))
else:
raise TypeError("getp: wrong number of arguments")
# subclasses should extend the doc string like this:
#getp.__doc__ += docadd('Keywords for the getp method',
# BaseClass._local_attrs.keys(),
# SomeSubClass._local_attrs.keys())
#def __getitem__(self, name): self.getp(name)
#def __setitem__(self, name, value): self.setp({name:value})
def _replot(self, *args, **kwargs):
"""
Update backend after change in data.
This is a key routine and must be implemented in the backend.
"""
raise NotImplementedError('_replot not implemented in class %s' % \
self.__class__.__name__)
def _check_args(self, *args):
"""Return the current axis, the argument list args, and the number of
arguments in args. If the first argument in args is an Axis instance,
this will be returned instead of the current axis. The Axis instancce
is then removed from the argument list and the number of arguments
is decremented by one."""
ax = self.gca()
nargs = len(args)
if nargs > 0 and isinstance(args[0], Axis):
ax = args[0]; args = args[1:]; nargs -= 1
return ax, args, nargs
def _cmpPlotProperties(self, a, b):
"""Sort cmp function for PlotProperties."""
plotorder = [Volume, Streams, Surface, Contours,
VelocityVectors, Bars, Line]
assert isinstance(a, PlotProperties)
assert isinstance(b, PlotProperties)
assert len(PlotProperties.__class__.__subclasses__(PlotProperties)) ==\
len(plotorder) # check all subclasses is in plotorder
return cmp(plotorder.index(a.__class__),plotorder.index(b.__class__))
def gcf(self):
"""Return current figure."""
return self._figs[self._attrs['curfig']]
def gca(self):
"""Return the current axis in the current figure."""
return self.gcf().gca()
def axes(self, *args, **kwargs):
"""Create axes in specified positions.
Calling::
axes()
returns a default Axis instance.
Calling::
axes(ax)
sets the axis in the Axis instance ax as the current axis.
Calling::
axes(viewport=RECT)
returns a axis at the position given in RECT. RECT is normally a list
[left,bottom,width,height], where the four parameters (values between
0 and 1) specifies the location and size of the axis box ((0,0) is the
lower-left corner and (1,1) is the upper-right corner). However, this
is backend-dependent.
"""
nargs = len(args)
if nargs == 0:
a = Axis()
if len(kwargs) > 0:
a.setp(**kwargs)
self.gcf().setp(curax=a)
return a
elif nargs == 1:
_check_type(args[0], 'ax', Axis)
self.gcf().setp(curax=args[0])
#raise NotImplementedError('not yet implemented')
elif nargs == 2:
pass
else:
raise TypeError("axes: wrong number of arguments")
def subplot(self, *args, **kwargs):
"""Create axes in tiled positions.
Calling::
subplot(m,n,p)
splits the Figure window into m rows and n columns of small axes. The
p-th axis is then selected for the current plot and the Axis object
is returned.
Calling::
subplot(mnp)
is the same as calling subplot(m,n,p) as long as m<=n<=p<10.
Example:
>>> x = linspace(-5,5,101)
>>> subplot(2,1,1)
>>> plot(x,x-cos(x**2))
>>> x = logspace(-1,2)
>>> subplot(2,1,2)
>>> loglog(x,exp(x),'b-s')
"""
fig = self.gcf()
nargs = len(args)
if nargs == 1:
sp = str(args[0])
if len(sp) != 3:
raise TypeError("subplot: '%s' is not a valid subplot" % sp)
args = [int(a) for a in sp]
nargs = 3
if nargs == 3:
m, n, p = args
if fig.getp('axshape') == (m,n):
fig.setp(curax=p)
else:
fig.setp(axshape=(m,n), curax=p)
self.gca().setp(**kwargs)
else:
raise TypeError("subplot: wrong number of arguments")
return self.gca()
def daspect(self, *args):
"""Change the data aspect ratio.
Calling::
daspect([x,y,z])
sets the data aspect ratio for the x, y, and z axis (e.g.,
daspect([1,2,4]) means that one unit in x direction is equal in
length to two units in y direction and four units in z direction).
For example, daspect([r,1,1]) makes the physical size of the
y axis in the plot r times the x axis.
The size of the axes must be explicitly in order for the
daspect command to work properly.
Note that setting the aspect ratio is not supported by all backends.
Calling::
daspect()
returns the data aspect ratio for the current axis.
Calling::
daspect(mode)
sets the data aspect ratio mode, where mode can be 'auto', 'equal',
or 'manual'. By specifying the mode to 'auto' (default), the data
aspect ratio will be automatically computed so that each axis spans
the available space in the figure window. In the 'manual' mode
the user sets the aspect ratio, while 'equal' means that the
the same units are used in both axes (for example, if the x axis
goes from 0 to 10 and the y axis from 0 to 1, and we want the
x axis ten times as long as the y axis, the manual aspect ratio
er 0.1, and 'equal' will automatically set the ratio to 0.1).
Calling::
daspect('mode')
returns the data aspect ratio mode.
Calling::
daspect(r)
sets the data aspect ratio to r. This is for backends that do not
support setting individual aspect ratios for the x, y, and z axis
(like the Gnuplot backend). If the backend do support individual
aspect ratios, the aspect ratio is set to r for all three axes.
Calling::
daspect(ax, ...)
uses the the Axis object ax instead of the current axis.
>>> surf(peaks(21))
<scitools.easyviz.common.Surface object at 0xb7d7950c>
>>> daspect()
(1.0, 1.0, 0.71549553759291729)
>>> figure()
>>> surf(peaks(21))
<scitools.easyviz.common.Surface object at 0xb58ff70c>
>>> daspect([1,1,1])
>>>
"""
ax, args, nargs = self._check_args(*args)
if nargs == 0:
return ax.getp('daspect')
elif nargs == 1:
arg = args[0]
if isinstance(arg, str):
if arg == 'mode':
return ax.getp('daspectmode')
else:
ax.setp(daspcetmode=arg)
else:
ax.setp(daspect=arg)
else:
raise TypeError("daspect: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def openfig(self, filename='figspickle.txt'):
"""
Load figures saved in a file (with the given filename).
The format of this file is currently standard Python pickle format.
All figures in a previous session were dumped to the file, and
all these figures are by this method reloaded and added to the
current set of figures.
"""
# in savefig, self._figs was pickled as one object
handle = open(filename, 'r')
filefigs = pickle.load(handle)
handle.close()
# check that filefigs is a dict of Figure instances:
fail = True
if isinstance(filefigs, dict):
fail = False
for item in filefigs:
if not isinstance(item, Figure):
fail = True
if fail:
raise Exception("Import error. Cannot retrieve figures from filename %s ." % filename)
self._figs.update(filefigs)
def savefig(self, filename='figspickle.txt'):
"""
Save all current figures to a file (with the given filename).
The file has standard Python pickle format (dict of Figure
instances). The figures can later be reloaded by the openfig
method.
"""
handle = open(filename, 'w')
pickle.dump(self._figs, handle)
handle.close()
def hardcopy(self, filename, **kwargs):
"""
Save a hardcopy of the current figure to file (with the given
filename). The file format (image type) is determined from the
extension of the filename. If any changes have been made by working
directly on the backend instance, set the keyword argument replot
to False to stop Easyviz from replotting the current figure and
destroying those changes.
"""
# must be implemented in subclass
raise NotImplementedError('hardcopy not implemented in class %s' % \
self.__class__.__name__)
def hold(self, *args):
"""Change the hold state of the current axis.
Calling::
hold('on')
makes every subsequent plotting commands be added to the current plot.
Calling::
hold('off')
clears the previous plot before the new plot is drawn. This is the
default behavior.
Calling::
hold()
toggles the hold state in the current axis.
Calling::
hold(ax, ...)
affects the Axis object ax instead of the current axis.
Note that one can use hold(True) and hold(False) instead of
hold('on') and hold('off'), respectively.
"""
ax, args, nargs = self._check_args(*args)
if nargs == 1:
ax.setp(hold=args[0])
elif nargs == 0:
ax.toggle('hold')
print "hold state is %s" % ax.getp('hold')
else:
raise TypeError('hold: wrong number of arguments')
def ishold(self):
"""
Return the hold state (True if hold is on, and False if it is off).
"""
return self.gca().getp('hold')
def figure(self, num=None, **kwargs):
"""
Create a new figure or switch between figures and return Figure object.
num is the figure number of the new or existing figure.
"""
try:
num = int(num)
except:
# print str(num),' is not an integer'
if len(self._figs) == 0: # No figures left
num = 1
else:
num = max(self._figs.keys())+1
#print "Active figure is %d." % num
if not num in self._figs:
# Points to class Figure or other convenient function
# In gnuplot backend this should instantiate a new pipe instead
kwargs['number'] = num
self._figs[num] = Figure(**kwargs)
self._attrs['curfig'] = num
return self._figs[num]
def clf(self):
"""Clear the current figure."""
#self.gcf().reset()
del self._figs[self._attrs['curfig']]
self.figure(self._attrs['curfig'])
def cla(self, *args):
"""Clear the current axis.
Calling::
cla()
clears the current axis.
Calling::
cla(ax)
clears the Axis object ax instead of the current axis.
"""
ax, args, nargs = self._check_args(*args)
ax.reset()
def axis(self, *args, **kwargs):
"""Choose the axis limits and appearance.
Calling::
axis([xmin, xmax, ymin, ymax[, zmin, zmax]])
sets the limits on the x-, y-, and z-axes in the current plot.
Calling::
axis(xmin, xmax, ymin, ymax[, zmin, zmax])
gives the same result as above.
Calling::
axis()
returns the limits on the x-, y-, and z-axes for the current plot.
If the view in the current plot is a 2D view, only the limits on the
x- and y-axis are returned.
Calling::
axis(mode)
sets axis scaling to mode, where mode can be
* 'auto' - autoscaling is used
* 'manual' - freeze the scaling at the current limits
* 'tight' - sets the axis limits to the range of the data
* 'fill' - has currently no affect
Calling::
axis(method)
sets the appearance of the current axis as specified by method.
%s
Calling::
axis(direction)
sets the direction of the increasing values on the axes.
* 'ij' - reverse y-axis
* 'xy' - restore y-axis
Calling::
axis('off')
turns off the visibility of the axis.
Calling::
axis('on')
turns the visibility of the axis back on.
Calling::
axis(ax, ...)
affects the Axis object ax instead of the current axis.
"""
ax, args, nargs = self._check_args(*args)
if nargs == 0 and len(kwargs) == 0:
xmin, xmax, ymin, ymax, zmin, zmax = ax.get_limits()
def get_lim(amin, amax, n1, n2):
if ax.getp(n1) is not None and ax.getp(n2) is not None:
return ax.getp(n1), ax.getp(n2)
else:
return amin, amax
xmin, xmax = get_lim(xmin, xmax, 'xmin', 'xmax')
ymin, ymax = get_lim(ymin, ymax, 'ymin', 'ymax')
zmin, zmax = get_lim(zmin, zmax, 'zmin', 'zmax')
if ax.getp('camera').getp('view') == 2:
return xmin, xmax, ymin, ymax
return xmin, xmax, ymin, ymax, zmin, zmax
limits = Axis._ranges
# Allow both axis(xmin,xmax,ymin,ymax[,zmin,zmax]) and
# axis([xmin,xmax,ymin,ymax[,zmin,zmax]])
if nargs == 1:
if isinstance(args[0], (tuple,list)):
args = args[0]; nargs = len(args)
elif isinstance(args[0], str):
if args[0] in Axis._modes:
ax.setp(mode=args[0])
elif args[0] in ['on', 'off']:
state = _toggle_state(args[0])
ax.setp(visible=state)
elif args[0] in Axis._methods:
ax.setp(method=args[0])
elif args[0] in Axis._directions:
ax.setp(direction=args[0])
kwargs_ = {}
# first treat positional arguments:
if nargs in (4,6):
for i in range(nargs):
kwargs_[limits[i]] = args[i]
# allow keyword arguments:
for kw in limits:
if kw in kwargs:
kwargs_[kw] = kwargs[kw]
ax.setp(**kwargs_)
if self.getp('interactive') and self.getp('show'):
self._replot()
axis.__doc__ = axis.__doc__ % docadd('Legal values for method are',
Axis._methods, indent=10)
def xlim(self, *args):
"""Set or get limits on x axis.
Calling::
xlim([xmin,xmax])
sets the x limits on the current axis.
Calling::
xlim(xmin,xmax)
gives the same results as above.
Calling::
xmin, xmax = xlim()
returns the x limits for the current axis.
Calling::
xlim(ax, ...)
affects the Axis object ax instead of the current axis.
"""
ax, args, nargs = self._check_args(*args)
if nargs == 0:
xmin = ax.getp('xmin')
xmax = ax.getp('xmax')
if xmin is None or xmax is None:
xmin, xmax = ax.getp('xlim')
if xmin is None or xmax is None:
return [0,1]
return xmin, xmax
elif nargs == 1:
arg = args[0]
if isinstance(arg, (list,tuple,NumPyArray)) and len(arg) == 2:
ax.setp(xmin=arg[0], xmax=arg[1])
elif isinstance(arg, str):
raise NotImplementedError()
elif nargs == 2:
ax.setp(xmin=args[0], xmax=args[1])
else:
raise TypeError('xlim: wrong number of arguments.')
if self.getp('interactive') and self.getp('show'):
self._replot()
def ylim(self, *args):
"""Set or get limits on y axis.
Calling::
ylim([ymin,ymax])
sets the y limits on the current axis.
Calling::
ylim(ymin,ymax)
gives the same results as above.
Calling::
ymin, ymax = ylim()
returns the y limits for the current axis.
Calling::
ylim(ax, ...)
affects the Axis object ax instead of the current axis.
"""
ax, args, nargs = self._check_args(*args)
if nargs == 0:
ymin = ax.getp('ymin')
ymax = ax.getp('ymax')
if ymin is None or ymax is None:
ymin, ymax = ax.getp('ylim')
if ymin is None or ymax is None:
return [0,1]
return ymin, ymax
elif nargs == 1:
arg = args[0]
if isinstance(arg, (list,tuple,NumPyArray)) and len(arg) == 2:
ax.setp(ymin=arg[0], ymax=arg[1])
elif isinstance(arg, str):
raise NotImplementedError()
elif nargs == 2:
ax.setp(ymin=args[0], ymax=args[1])
else:
raise TypeError('ylim: wrong number of arguments.')
if self.getp('interactive') and self.getp('show'):
self._replot()
def zlim(self, *args):
"""Set or get limits on z axis.
Calling::
zlim([zmin,zmax])
sets the z limits on the current axis.
Calling::
zlim(zmin,zmax)
gives the same results as above.
Calling::
zmin, zmax = zlim()
returns the z limits for the current axis.
Calling::
zlim(ax, ...)
affects the Axis object ax instead of the current axis.
"""
ax, args, nargs = self._check_args(*args)
if nargs == 0:
zmin = ax.getp('zmin')
zmax = ax.getp('zmax')
if zmin is None or zmax is None:
zmin, zmax = ax.getp('zlim')
if zmin is None or zmax is None:
return [0,1]
return zmin, zmax
elif nargs == 1:
arg = args[0]
if isinstance(arg, (list,tuple,NumPyArray)) and len(arg) == 2:
ax.setp(zmin=arg[0], zmax=arg[1])
elif isinstance(arg, str):
raise NotImplementedError()
elif nargs == 2:
ax.setp(zmin=args[0], zmax=args[1])
else:
raise TypeError('zlim: wrong number of arguments.')
if self.getp('interactive') and self.getp('show'):
self._replot()
def close(self, *args):
"""Close figure.
Calling::
close()
closes the current figure.
Calling::
close(num)
closes the figure with number num.
Calling::
close(fig)
closes the Figure object fig.
Calling::
close('all')
closes all figures.
"""
nargs = len(args)
if nargs == 0:
self.closefig(self._attrs['curfig'])
elif nargs == 1:
if args[0] == 'all':
self.closefigs()
else:
self.closefig(args[0])
else:
raise TypeError("close: wrong number of arguments")
def closefig(self, arg):
"""Close figure window."""
raise NotImplementedError('closefig not implemented in class %s' % \
self.__class__.__name__)
def closefigs(self):
"""Close all figure windows."""
self._figs = {}
self._figs[1] = Figure()
self._attrs['curfig'] = 1
# the rest should be written in subclass
def grid(self, *args):
"""Toggle the display of grid lines.
Calling::
grid('on')
displays grid lines in the current axis.
Calling::
grid('off')
removes the grid lines from the current axis.
Calling::
grid()
toggles the display of grid lines in the current axis.
Calling::
grid(ax, ...)
uses Axis object ax instead of the current axis.
Note that calling grid(True) and grid(False) is the same as calling
grid('on') and grid('off'), respectively.
"""
ax, args, nargs = self._check_args(*args)
if nargs == 0:
ax.toggle('grid')
elif nargs == 1:
ax.setp(grid=args[0])
else:
raise TypeError("grid: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def legend(self, *args, **kwargs):
"""Add legend(s) to the current plot.
Calling::
legend(string1, string2, string3,...)
or
legend([string1, string2, string3,...])
adds legends to the current plot using the given strings as labels.
Note that the number of strings should match the number of items in
the current axis (i.e., getp(gca(), 'numberofitems')), but a
less legends than curve items are allowed.xo
Calling::
legend(string)
adds the given string as a legend to the last item added to the
current axis.
Calling::
legend(ax, ...)
affects the Axis object ax instead of the current axis.
The keyword arguments (**kwargs) are ignored, but makes it
possible to seemlessly switch between easyviz and matplotlib.
"""
if len(args) == 1 and isinstance(args[0], (list, tuple)):
# unpack the list/tuple to individual arguments
args = [e for e in args[0]]
ax, args, nargs = self._check_args(*args)
for key in kwargs:
if key == 'loc':
value = kwargs[key]
if isinstance(value, int):
if 0 <= value <= 10:
for loc in Axis._legend_locs:
if Axis._legend_locs[loc] == value:
value = loc
break
else:
raise ValueError(
'legend: wrong value of loc=%s, '
'should be between 0 and 10' % value)
elif isinstance(value, str):
if not value in Axis._legend_locs:
raise ValueError(
'legend: wrong value of loc=%s, '
'should be\n%s' % \
(value, str([v for v in Axis._legend_locs])[1:-1]))
else:
raise ValueError('legend: wrong value of loc=%s' % value)
ax.setp(legend_loc=value)
elif key == 'fancybox':
value = kwargs[key]
if not value in (True, False, None):
raise ValueError('legend: wrong value of fancybox=%s' % value)
ax.setp(legend_fancybox=value)
else:
print 'legend: ignoring keyword argument "%s"' % key
items = ax.getp('plotitems')
if len(items) == 0:
print 'plot is empty, cannot add legend'
return
if nargs > 1:
# Consistency check of len(args) and number of items in axis
if len(items) >= nargs:
# Iterate over items and set legend
for i in range(nargs):
items[i].setp(legend=str(args[i]))
elif nargs == 1:
items[-1].setp(legend=str(args[0]))
else:
raise TypeError("legend: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def title(self, *args):
"""Add title to the current plot.
Calling::
title(s)
adds the text given in s at the top of the current axis.
Calling::
title(ax, ...)
adds a title to the Axis object ax instead of the current axis.
"""
ax, args, nargs = self._check_args(*args)
if nargs == 1:
ax.setp(title=str(args[0]))
else:
raise TypeError("title: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def xlabel(self, *args):
"""Add a label to the x-axis.
Calling::
xlabel(s)
adds the text given in s beside the x-axis on the current axis.
Calling::
xlabel(ax, ...)
adds the label to the Axis object ax instead of the current axis.
"""
ax, args, nargs = self._check_args(*args)
if nargs == 1:
ax.setp(xlabel=str(args[0]))
else:
raise TypeError("xlabel: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def ylabel(self, *args):
"""Add a label to the y-axis.
Calling::
ylabel(s)
adds the text given in s beside the y-axis on the current axis.
Calling::
ylabel(ax, ...)
adds the label to the Axis object ax instead of the current axis.
"""
ax, args, nargs = self._check_args(*args)
if nargs == 1:
ax.setp(ylabel=str(args[0]))
else:
raise TypeError("ylabel: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def zlabel(self, *args):
"""Add a label to the z-axis.
Calling::
zlabel(s)
adds the text given in s beside the z-axis on the current axis.
Calling::
zlabel(ax, ...)
adds the zlabel to the Axis object ax instead of the current axis.
"""
ax, args, nargs = self._check_args(*args)
if nargs == 1:
ax.setp(zlabel=str(args[0]))
else:
raise TypeError("zlabel: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
# 2D Plotting
def plot(self, *args, **kwargs):
"""Draw line and scatter plots.
Calling::
plot(x, y)
plots y against x, i.e., if x and y are vectors of length n, then
this will plot all the points (x[i], y[i]) for 0<=i<n.
Calling::
plot(y)
plots values in y on y-axis (same as plot(range(len(y)),y)).
Calling::
plot(y, fmt)
plots values in y on y-axis formated like fmt (see below).
Calling::
plot(x1,y1,fmt1, x2,y2,fmt2, ...)
same as hold('on') followed by multiple plot(x,y,fmt).
Calling::
plot(x1,y1,x2,y2,...)
like above, but automatically chooses different colors.
Calling::
plot(y1,y2,...,x=x)
uses x as the x values for all the supplied curves.
x='auto' has the same effect as x=range(len(y1)).
Calling::
plot(...,log=mode)
uses logarithmic (base 10) scales on either the x- or y-axes (or both).
mode can be
* 'x' - logarithmic scale on x-axis
* 'y' - logarithmic scale on y-axis
* 'xy' - logarithmic scales on both x- and y-axes.
Calling::
plot(ax, ...)
plots into the Axis object ax instead of the current axis.
The plot command returns a list a of all Line objects created.
The following format specifiers exist:
y yellow . point - solid
m magenta o circle : dotted
c cyan x x-mark -. dashdot
r red + plus -- dashed
g green * star
b blue s square
w white d diamond
k black v triangle (down)
^ triangle (up)
< triangle (left)
> triangle (right)
p pentagram
h hexagram
Examples:
Draw a line from a Python list:
>>> plot([1,2,3])
Draw three red crosses:
>>> plot([1,2,3], 'rx')
A somewhat more complex example:
>>> x = linspace(0, 15, 76) # 0, 0.2, 0.4, ..., 15
>>> y1 = sin(x)*x
>>> y2 = sin(x)*sqrt(x)
>>> plot(x, y1, 'b-', x, y2, 'ro',
... legend=('x*sin(x)', 'sqrt(x)*sin(x)'))
Note: loglog, semilogy, and semilogx are like plot(...,log='xy'),
plot(...,log='y'), and plot(...,log='x'), respectively.
"""
if 'description' not in kwargs:
kwargs['description'] = 'plot: 2D curve plot'
ax, args, nargs = self._check_args(*args)
if nargs == 0:
raise TypeError("plot: not enough arguments given")
lines = [] # store all Line instances here
# If first argument is a format string this will be ignored
# If two format strings are used only the first of them will be used
if 'x' in kwargs:
if nargs == 1 or (nargs == 2 and isinstance(args[1], str)):
if nargs == 1:
lines.append(Line(x=kwargs['x'], y=args[0], format=''))
else:
lines.append(Line(x=kwargs['x'],
y=args[0],
format=args[1]))
else:
for i in range(len(args)-1):
if not isinstance(args[i], str):
if isinstance(args[i+1], str):
lines.append(Line(x=kwargs['x'],
y=args[i],
format=args[1+i]))
else:
lines.append(Line(x=kwargs['x'],
y=args[i],
format=''))
if i == nargs-2:
lines.append(Line(x=kwargs['x'],
y=args[i+1],
format=''))
del kwargs['x'] # x in kwargs is no longer needed
else: # Normal case
# If an odd number, larger than 2, of non-strings in args are
# between two string arguments, something is wrong.
# If the odd number is one, the argument x='auto' is passed.
i = 0
if nargs in (1,2):
if not isinstance(args[0], str):
if nargs == 1:
lines.append(Line(x='auto',
y=args[0],
format=''))
else:
if not isinstance(args[1], str):
lines.append(Line(x=args[0],
y=args[1],
format=''))
else:
lines.append(Line(x='auto',
y=args[0],
format=args[1]))
i+100 #return
else:
raise ValueError("plot: cannot plot a formatstring")
while i <= nargs-3:
# This item is not string --> y-value, should never be string.
if not isinstance(args[i], str):
if not isinstance(args[i+1], str):
if isinstance(args[i+2], str):
lines.append(Line(x=args[i],
y=args[i+1],
format=args[i+2]))
i = i+3
else:
lines.append(Line(y=args[i+1],
x=args[i],
format=''))
i = i+2
# Next element is str --> no x-value
else:
lines.append(Line(y=args[i],
x='auto',
format=args[i+1]))
i = i+2
# These last cases could be run outside the while loop
if i == nargs-2:
# Either y and format or x and y value left
if isinstance(args[i+1], str):
lines.append(Line(y=args[i],
x='auto',
format=args[i+1]))
else:
lines.append(Line(x=args[i],
y=args[i+1],
format=''))
elif i == nargs-1:
# In this case we have only an y value left
lines.append(Line(y=args[i],
x='auto',
format=''))
# add the lines to the axes in ax:
ax.add(lines)
# Set legends
if 'legend' in kwargs:
no_lines = len(lines) # number of lines added
legends = kwargs['legend']
if isinstance(legends, (tuple,list)): # legends is a sequence
if len(legends) == no_lines:
for i in range(no_lines):
legend = legends[no_lines-i-1]
if isinstance(legend, str):
ax.getp('plotitems')[-1-i].setp(legend=legend)
else:
print "Legend "+legend+" is not a string"
else:
print 'Number of legend items (%d) is not equal to '\
'number of lines in plotcommand (%d)' % \
(len(legends), no_lines)
elif isinstance(legends,str): # only one legend
ax.getp('plotitems')[-1].setp(legend=legends)
del kwargs['legend']
if 'legend_loc' in kwargs:
# No test on validity as in legend method...
ax.setp(legend_loc=kwargs['legend_loc'])
if 'legend_fancybox' in kwargs:
ax.setp(legend_fancybox=kwargs['legend_fancybox'])
if not ax.getp('hold') and not 'box' in kwargs:
kwargs['box'] = True
# set keyword arguments in all the added lines
for line in lines:
line.setp(**kwargs)
# automatically add line colors if this is not specified:
if not line.getp('linecolor'):
line.setp(linecolor=ax.get_next_color())
ax.setp(**kwargs)
self.gcf().setp(**kwargs)
self.setp(**kwargs)
if self.getp('interactive') and self.getp('show'):
self._replot()
return lines
def loglog(self, *args, **kwargs):
"""Draw a loglog plot with logarithmic scaling on x- and y-axis.
Calling::
loglog(...)
is the same as calling plot(...) with the exception that a
logarithmic (base 10) scale is used for both x- and y-axes.
"""
kwargs['log'] = 'xy'
return self.plot(*args, **kwargs)
def semilogx(self, *args, **kwargs):
"""Draw a semilog plot with logarithmic scaling on x-axis.
Calling::
semilogx(...)
is the same as calling plot(...) with the exception that a
logarithmic (base 10) scale is used for the x-axis.
"""
kwargs['log'] = 'x'
return self.plot(*args, **kwargs)
def semilogy(self, *args, **kwargs):
"""Draw a semilog plot with logarithmic scaling on y-axis.
Calling::
semilogy(...)
is the same as calling plot(...) with the exception that a
logarithmic (base 10) scale is used for the y-axis.
"""
kwargs['log'] = 'y'
return self.plot(*args, **kwargs)
def plot3(self, *args, **kwargs):
"""Draw lines and points in 3D space.
Calling::
plot3(x, y, z)
plots z against x and y, i.e., if x, y, and z are vectors of length n,
then this will plot all the points (x[i], y[i], z[i]) for 0<=i<n.
Calling::
plot3(z)
plots values in z on the z-axis
(same as plot3(range(len(z)), range(len(z)), z)).
Calling::
plot3(z, fmt)
plots values in z on z-axis formated like fmt (see the plot command).
Calling::
plot3(x1,y1,z1,fmt1,x2,y2,z2,fmt2,...)
same as hold('on') followed by multiple plot3(x,y,z,fmt).
Calling::
plot3(x1,y1,z1,x2,y2,z2,...)
like above, but automatically chooses different colors.
Calling::
plot3(z1,z2,...,x=x,y=y)
uses x as the values on the x-axis and y as the values on the y-axis
for all the supplied curves (assuming that all have the same length).
By setting x='auto' and y='auto' has the same effect as
x=range(len(z1)) and y=range(len(z1)), respectively.
Calling::
plot3(ax, ...)
plots into the Axis object ax instead of the current axis.
The plot3 command returns a list containing all the created Line
objects.
Examples:
>>> t = linspace(0,10*pi,301)
>>> plot3(sin(t), cos(t), t, title='A helix', grid='on')
"""
if not 'description' in kwargs:
kwargs['description'] = 'plot3: 3D line plot'
if not 'hidden' in kwargs:
kwargs['hidden'] = False
ax, args, nargs = self._check_args(*args)
if nargs == 0:
raise TypeError("plot3: not enough arguments given")
lines = [] # all Line instances are stored here
# If first argument is a format string this will be ignored
# If two format strings are used only the first of them will be used
if 'x' in kwargs and 'y' in kwargs:
if nargs == 1 or (nargs == 2 and isinstance(args[1], str)):
if nargs == 1:
lines.append(Line(x=kwargs['x'],
y=kwargs['y'],
z=args[0],
format=''))
else:
lines.append(Line(x=kwargs['x'],
y=kwargs['y'],
z=args[0],
format=args[1]))
else:
for i in range(len(args)-1):
if not isinstance(args[i], str):
if isinstance(args[i+1], str):
lines.append(Line(x=kwargs['x'],
y=kwargs['y'],
z=args[i],
format=args[1+i]))
else:
lines.append(Line(x=kwargs['x'],
y=kwargs['y'],
z=args[i],
format=''))
if i == nargs-2:
lines.append(Line(x=kwargs['x'],
y=kwargs['y'],
z=args[i+1],
format=''))
# x and y in kwargs are no longer needed:
del kwargs['x']
del kwargs['y']
else: # Normal case
# If an odd number, larger than 2, of non-strings in args are
# between two string arguments, something is wrong.
# If the odd number is one, the argument x='auto' is passed.
i = 0
if nargs in (1,2,3,4):
if not isinstance(args[0], str):
if nargs == 1: # plot3(z)
lines.append(Line(x='auto', y='auto', z=args[0],
format=''))
elif nargs == 2: # plot3(z,fmt)
if isinstance(args[1], str):
lines.append(Line(x='auto', y='auto', z=args[0],
format=args[1]))
elif nargs == 3: # plot3(x,y,z)
if not isinstance(args[2], str):
lines.append(Line(x=args[0], y=args[1], z=args[2],
format=''))
else: # plot(x,y,z,fmt) or plot(z1,fmt1,z2,fmt2)
if not isinstance(args[3], str):
lines.append(Line(x='auto', y='auto', z=args[0],
format=args[1]))
lines.append(Line(x='auto', y='auto', z=args[2],
format=args[3]))
else:
lines.append(Line(x=args[0], y=args[1], z=args[2],
format=args[3]))
i+100 #return
else:
raise ValueError("plot3: cannot plot a formatstring")
while i <= nargs-5:
if not isinstance(args[i], str): # should never be string
# cases:
# 1. plot3(x1,y1,z1,s1, x2,y2,z2,s2, ...)
if not isinstance(args[i+1], str):
if not isinstance(args[i+2], str):
if isinstance(args[i+3], str):
lines.append(Line(x=args[i],
y=args[i+1],
z=args[i+2],
format=args[i+3]))
i += 4
else:
lines.append(Line(x=args[i],
y=args[i+1],
z=args[i+2],
format=''))
i += 3
else: # next element is str --> no x and y values
lines.append(Line(x='auto', y='auto', z=args[i],
format=args[i+1]))
i += 2
# 2. plot3(x1,y1,z1, x2,y2,z2, ...)
# 3. plot3(z1,s1, z2,s2, ...)
if i == nargs-4:
if not isinstance(args[i+1], str):
lines.append(Line(x=args[i],
y=args[i+1],
z=args[i+2],
format=args[i+3]))
else:
lines.append(Line(x='auto', y='auto', z=args[i],
format=args[i+1]))
lines.append(Line(x='auto', y='auto', z=args[i+2],
format=args[i+3]))
elif i == nargs-3: # x, y, and z left
lines.append(Line(x=args[i], y=args[i+1], z=args[i+2],
format=''))
elif i == nargs-2: # only z and format string left
if isinstance(args[i+1], str):
lines.append(Line(x='auto', y='auto', z=args[i],
format=args[i+1]))
elif i == nargs-1: # only a z value left
lines.append(Line(x='auto', y='auto', z=args[i],
format=''))
# add the lines to the axes in ax:
ax.add(lines)
# Set legends
if 'legend' in kwargs:
no_lines = len(lines)
legends = kwargs['legend']
if isinstance(legends, (tuple,list)): # legends is a sequence
if len(legends) == no_lines:
for i in range(no_lines):
legend = legends[no_lines-i-1]
if isinstance(legend, str):
ax.getp('plotitems')[-1-i].setp(legend=legend)
else:
print "Legend "+legend+" is not a string"
else:
print "Number of legend items (%d) is not equal to " \
"number of lines (%d) in plotcommand" % \
(len(legends), no_lines)
elif isinstance(legends,str): # only one legend
ax.getp('plotitems')[-1].setp(legend=legends)
del kwargs['legend']
if not ax.getp('hold') and not 'view' in kwargs:
kwargs['view'] = 3
# set keyword arguments in all the added lines:
for line in lines:
line.setp(**kwargs)
# automatically add line colors if this is not specified:
if not line.getp('linecolor'):
line.setp(linecolor=ax.get_next_color())
ax.setp(**kwargs)
self.gcf().setp(**kwargs)
self.setp(**kwargs)
if self.getp('interactive') and self.getp('show'):
self._replot()
return lines
def fill(self, *args, **kwargs):
"""Draw filled 2D polygons."""
kwargs['description'] = 'fill: filled 2D polygons'
if not 'edgecolor' in kwargs:
kwargs['edgecolor'] = 'k'
return self.plot(*args, **kwargs)
def stem(self, *args, **kwargs):
"""Draw a stem plot."""
kwargs['description'] = 'stem: stem plot'
return self.plot(*args, **kwargs)
def bar(self, *args, **kwargs):
"""Draw a bar graph.
Calling::
bar(data)
where data is a dictionary on the form
data = {'method1': {'thing1': value, 'thing2': value},
'method2': {'thing1': value, 'thing2': value},
'method3': {'thing1': value, 'thing2': value},}
will draw m bars for every name (key in data), one for each key in
data[name], where the height indicates the value. The name is placed
beneath each of the bar groups on the x axis.
Calling::
bar(Y)
will draw a bar for each of the elements in the vector/matrix Y.
If Y is a matrix, a group of bars from the elements of each row of
Y will be created.
Calling::
bar(x,Y)
is the same as above only that the values on the x axis is defined
by the vector x.
Calling::
bar(..., width)
uses the specified width on the bars. The default width is 0.8, while
a width of 1.0 should make the bars just touch each other (might vary
in the different backends).
Calling::
bar(..., color)
uses the given color for all the bars.
Calling::
bar(ax, ...)
uses the Axis object ax instead of the current axis.
@return: A Bars object.
Examples:
>>> from numpy.random import rand
>>> bar(rand(4))
>>> figure()
>>> bar(rand(4,3))
"""
kwargs['description'] = 'bar: bar graph'
ax, args, nargs = self._check_args(*args)
h = Bars(*args, **kwargs)
ax.add(h)
if not ax.getp('hold'):
if not 'box' in kwargs:
kwargs['box'] = True
ax.setp(**kwargs)
self.gcf().setp(**kwargs)
self.setp(**kwargs)
if self.getp('interactive') and self.getp('show'):
self._replot()
return h
def quiver(self, *args, **kwargs):
"""Draw arrows from a 2D vector field.
Calling::
quiver(X, Y, U, V)
displays vectors as arrows with components U and V at the grid
defined by X and Y. The arrays U and V must both have the same shape
and the grid components X and Y must either have the same shape as
U or fulfill the requirement len(X)==n and len(y)==m, where
m,n=shape(u).
Calling::
quiver(U, V)
is the same as calling quiver(range(n),range(m),U,V), where
m,n=shape(u)).
Calling::
quiver(..., 'filled')
draw filled arrows.
Calling::
quiver(..., fmt)
sets the line specification as given in the format string fmt. See
the plot command for further details on specifying the format string.
Examples:
Plot the gradient field of the function z = x**2 + y**2:
>>> x = y = linspace(-2, 2, 21)
>>> xv, yv = meshgrid(x,y)
>>> values = xv**2 + yv**2
>>> contour(xv, yv, values, 10, hold='on')
<scitools.easyviz.common.Contours object at 0xb45f374c>
>>> uv, vv = gradient(values, 0.2)
>>> quiver(xv, yv, uv, vv)
<scitools.easyviz.common.VelocityVectors object at 0xb45435cc>
>>> hold('off')
Another example:
>>> x = linspace(0,3,80)
>>> y = sin(2*pi*x)
>>> theta = 2*pi*x+pi/2
>>> u = sin(theta)/10
>>> v = cos(theta)/10
>>> quiver(x,y,u,v,0.04,'b',hold='on')
<scitools.easyviz.common.VelocityVectors object at 0xb768e1cc>
>>> plot(x,y,'r')
[<scitools.easyviz.common.Line object at 0xb768e36c>]
>>> hold('off')
"""
if not 'description' in kwargs:
kwargs['description'] = 'quiver: 2D vector field'
ax, args, nargs = self._check_args(*args)
h = VelocityVectors(*args, **kwargs)
ax.add(h)
if not ax.getp('hold'):
if 'quiver3' in kwargs['description']:
if not 'grid' in kwargs:
kwargs['grid'] = True
if not 'view' in kwargs:
kwargs['view'] = 3
else:
if not 'box' in kwargs:
kwargs['box'] = True
ax.setp(**kwargs)
self.gcf().setp(**kwargs)
self.setp(**kwargs)
if self.getp('interactive') and self.getp('show'):
self._replot()
return h
def contour(self, *args, **kwargs):
"""Draw a 2D contour plot.
Calling::
contour(X, Y, Z)
displays a contour plot where the values in the scalar field Z are
treated as heights above a plane. The grid components X and Y must
either have the same shape as Z or fulfill the requirement len(X)==n
and len(Y)==m, where m,n=shape(Z).
Calling::
contour(Z)
is the same as calling contour(range(n),range(m),Z), where
m,n=shape(Z).
Calling::
contour(..., n)
displays a contour plot with n contour lines (default is 8 lines).
Calling::
contour(..., v)
displays contours at levels given in the array v.
Calling::
contour(..., fmt)
uses the color and line style as given in the format string fmt to
draw the contour lines (see the plot command for further details on
format strings). This overrides the default behavior of using the
current colormap to color the contour lines.
Calling::
contours(ax, ...)
plots into the Axis object ax instead of the current axis.
Calling::
contour(...,clabels='on')
is the same as calling h=contour(...) followed by clabel(h,'on').
Examples:
>>> # draw a contour plot of the peaks function:
>>> x = y = linspace(-3, 3, 13)
>>> xv, yv = meshgrid(x, y)
>>> values = peaks(xv, yv)
>>> contour(xv, yv, values)
Draw 10 red contour lines with double line width:
>>> contour(xv, yv, values, 10, 'r', linewidth=2)
Draw contour lines at -2, 0, 2, and 5:
>>> contour(xv, yv, values, [-2,0,2,5])
"""
if not 'description' in kwargs:
kwargs['description'] = 'contour: 2D contours at base'
ax, args, nargs = self._check_args(*args)
h = Contours(*args, **kwargs)
ax.add(h)
if not ax.getp('hold'):
if 'contour3' in kwargs['description']:
if not 'grid' in kwargs:
kwargs['grid'] = True
if not 'view' in kwargs:
kwargs['view'] = 3
else: # contour or contourf
if not 'box' in kwargs:
kwargs['box'] = True
ax.setp(**kwargs)
if h.getp('function') == 'contour3':
ax.getp('camera').setp(view=3)
self.gcf().setp(**kwargs)
self.setp(**kwargs)
if self.getp('interactive') and self.getp('show'):
self._replot()
return h
def contourf(self, *args, **kwargs):
"""Draw filled contour plot.
Calling::
contourf(...)
is the same as calling contour(...) with the exception that the space
between the contour lines is filled with colors.
Examples:
>>> contourf(peaks(), clabel='on', colorbar='on')
"""
kwargs['description'] = 'contourf: 2D filled contour plot'
return self.contour(*args, **kwargs)
# 3D plotting
def pcolor(self, *args, **kwargs):
"""Draw a 2D pseudocolor plot.
Calling::
pcolor(C)
draw a pseudocolor plot of the 2D array C.
Calling::
pcolor(X,Y,C)
same as above, only that the grid is specified by the X and Y arrays.
These arrays must either have the same shape as C or fulfill the
requirement len(X)==n and len(Y)==m, where m,n=shape(C).
Calling::
pcolor(ax, ...)
uses the Axis object ax instead of the current axis.
Examples:
Simple pseudocolor plot:
>>> pcolor(peaks(31))
Draw a pseudocolor plot with interpolated shading:
>>> pcolor(peaks(), shading='interp',
... colorbar='on', colormap=hot())
"""
kwargs['description'] = 'pcolor: pseudocolor plot'
ax, args, nargs = self._check_args(*args)
h = Surface(*args, **kwargs)
ax.add(h)
if not ax.getp('hold') and not 'box' in kwargs:
kwargs['box'] = True
ax.setp(**kwargs)
self.gcf().setp(**kwargs)
self.setp(**kwargs)
if self.getp('interactive') and self.getp('show'):
self._replot()
return h
def fill3(self):
"""Draw filled 3D polygons."""
raise NotImplementedError("'fill3' is not implemented.")
def streamline(self, *args, **kwargs):
"""Draw streamlines from 2D or 3D vector data.
Calling::
streamline(X,Y,Z,U,V,W,startx,starty,startz)
will draw streamlines from the 3D vector field with components
U,V,W defined on the grid given by X,Y,Z. The arrays U,V,W should
all have the same shape and the grid components X,Y,Z must either
have the same shape as U or fulfill the requirement len(X)==n,
len(Y)==m, and len(Z)==p, where m,n,p=shape(U). The starting
positions for the streamlines are defined in the arrays startx,
starty, and startz.
Calling::
streamline(U,V,W,startx,starty,startz)
is the same as above, except that it is assumed that
X,Y,Z = meshgrid(range(n),range(m),range(p)), where m,n,p=shape(U).
Calling::
streamline(X,Y,U,V,startx,starty)
will draw streamlines from the 2D vector field with components U,V
defined on the grid given by X,Y. The arrays U,V should have the same
shape and the grid componetns X,Y mist either have the same shape as
U or fulfill the requirement len(X)==n and len(Y)==m, where
m,n=shape(u). The starting positions for the streamlines are defined
in the arrays startx and starty.
Calling::
streamline(U,V,startx,starty)
is the same as above, except that it is assumed that
X,Y = meshgrid(range(n),range(m)), where m,n=shape(U).
Calling::
streamline(..., stepsize)
uses the given step size instead of the default step size of 0.1.
Calling::
streamline(ax, ...)
uses the Axis object ax instead of the current axis.
The streamline command returns a Streams object.
Examples:
FIXME: Add streamline example.
"""
if not 'description' in kwargs:
kwargs['description'] = "streamline: 2D or 3D streamline"
ax, args, nargs = self._check_args(*args)
h = Streams(*args, **kwargs)
ax.add(h)
ax.setp(**kwargs)
self.gcf().setp(**kwargs)
self.setp(**kwargs)
if self.getp('interactive') and self.getp('show'):
self._replot()
return h
def streamtube(self, *args, **kwargs):
"""Draw stream tubes from 3D vector data.
Calling::
streamtube(...)
is the same as calling streamlines(...), except that only 3D vector
fields are supported by the streamtube command. The optional
positional argument stepsize is not supported either.
Calling::
streamtube(..., [scale, n])
will scale the width of the tubes according to scale (default is 1),
while the variable n sets the number of points along the
circumference of the tube (default is 20).
Examples:
FIXME: Add streamtube example.
"""
kwargs['description'] = "streamtube: 3D stream tube"
return self.streamline(*args, **kwargs)
def streamribbon(self, *args, **kwargs):
"""Draw stream ribbons from 3D vector data.
Calling::
streamribbon(...)
is the same as calling streamlines(...), except that only 3D vector
fields are supported by the streamribbon command. The optional
positional argument stepsize is not supported either.
Calling::
streamribbon(..., width)
specifies the width of the ribbons.
Examples:
FIXME: Add streamribbon example.
"""
kwargs['description'] = "streamribbon: 3D stream ribbon"
return self.streamline(*args, **kwargs)
def mesh(self, *args, **kwargs):
"""Draw a 3D mesh surface.
Calling::
mesh(X, Y, Z[, C])
plots the colored mesh defined by scalar field Z defined on the grid
given by X and Y. The grid components X and Y must either have the
same shape as Z or fulfill the requirement len(X)==n and len(Y)==m,
where m,n=shape(Z). The color is determined by the array C which must
have the same shape as Z. If the color array C is not given, Z is used
as the color array (i.e., C=Z).
Calling::
mesh(Z[, C])
is the same as calling mesh(range(n), range(m), Z[, C]),
where m,n = shape(Z).
Calling::
mesh(ax, ...)
plots into the Axis object ax instead of the current axis.
@return: A Surface object.
Examples:
>>> x = y = linspace(-2, 2, 21)
>>> xx, yy = meshgrid(x, y)
>>> zz = exp(-xx**2)*exp(-yy**2)
>>> mesh(xx, yy, zz)
"""
if not 'description' in kwargs:
kwargs['description'] = 'mesh: 3D mesh'
ax, args, nargs = self._check_args(*args)
h = Surface(*args, **kwargs)
ax.add(h)
if not ax.getp('hold'):
if not 'grid' in kwargs:
kwargs['grid'] = True
if not 'view' in kwargs:
kwargs['view'] = 3
ax.setp(**kwargs)
self.gcf().setp(**kwargs)
self.setp(**kwargs)
if self.getp('interactive') and self.getp('show'):
self._replot()
return h
def meshc(self, *args, **kwargs):
"""Draw a mesh with a contour plot beneath.
Calling::
meshc(...)
is the same as calling mesh(...) only that a contour plot is drawn
beneath the mesh.
Examples:
Draw a mesh with contour lines:
>>> x = linspace(-2, 2, 21)
>>> xx, yy = meshgrid(x)
>>> zz = peaks(xx, yy)
>>> meshc(xx, yy, zz)
Draw a mesh with 20 contour lines:
>>> meshc(xx, yy, zz, clevels=20)
Draw a mesh with contour lines at height -0.2, -0.5, 0.2, 0.5:
>>> meshc(xx, yy, zz, cvector=[-0.2,-0.5,0.2,0.5])
Draw a mesh with contours and label the contours:
>>> meshc(xx, yy, zz, clabels='on')
"""
kwargs['description'] = 'meshc: 3D mesh with contours at base'
return self.mesh(*args, **kwargs)
def surf(self, *args, **kwargs):
"""Draw a 3D solid surface.
Calling::
surf(...)
is the same as calling mesh(...), except that a solid colored surface
is drawn instead of a wireframe mesh.
Examples:
>>> x = linspace(-2, 2, 21)
>>> xx, yy = meshgrid(x)
>>> zz = xx**2 + yy**2
>>> surf(xx, yy, zz)
"""
if not 'description' in kwargs:
kwargs['description'] = 'surf: 3D surface'
return self.mesh(*args, **kwargs)
def surfc(self, *args, **kwargs):
"""Draw a solid surface with contours beneath.
Calling::
surfc(...)
is the same as calling surf(...) only that a contour plot is drawn
beneath the surface.
"""
kwargs['description'] = 'surfc: 3D surface with contours at base'
return self.surf(*args, **kwargs)
def surfl(self, *args, **kwargs):
"""3D shaded surface with lighting."""
raise NotImplemetedError("'surfl' is not implemented")
def quiver3(self, *args, **kwargs):
"""Draw velocity vectors in 3D space.
Calling::
quiver3(X, Y, Z, U, V, W)
plots arrows from the 3D vector field with components U,V,W at the
grid defined by X,Y,Z. The shape of the three vector components is
assumed to be the same, while the grid components must either have
the same shape as U or fulfill the requirements len(X)==n, len(Y)==m,
and len(Z)==p, where m,n,p=shape(U).
Calling::
quiver3(Z,U,V,W)
gives the same result as above, but it is assumed that
X,Y = meshgrid(range(n),range(m)), where m,n=shape(Z).
Calling::
quiver3(..., s)
scales the arrows by the scale factor given in s. The default is s=1,
while a value of s=0 turns off automatic scaling.
Calling::
quiver3(..., 'filled')
fills the arrows.
Calling::
quiver3(..., fmt)
sets the specification on the arrows as given in the format string
fmt (see the plot command for further information on format strings).
Calling::
quiver3(ax, ...)
plots the vectors in the Axis object ax instead of the current axis.
@return: A VelocityVectors object.
Examples:
Draw the "radius vector field" v = (x,y,z):
>>> x = y = linspace(-3,3,4)
>>> xv, yv, zv = meshgrid(x, y, sparse=False)
>>> yv, vv, wv = xv, yv, zv
>>> quiver3(xv, yv, zv, uv, uv, wv, 'filled', 'r',
... axis=[-7,7,-7,7,-7,7])
Draw the path of a projectile as a function of time:
FIXME: This example is taken from ...
>>> vz = 10 # Velocity
>>> a = -32 # Acceleration
>>> t = linspace(0,1,11)
>>> z = vz*t + 1./2*a*t**2
>>> vx = 2
>>> x = vx*t
>>> vy = 3
>>> y = vy*t
>>> u = gradient(x)
>>> v = gradient(y)
>>> w = gradient(z)
>>> scale = 0
>>> quiver3(x,y,z,u,v,w,0,view=[70,18],grid='on',
... axis=[0,3.5,0,3,-10,2])
"""
kwargs['description'] = "quiver3: 3D vector field"
return self.quiver(*args, **kwargs)
def contour3(self, *args, **kwargs):
"""Draw 3D contour plot.
Calling::
contour3(...)
is the same as calling contour(...), except that the contours are
drawn at their coresponding height level.
Examples:
>>> contour3(peaks())
"""
kwargs['description'] = "contour3: 3D contours at surface"
return self.contour(*args, **kwargs)
# Volume plotting
def slice_(self, *args, **kwargs):
"""Draw volumetric slice plot.
Calling::
slice_(X,Y,Z,V,Sx,Sy,Sz)
draws orthogonal slice planes through the volumetric data set V
defined on the grid with components X, Y, and Z. The grid components
must either have the same shape as V or fulfill the requirement
len(X)==n, len(Y)==m, and len(Z)==p, where m,n,p=shape(V). The Sx,
Sy, and Sz arrays defines the slice planes in the x, y, and z
direction, respectively.
Calling::
slice_(V,Sx,Sy,Sz)
is the same as calling slice_(range(n),range(m),range(p),V,Sx,Sy,Sz),
where m,n,p = shape(V).
Calling::
slice_(X,Y,Z,V,XI,YI,ZI)
draws slices through the volumetric data set V along the surface
defined by the arrays XI,YI,ZI.
Calling::
slice_(V,XI,YI,ZI)
is the same as calling slice_(range(n),range(m),range(p)),V,XI,YI,ZI),
where m,n,p = shape(V).
Calling::
slice_(..., method)
sets which interpolation method to be used, where method can be either
'linear' (default), 'cubic', or 'nearest'.
Calling::
slice(ax, ...)
plots into the Axis object ax instead of the current axis.
@return: A Volume object.
Examples:
Visualize the function x*exp(-x**2-y**2-z**2) over the range
-2 > x,y,z < 2:
>>> xx, yy, zz = meshgrid(linspace(-2,2,21), linspace(-2,2,17),
... linspace(-2,2,25))
>>> vv = x*exp(-xx**2-yy**2-zz**2)
>>> slice_(xx, yy, zz, vv, [-1.2,.8,2], 2, [-2,-.2])
"""
if not 'description' in kwargs:
kwargs['description'] = 'slice_: volumetric slices'
ax, args, nargs = self._check_args(*args)
h = Volume(*args, **kwargs)
ax.add(h)
if not ax.getp('hold'):
if 'slice_' in kwargs['description']:
if not 'grid' in kwargs:
kwargs['grid'] = True
if not 'view' in kwargs:
kwargs['view'] = 3
ax.setp(**kwargs)
self.gcf().setp(**kwargs)
self.setp(**kwargs)
if self.getp('interactive') and self.getp('show'):
self._replot()
return h
def contourslice(self, *args, **kwargs):
"""Draw contour lines in slice planes.
Calling::
contourslice(X,Y,Z,V,Sx,Sy,Sz)
will draw contour lines in planes aligned with the coordinate axes
at the points in the arrays Sx, Sy, and Sz. The arrays X, Y, and Z
defines the grid coordinates for the volume V and they must either
have the same shape as V or fulfill the requirement len(X)==n,
len(Y)==m, and len(Z)==p, where m,n,p = shape(V).
Calling::
contourslice(V,Sx,Sy,Sz)
is the same as above, but it is assumed that
X,Y,Z = meshgrid(range(n),range(m),range(p)), where m,n,p = shape(V).
Calling::
contourslice(X,Y,Z,V,XI,YI,ZI)
will draw contour lines through the volume V along the surface given
in the arrays XI, YI, and ZI.
Calling::
contourslice(V,XI,YI,ZI)
is the same as above, but it is assumed that
X,Y,Z = meshgrid(range(n),range(m),range(p)), where m,n,p = shape(V).
Calling::
contourslice(..., n)
will draw n contour lines per plane instead of the default of five
contour lines.
Calling::
contourslice(..., v)
will draw contour lines at the levels given in the array v.
Calling::
contourslice(ax, ...)
uses the Axis object ax instead of the current axis.
@return: A Volume object.
Example:
>>> xx, yy, zz = meshgrid(linspace(-2,2,21), linspace(-2,2,17),
... linspace(-2,2,25))
>>> vv = xx*exp(-xx**2-yy**2-zz**2)
>>> contourslice(xx, yy, zz, vv, [-.7,.7], [], [0], view=3)
"""
kwargs['description'] = 'contourslice: contours in slice planes'
return self.slice_(*args, **kwargs)
def coneplot(self, *args, **kwargs):
"""Draw a 3D cone plot.
Calling::
coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz)
draws velocity vectors as cones from the 3D vector field defined by
U, V, and W at the points given in the arrays Cx, Cy, and Cz. The
arrays X, Y, and Z defines the grid coordinates for vector field. The
shape of U, V, and W is assumed to be the same, while the grid
components must either have the same shape as U or fulfill the
requirement len(X)==n, len(Y)==m, and len(Z)==p, where m,n,p=shape(U).
Calling::
coneplot(U,V,W,Cx,Cy,Cz)
is the same as above, but it is assumed that
X,Y,Z = meshgrid(range(n),range(m),range(p)), where m,n,p = shape(U).
Calling::
coneplot(..., scale)
will automatically scale the cones by the factor scale (default is 1).
To turn of automatic scaling, use a scale value of 0.
Calling::
coneplot(..., C)
uses the colors in the array C to color the cones (C must have the
same shape as U).
Calling::
coneplot(..., 'quiver')
will plot arrows instead of cones.
Calling::
coneplot(ax, ...)
uses the Axis object ax instead of the current axis.
@return: A Streams object.
Examples:
FIXME: Add conplot example.
"""
kwargs['description'] = "coneplot: 3D cone plot"
ax, args, nargs = self._check_args(*args)
h = Streams(*args, **kwargs)
ax.add(h)
ax.setp(**kwargs)
self.gcf().setp(**kwargs)
self.setp(**kwargs)
if self.getp('interactive') and self.getp('show'):
self._replot()
return h
def streamslice(self, *args, **kwargs):
"""Draw streamlines in axis aligned slice planes.
Calling::
streamslice(X,Y,Z,U,V,W,startx,starty,startz)
will draw streamlines (with direction arrows) from the 3D vector field
with components U, V, and W in planes aligned with the coordinate axes
at the points given in the arrays startx, starty, and startz. The
arrays U, V, and W must all have the same shape and the grid
coordinates given in the arrays X, Y, and Z must either have the same
shape as U or fulfill the requirement len(X)==n, len(Y)==m, and
len(Z)==p, where m,n,p=shape(U).
Calling::
streamslice(U,V,W,startx,starty,startz)
is the same as above, except that it is assumed that
X,Y,Z = meshgrid(range(n),range(m),range(p)), where m,n,p=shape(U).
Calling::
streamslice(X,Y,U,V)
will draw streamlines from the 2D vector field with components U and
V. The vector components must have equal shape and the arrays X and Y
should either have the same shape as U or fulfill the requirement
len(X)==n and len(Y)==m, where m,n=shape(U).
Calling::
streamslice(U,V)
is the same as above, except that it is assumed that
X,Y = meshgrid(range(n),range(m)), where m,n=shape(U).
Calling::
streamslice(..., 'arrows')
will display direction arrows (default).
Calling::
streamslice(..., 'noarrows')
will not display direction arrows.
Calling::
streamslice(ax, ...)
uses the Axis object ax instead of the current axis.
@return: A ??? object.
Examples:
>>> import scipy
>>> wind = scipy.io.loadmat('wind.mat')
>>> x = wind['x']
>>> y = wind['y']
>>> z = wind['z']
>>> u = wind['u']
>>> v = wind['v']
>>> w = wind['w']
>>> streamslice(x,y,z,u,v,w,[],[],[4],daspect=[1,1,1])
"""
raise NotImplementedError("'streamslice' is not implemented.")
def isocaps(self, *args, **kwargs):
"""Draw isosurface end caps."""
raise NotImplementedError("'isocaps' is not implemented.")
def isosurface(self, *args, **kwargs):
"""Draw isosurfaces from 3D scalar fields.
Calling::
isosurface(X,Y,Z,V,isovalue)
creates an isosurface for the volume V at the iso value given by
isovalue. The arrays X, Y, and Z defines the grid for the volume V
and they must either have the same shape as V or fulfill the
requirement len(X)==n, len(Y)==m, and len(Z)==p, where
m,n,p = shape(V).
Calling::
isosurface(V,isovalue)
is the same as above, but it is assumed that
X,Y,Z = meshgrid(range(n),range(m),range(p)), where m,n,p = shape(V).
Calling::
isosurface(..., C)
uses the colors in the array C instead of the colors in the
scalar field V (C and V must have the same shape).
@return: A Volume object.
Examples:
>>> x, y, z, v = flow()
>>> isosurface(x, y, z, v, -3, daspect=[1,1,1])
"""
kwargs['description'] = 'isosurface: isosurface extractor'
ax, args, nargs = self._check_args(*args)
h = Volume(*args, **kwargs)
ax.add(h)
if not ax.getp('hold') and not 'view' in kwargs:
kwargs['view'] = 3
ax.setp(**kwargs)
self.gcf().setp(**kwargs)
self.setp(**kwargs)
if self.getp('interactive') and self.getp('show'):
self._replot()
return h
def show(self):
"""Redraw the current figure."""
self._replot()
def hidden(self, *args):
"""Toggle hidden line removal in the current axis.
Calling::
hidden(state)
turns hidden line removal on if state is 'on' (or True) and off if
state is 'off' (or False). Hidden line removal is turned on by
default.
Calling::
hidden()
toggles the hidden state.
Note: Some backends has no support for hidden line removal (e.g.,
VTK).
"""
ax = self.gca()
nargs = len(args)
if nargs == 1:
ax.setp(hidden=args[0])
elif nargs == 0:
ax.toggle('hidden')
else:
raise TypeError("hidden: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def view(self, *args):
"""Specify viewpoint.
Calling::
view(azimuth, elevation)
sets the viewpoint according to azimuth (horizontal rotation) and
elevation (vertical). Both azimuth and elevation should be given in
degrees.
Calling::
view([azimuth, elevation])
is the same as above.
Calling::
view(2)
changes the view to the default 2D view.
Calling::
view(3)
changes the view to the default 3D view.
Calling::
view(ax, ...)
uses the Axis object ax instead of the current axis.
Examples:
>>> surf(peaks())
>>> view(2) # the default 2D view
>>> view(40,65) # azimuth=40 and elevation=65
>>> view(3) # back to the default 3D view
>>> surf(peaks(),view=[35,75]) # as a keyword argument
"""
ax, args, nargs = self._check_args(*args)
cam = ax.getp('camera')
# Allow both view(az,el) and view([az,el])
if nargs == 1:
if isinstance(args[0], (tuple,list)):
args = args[0]; nargs = len(args)
elif isinstance(args[0], (int,float)) and args[0] in (2,3):
cam.setp(view=args[0])
if nargs == 2:
cam.setp(azimuth=args[0], elevation=args[1])
if self.getp('interactive') and self.getp('show'):
self._replot()
def camdolly(self, *args):
"""Dolly camera.
Calling::
camdolly(dx, dy, dz)
moves the camera position along the direction of projection.
Calling::
camdolly(ax, ...)
uses the Axis object ax instead of the current axis.
"""
ax, args, nargs = self._check_args(*args)
cam = ax.getp('camera')
if nargs == 3:
cam.setp(camdolly=args)
else:
raise TypeError("camdolly: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def camlookat(self, *args):
"""Move camera and target to view specified objects.
Calling::
camlookat(obj)
views the PlotProperties object obj.
Calling::
camlookat(ax)
views the objects in the Axis object ax.
Calling::
camlookat()
views the objects in the current axes.
"""
ax, args, nargs = self._check_args(*args)
if nargs == 0:
self.gca().getp('camera').setp(camlookat=self.gca())
elif nargs == 1:
tmparg = args[0]
if isinstance(tmparg, Axis):
tmparg.getp('camera').setp(camlookat=tmparg)
elif isinstance(tmparg, PlotProperties):
self.gca().getp('camera').setp(camlookat=tmparg)
else:
raise ValueError(
"camlookat: object must be either %s or %s, not %s" % \
(type(Axis), type(PlotProperties), type(tmparg)))
else:
raise TypeError("camlookat: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def camproj(self, *args):
"""Camera projection.
Calling::
camproj()
returns the camera projection of the current axis.
Calling::
camproj(projeciton)
sets the projection of the camera to projection, where projection can
be either 'orthographic' (default) or 'perspective'.
Calling::
camproj(ax, ...)
sets or gets the camera projection of the Axis object ax instead of
the current axis.
"""
ax, args, nargs = self._check_args(*args)
cam = ax.getp('camera')
if nargs == 0:
return cam.getp('camproj')
elif nargs == 1:
cam.setp(camproj=args[0])
else:
raise TypeError("camproj: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def camup(self, *args):
"""Camera up vector.
Calling::
camup()
returns the up vector of the camera in the current axis.
Calling::
camup([x, y, z])
sets the camera up vector.
Calling::
camup(x, y, z)
is the same as the above.
Calling::
camup(ax, ...)
sets or gets the up vector for the camera in the Axis object ax
instead of the current axis.
"""
ax, args, nargs = self._check_args(*args)
cam = ax.getp('camera')
if nargs == 0:
return cam.getp('camup')
elif nargs == 1:
cam.setp(camup=args[0])
elif nargs == 3:
cam.setp(camup=args)
else:
raise TypeError("camup: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def camroll(self, *args):
"""Roll camera.
Calling::
camroll(angle)
rotates the camera about the direction of projection.
Calling::
camroll(ax, ...)
rotates the camera in the Axis object ax instead of the current axis.
"""
ax, args, nargs = self._check_args(*args)
cam = ax.getp('camera')
if nargs == 1:
cam.setp(camroll=args[0])
else:
raise TypeError("camroll: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def camva(self, *args):
"""Camera view angle.
Calling::
camva()
returns the camera view angle of the current axis.
Calling::
camva(angle)
sets the camera view angle.
Calling::
camva(ax, ...)
sets or gets the camera view angle in the Axis object ax instead of
the current axis.
"""
ax, args, nargs = self._check_args(*args)
cam = ax.getp('camera')
if nargs == 0:
return cam.getp('camva')
elif nargs == 1:
cam.setp(camva=args[0])
else:
raise TypeError("camva: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def camzoom(self, *args):
"""Zoom camera.
Calling::
camzoom(factor)
zooms the camera the specified factor. A value greater than 1 is a
zoom-in, while a value less than 1 is a zoom-out.
Calling::
camzoom(ax, ...)
zooms the camera in the Axis object ax instead of the current axis.
"""
ax, args, nargs = self._check_args(*args)
cam = ax.getp('camera')
if nargs == 1:
cam.setp(camzoom=args[0])
else:
raise TypeError("camzoom: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def campos(self, *args):
"""Camera position.
Calling::
campos()
returns the position of the camera in the current axis.
Calling::
campos([x,y,z])
sets the camera position.
Calling::
campos(x,y,z)
is the same as above.
Calling::
campos(ax, ...)
sets or gets the position of the camera in the Axis object ax instead
of the current axis.
"""
ax, args, nargs = self._check_args(*args)
cam = ax.getp('camera')
if nargs == 0:
return cam.getp('campos')
elif nargs == 1:
cam.setp(campos=args[0])
elif nargs == 3:
cam.setp(campos=args)
else:
raise TypeError("campos: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def camtarget(self, *args):
"""Camera target.
Calling::
camtarget()
returns the camera target of the current axis.
Calling::
camtarget([x,y,z])
sets the target for the camera.
Calling::
camtarget(x,y,z)
is the same as above.
Calling::
camtarget(ax, ...)
sets or gets the camera target in the Axis object ax instead of the
current axis..
"""
ax, args, nargs = self._check_args(*args)
cam = ax.getp('camera')
if nargs == 0:
return cam.getp('camtarget')
elif nargs == 1:
cam.setp(camtarget=args[0])
elif nargs == 3:
cam.setp(camtarget=args)
else:
raise TypeError("camtarget: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def camlight(self, *args, **kwargs):
"""Create or set position of a light.
Calling::
camlight('headlight')
creates a light in the current axis at the position of the camera.
Calling::
camlight('right')
creates a light right and up from the camera in the current axis.
Calling::
camlight('left')
creates a light left and up from the camera.
Calling::
camlight()
is the same as camlight('right').
Calling::
camlight(azimuth, elevation)
creates a light at azimuth, elevation (both given in degrees) from
the camera.
Calling::
camlight(..., style)
sets the style of the light, where style can be either 'local'
(default) or 'inifinite'.
Calling::
camlight(l, ...)
places Light object l at the specified position.
@return: A Light object.
"""
# should be implemented in backend
raise NotImplementedError("'camlight' not implemented in class %s" % \
self.__class__.__name__)
def light(self, **kwargs):
"""Add a light to the current axis.
Calling:
light()
will add a light to the current axis with default values for all
light properties.
Calling::
light(prop1=value1, prop2=value2, ...)
adds a light with properties as given in the keyword arguments.
@return: A Light object.
"""
l = Light(**kwargs)
self.gca().setp(light=l)
if self.getp('interactive') and self.getp('show'):
self._replot()
return l
def colormap(self, *args):
"""Specify colormap.
Calling::
colormap(map)
uses the colormap in map as the current colormap (map is dependent
on the current backend).
Calling::
colormap('default')
sets the colormap to the default colormap, i.e., jet.
Calling::
map = colormap()
returns the current colormap.
Calling::
colormap(ax, ...)
uses the figure corresponding to the Axis object ax instead of the
current figure.
"""
ax, args, nargs = self._check_args(*args)
if nargs == 0:
return ax.getp('colormap')
elif nargs == 1:
if args[0] == 'default':
ax.setp(colormap=self.jet())
else:
ax.setp(colormap=args[0]) # backend dependent
else:
raise TypeError("colormap: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def caxis(self, *args):
"""Set the limits for the color axis.
Calling::
caxis([cmin, cmax])
changes the limits for the color axis to range from cmin to cmax.
Calling::
caxis(cmin, cmax)
gives the same result as above.
Calling::
caxis('manual')
freezes the limits at the current range.
Calling::
caxis('auto')
uses autoranging for the color axis limits (default).
Calling::
cmin, cmax = caxis()
returns the current color axis limits.
Calling::
caxis(ax, ...)
uses the Axis object ax instead of the current axis.
"""
ax, args, nargs = self._check_args(*args)
if nargs == 0:
cmin, cmax = ax.getp('caxis')
if cmin is None or cmax is None:
cmin, cmax = ax.getp('zlim')
return cmin, cmax
elif nargs == 1:
if isinstance(args[0], (tuple,list)):
args = args[0]; nargs = len(args)
elif isinstance(args[0], str) and args[0] in ['auto', 'manual']:
ax.setp(caxismode=args[0])
else:
raise TypeError("caxis: argument must be %s, not %s" % \
((type(list),type(tuple),type(str)),
type(args[0])))
if nargs == 2:
ax.setp(caxis=args)
if self.getp('interactive') and self.getp('show'):
self._replot()
def colorbar(self, *args):
"""Display a color bar.
Calling::
colorbar()
displays a colorbar in the current axis.
Calling::
colorbar('off')
removes the colorbar from the current axis.
Calling::
colorbar(loc)
displays a colorbar in the current axis at the location specified by
loc, where loc may be any of the following:
* 'North' - inside plot box near top
* 'South' - inside bottom
* 'East' - inside right
* 'West' - inside left
* 'NorthOutside' - outside plot box near top
* 'SouthOutside' - outside bottom
* 'EastOutside' - outside right
* 'WestOutside' - outside left
Calling::
colorbar(ax, ...)
uses the Axis object ax instead of the current axis.
@return: A Colorbar object.
"""
ax, args, nargs = self._check_args(*args)
cbar = ax.getp('colorbar')
if nargs == 0:
cbar.setp(visible=True)
elif nargs == 1:
if args[0] == 'off' or not args[0]:
cbar.setp(visible=False)
else:
cbar.setp(visible=True)
cbar.setp(cblocation=args[0])
else:
raise TypeError("colorbar: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
return cbar
def shading(self, *args):
"""Control the color shading of surfaces.
Calling::
shading(mode)
changes the shading mode in the current axis to the one specified by
by mode. Valid modes are 'flat', 'interp' (interpolated or Gouraud)
and 'faceted' (default).
Calling::
shading(ax, ...)
uses the Axis object ax instead of the current axis.
"""
ax, args, nargs = self._check_args(*args)
if nargs == 1:
ax.setp(shading=str(args[0]))
else:
raise TypeError("shading: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def brighten(self, *args):
"""Brighten or darken the color map."""
raise NotImplementedError("'brighten' not implemented in class %s" % \
self.__class__.__name__)
def clabel(self, *args):
"""Control labeling of contours.
Calling::
clabel(obj, 'on')
adds height labels to a contour plot (obj must be a Contours
object).
Calling::
clabel(obj, 'off')
removes the labeling of the contour lines (default).
"""
nargs = len(args)
if nargs == 2:
obj = args[0]
state = args[1]
obj.setp(clabels=state)
else:
raise TypeError("clabel: wrong number of arguments")
if self.getp('interactive') and self.getp('show'):
self._replot()
def box(self, *args):
"""Display a box around the boundaries of the current axis.
Calling::
box('on')
displays a box at the boundaries of the current axis.
Calling::
box('off')
turns off the box.
Calling::
box()
toggles the display of a box in the current axis.
Calling::
box(ax, ...)
uses the Axis object ax instead of the current axis.
Note: box(True) and box(False) is the same as box('on') and
box('off'), respectively.
"""
ax, args, nargs = self._check_args(*args)
if nargs == 0:
ax.toggle('box')
elif nargs == 1:
ax.setp(box=args[0])
else:
raise TypeError("box: wrong number of argumnts")
if self.getp('interactive') and self.getp('show'):
self._replot()
def material(self, *args):
"""Set the material reflectance mode.
Calling::
material([ka, kd, ks[, n[, sc]]])
changes the ambient/diffuse/specular strength, specular exponent,
and specular color reflectance of objects.
Calling::
material(ka, kd, ks[, n[, sc]])
is the same as above.
Calling::
material(mode)
sets the material mode, where mode can be one of the following
strings:
* 'shiny' - shiny objects
* 'dull', - dull objects
* 'metal' - metallic objects
* 'default' - default material properties
"""
modes = {'shiny': (None, None, None, None, None),
'dull': (None, None, None, None, None),
'metal': (None, None, None, None, None),
'default': (None, None, None, None, None),
}
ka, kd, ks, n, sc = modes['default']
nargs = len(args)
if nargs == 1:
if isinstance(args[0], (tuple,list)):
args = args[0]
nargs = len(args)
elif args[0] in modes.keys():
ka, kd, ks, n, sc = modes[args[0]]
if nargs >= 3:
ka, kd, ks = args[:3]
if nargs >= 4:
n = args[3]
if nargs == 5:
sc = args[4]
if nargs < 1 or nargs > 5:
raise ValueError("material: wrong nmumber of arguments")
kwargs = {}
if ka is not None:
kwargs['ambient'] = ka
if kd is not None:
kwargs['diffuse'] = kd
if ks is not None:
kwargs['specular'] = ks
if n is not None:
kwargs['specularpower'] = n
#if sc is not None:
#kwargs['specularcolorreflectance'] = sc
ax = self.gca()
items = ax.getp('plotitems')
for i in range(ax.getp('numberofitems')):
items[i].getp('material').setp(**kwargs)
if self.getp('interactive') and self.getp('show'):
self._replot()
# Colormap methods:
def hsv(self, m=None):
"""Hue-saturation-value color map."""
raise NotImplementedError('hsv not implemented in class %s' % \
self.__class__.__name__)
def hot(self, m=None):
"""Black-red-yellow-white color map."""
raise NotImplementedError('hot not implemented in class %s' % \
self.__class__.__name__)
def gray(self, m=None):
"""Linear gray-scale color map."""
raise NotImplementedError('gray not implemented in class %s' % \
self.__class__.__name__)
def bone(self, m=None):
"""Gray-scale with a tinge of blue color map."""
raise NotImplementedError('bone not implemented in class %s' % \
self.__class__.__name__)
def copper(self, m=None):
"""Linear copper-tone color map."""
raise NotImplementedError('copper not implemented in class %s' % \
self.__class__.__name__)
def pink(self, m=None):
"""Pastel shades of pink color map."""
raise NotImplementedError('pink not implemented in class %s' % \
self.__class__.__name__)
def white(self, m=None):
"""All white color map."""
raise NotImplementedError('white not implemented in class %s' % \
self.__class__.__name__)
def flag(self, m=None):
"""Alternating red, white, blue, and black color map."""
raise NotImplementedError('flag not implemented in class %s' % \
self.__class__.__name__)
def lines(self, m=None):
"""Color map with the line colors."""
raise NotImplementedError('lines not implemented in class %s' % \
self.__class__.__name__)
def colorcube(self, m=None):
"""Enhanced color-cube color map."""
raise NotImplementedError('colorcube not implemented in class %s' % \
self.__class__.__name__)
def vga(self, m=None):
"""Windows colormap for 16 colors."""
raise NotImplementedError('vga not implemented in class %s' % \
self.__class__.__name__)
def jet(self, m=None):
"""Variant of hsv."""
raise NotImplementedError('jet not implemented in class %s' % \
self.__class__.__name__)
def prism(self, m=None):
"""Prism color map."""
raise NotImplementedError('prism not implemented in class %s' % \
self.__class__.__name__)
def cool(self, m=None):
"""Shades of cyan and magenta color map."""
raise NotImplementedError('cool not implemented in class %s' % \
self.__class__.__name__)
def autumn(self, m=None):
"""Shades of red and yellow color map."""
raise NotImplementedError('autumn not implemented in class %s' % \
self.__class__.__name__)
def spring(self, m=None):
"""Shades of magenta and yellow color map."""
raise NotImplementedError('spring not implemented in class %s' % \
self.__class__.__name__)
def winter(self, m=None):
"""Shades of blue and green color map."""
raise NotImplementedError('winter not implemented in class %s' % \
self.__class__.__name__)
def summer(self, m=None):
"""Shades of green and yellow color map."""
raise NotImplementedError('summer not implemented in class %s' % \
self.__class__.__name__)
def turn_off_plotting(namespace=globals()):
"""Call turn_off_plotting(globals()) to turn off all plotting."""
use(namespace['plt'], namespace, True)
def use(plt, namespace=globals(), neutralize=False):
"""
Export the namespace of backend instance to namespace.
If neutralize is True, the plt object will be replaced
by a scitools.misc.DoNothing object so that no plotting
command will do anything. This can be used to efficiently
turn off all plotting in a program.
Just call turn_off_plotting(globals()) before the first
plot command in your program.
"""
plt_dict = {}
plt_orig = plt
if neutralize:
import scitools.misc
plt = scitools.misc.DoNothing()
plt_dict['plt'] = plt
for item in plt_orig.__dict__:
plt_dict[item] = eval('plt.'+item)
for item in dir(plt_orig.__class__):
if not '__' in item:
plt_dict[item] = eval('plt.'+item)
namespace.update(plt_dict) # Add to global namespace
namespace['savefig'] = namespace['hardcopy'] # synonym
def get_backend():
return plt._g
namespace['get_backend'] = get_backend # desired global func
# If this module is imported
try:
__all__
except:
__all__ = ['plt']
try:
for item in plt_dict.keys():
__all__.append(item)
except:
pass
del(__all__)
def debug(plt, level=10):
def print_(item, spaces=10):
"""Indent print"""
pref = ' '*spaces
print pref+('\n'+pref).join((str(item)).split('\n'))
print "plt:"
print plt
if level > 0:
for fignr in plt._figs:
print "\nFig %d:" % fignr
fig = plt._figs[fignr]
print fig
if level > 1:
axes_ = fig.getp('axes')
for axnr in axes_.keys():
print_("\nAx %d:" % axnr, 4)
ax = axes_[axnr]
print_(ax, 8)
if level > 2:
print_("\nCamera:", 4)
print_(ax.getp('camera'), 8)
print_("\nColorbar:", 4)
print_(ax.getp('colorbar'), 8)
print_("\nLights:", 4)
for light_ in ax.getp('lights'):
print_(light_, 8)
print_("\nPlotitems:", 4)
for i, item in enumerate(ax.getp('plotitems')):
print_('item number %s %s:' %(i, repr(item)), 8)
print_(item, 12)
if level > 3:
print_("Material:", 12)
print_(item.getp('material'), 16)
print ''
|