This file is indexed.

/usr/share/pyshared/scitools/numpyutils.py is in python-scitools 0.9.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
"""

Functionality of this module that extends Numerical Python
==========================================================

 - solve_tridiag_linear_system:
           returns the solution of a tridiagonal linear system
 - wrap2callable:
           tool for turning constants, discrete data, string
           formulas, function objects, or plain functions
           into an object that behaves as a function
 - NumPy_array_iterator:
           allows iterating over all array elements using
           a single, standard for loop (for value, index in iterator),
           has some additional features compared with numpy.ndenumerate
 - asarray_cpwarn:
           as ``numpy.asarray(a)``, but a warning or exception is issued if
           the array a is copied
 - meshgrid:
           extended version of ``numpy.meshgrid`` to 1D, 2D and 3D grids,
           with sparse or dense coordinate arrays and matrix or grid
           indexing
 - ndgrid:
           same as calling ``meshgrid`` with indexing='ij' (matrix indexing)
 - float_eq:
           ``operator ==`` for float operands with tolerance,
           ``float_eq(a,b,tol)`` means ``abs(a-b) < tol``
           works for both scalar and array arguments
           (similar functions for other operations exists:
           ``float_le``, ``float_lt``, ``float_ge``, ``float_gt``,
           ``float_ne``)
 - cut_noise:
           set all small (noise) elements of an array to zero
 - matrix_rank:
           compute the rank of a matrix
 - orth:
           compute an orthonormal basis from a matrix (taken from
           ``scipy.linalg`` to avoid ``scipy`` dependence)
 - null:
           compute the null space of a matrix
 - norm_L2, norm_l2, norm_L1, norm_l1, norm_inf:
           discrete and continuous norms for multi-dimensional arrays
           viewed as vectors
 - compute_historgram:
           return x and y arrays of a histogram, given a vector of samples
 - seq:
           ``seq(a,b,s, [type])`` computes numbers from ``a`` up to and
           including ``b`` in steps of s and (default) type ``float_``;
 - iseq:
           as ``seq``, but integer counters are computed
           (``iseq`` is an alternative to range where the
           upper limit is included in the sequence - this can
           be important for direct mapping of indices between
           mathematics and Python code);
"""

if __name__.find('numpyutils') != -1:
    from numpy import *

#else if name is some other module name:
# this file is included in numpytools.py (through a preprocessing step)
# and the code below then relies on previously imported Numerical Python
# modules (Numeric, numpy, numarray)

import operator
from FloatComparison import float_eq, float_ne, float_lt, float_le, \
     float_gt, float_ge

def meshgrid(x=None, y=None, z=None, sparse=False, indexing='xy',
             memoryorder=None):
    """
    Extension of ``numpy.meshgrid`` to 1D, 2D and 3D problems, and also
    support of both "matrix" and "grid" numbering.

    This extended version makes 1D/2D/3D coordinate arrays for
    vectorized evaluations of 1D/2D/3D scalar/vector fields over
    1D/2D/3D grids, given one-dimensional coordinate arrays x, y,
    and/or, z.

    >>> x=linspace(0,1,3)        # coordinates along x axis
    >>> y=linspace(0,1,2)        # coordinates along y axis
    >>> xv, yv = meshgrid(x,y)   # extend x and y for a 2D xy grid
    >>> xv
    array([[ 0. ,  0.5,  1. ],
           [ 0. ,  0.5,  1. ]])
    >>> yv
    array([[ 0.,  0.,  0.],
           [ 1.,  1.,  1.]])
    >>> xv, yv = meshgrid(x,y, sparse=True)  # make sparse output arrays
    >>> xv
    array([[ 0. ,  0.5,  1. ]])
    >>> yv
    array([[ 0.],
           [ 1.]])

    >>> # 2D slice of a 3D grid, with z=const:
    >>> z=5
    >>> xv, yv, zc = meshgrid(x,y,z)
    >>> xv
    array([[ 0. ,  0.5,  1. ],
           [ 0. ,  0.5,  1. ]])
    >>> yv
    array([[ 0.,  0.,  0.],
           [ 1.,  1.,  1.]])
    >>> zc
    5

    >>> # 2D slice of a 3D grid, with x=const:
    >>> meshgrid(2,y,x)
    (2, array([[ 0.,  1.],
           [ 0.,  1.],
           [ 0.,  1.]]), array([[ 0. ,  0. ],
           [ 0.5,  0.5],
           [ 1. ,  1. ]]))
    >>> meshgrid(0,1,5, sparse=True)  # just a 3D point
    (0, 1, 5)
    >>> meshgrid(y)      # 1D grid; y is just returned
    array([ 0.,  1.])
    >>> meshgrid(x,y, indexing='ij')  # change to matrix indexing
    (array([[ 0. ,  0. ],
           [ 0.5,  0.5],
           [ 1. ,  1. ]]), array([[ 0.,  1.],
           [ 0.,  1.],
           [ 0.,  1.]]))

    Why does SciTools has its own meshgrid function when numpy has
    three similar functions, ``mgrid``, ``ogrid``, and ``meshgrid``?
    The ``meshgrid`` function in numpy is limited to two dimensions
    only, while the SciTools version can also work with 3D and 1D
    grids. In addition, the numpy version of ``meshgrid`` has no
    option for generating sparse grids to conserve memory, like we
    have in SciTools by specifying the ``sparse`` argument.

    Moreover, the numpy functions ``mgrid`` and ``ogrid`` does provide
    support for, respectively, full and sparse n-dimensional
    meshgrids, however, these functions uses slices to generate the
    meshgrids rather than one-dimensional coordinate arrays such as in
    Matlab. With slices, the user does not have the option to generate
    meshgrid with, e.g., irregular spacings, like::

    >>> x = array([-1,-0.5,1,4,5], float)
    >>> y = array([0,-2,-5], float)
    >>> xv, yv = meshgrid(x, y, sparse=False)

    >>> xv
    array([[-1. , -0.5,  1. ,  4. ,  5. ],
           [-1. , -0.5,  1. ,  4. ,  5. ],
           [-1. , -0.5,  1. ,  4. ,  5. ]])

    >>> yv
    array([[ 0.,  0.,  0.,  0.,  0.],
           [-2., -2., -2., -2., -2.],
           [-5., -5., -5., -5., -5.]])


    In addition to the reasons mentioned above, the ``meshgrid``
    function in numpy supports only Cartesian indexing, i.e., x and y,
    not matrix indexing, i.e., rows and columns (on the other hand,
    ``mgrid`` and ``ogrid`` supports only matrix indexing). The
    ``meshgrid`` function in SciTools supports both indexing
    conventions through the ``indexing`` keyword argument. Giving the
    string ``'ij'`` returns a meshgrid with matrix indexing, while
    ``'xy'`` returns a meshgrid with Cartesian indexing. The
    difference is illustrated by the following code snippet::

      nx = 10
      ny = 15

      x = linspace(-2,2,nx)
      y = linspace(-2,2,ny)

      xv, yv = meshgrid(x, y, sparse=False, indexing='ij')
      for i in range(nx):
          for j in range(ny):
              # treat xv[i,j], yv[i,j]

      xv, yv = meshgrid(x, y, sparse=False, indexing='xy')
      for i in range(nx):
          for j in range(ny):
              # treat xv[j,i], yv[j,i]

    It is not entirely true that matrix indexing is not supported by the
    ``meshgrid`` function in numpy because we can just switch the order of
    the first two input and output arguments::

    >>> yv, xv = numpy.meshgrid(y, x)
    >>> # same as:
    >>> xv, yv = meshgrid(x, y, indexing='ij')

    However, we think it is clearer to have the logical "x, y"
    sequence on the left-hand side and instead adjust a keyword argument.
    """

    import types
    def fixed(coor):
        return isinstance(coor, (float, complex, int, types.NoneType))

    if not fixed(x):
        x = asarray(x)
    if not fixed(y):
        y = asarray(y)
    if not fixed(z):
        z = asarray(z)

    def arr1D(coor):
        try:
            if len(coor.shape) == 1:
                return True
            else:
                return False
        except AttributeError:
            return False

    # if two of the arguments are fixed, we have a 1D grid, and
    # the third argument can be reused as is:

    if arr1D(x) and fixed(y) and fixed(z):
        return x
    if fixed(x) and arr1D(y) and fixed(z):
        return y
    if fixed(x) and fixed(y) and arr1D(z):
        return z

    # if x,y,z are identical, make copies:
    try:
        if y is x: y = x.copy()
        if z is x: z = x.copy()
        if z is y: z = y.copy()
    except AttributeError:  # x, y, or z not numpy array
        pass

    if memoryorder is not None:
        import warnings
        msg = "Keyword argument 'memoryorder' is deprecated and will be " \
              "removed in the future. Please use the 'indexing' keyword " \
              "argument instead."
        warnings.warn(msg, DeprecationWarning)
        if memoryorder == 'xyz':
            indexing = 'ij'
        else:
            indexing = 'xy'

    # If the keyword argument sparse is set to False, the full N-D matrix
    # (not only the 1-D vector) should be returned. The mult_fact variable
    # should then be updated as necessary.
    mult_fact = 1

    # if only one argument is fixed, we have a 2D grid:
    if arr1D(x) and arr1D(y) and fixed(z):
        if indexing == 'ij':
            if not sparse:
                mult_fact = ones((len(x),len(y)))
            if z is None:
                return x[:,newaxis]*mult_fact, y[newaxis,:]*mult_fact
            else:
                return x[:,newaxis]*mult_fact, y[newaxis,:]*mult_fact, z
        else:
            if not sparse:
                mult_fact = ones((len(y),len(x)))
            if z is None:
                return x[newaxis,:]*mult_fact, y[:,newaxis]*mult_fact
            else:
                return x[newaxis,:]*mult_fact, y[:,newaxis]*mult_fact, z

    if arr1D(x) and fixed(y) and arr1D(z):
        if indexing == 'ij':
            if not sparse:
                mult_fact = ones((len(x),len(z)))
            if y is None:
                return x[:,newaxis]*mult_fact, z[newaxis,:]*mult_fact
            else:
                return x[:,newaxis]*mult_fact, y, z[newaxis,:]*mult_fact
        else:
            if not sparse:
                mult_fact = ones((len(z),len(x)))
            if y is None:
                return x[newaxis,:]*mult_fact, z[:,newaxis]*mult_fact
            else:
                return x[newaxis,:]*mult_fact, y, z[:,newaxis]*mult_fact

    if fixed(x) and arr1D(y) and arr1D(z):
        if indexing == 'ij':
            if not sparse:
                mult_fact = ones((len(y),len(z)))
            if x is None:
                return y[:,newaxis]*mult_fact, z[newaxis,:]*mult_fact
            else:
                return x, y[:,newaxis]*mult_fact, z[newaxis,:]*mult_fact
        else:
            if not sparse:
                mult_fact = ones((len(z),len(y)))
            if x is None:
                return y[newaxis,:]*mult_fact, z[:,newaxis]*mult_fact
            else:
                return x, y[newaxis,:]*mult_fact, z[:,newaxis]*mult_fact

    # or maybe we have a full 3D grid:
    if arr1D(x) and arr1D(y) and arr1D(z):
        if indexing == 'ij':
            if not sparse:
                mult_fact = ones((len(x),len(y),len(z)))
            return x[:,newaxis,newaxis]*mult_fact, \
                   y[newaxis,:,newaxis]*mult_fact, \
                   z[newaxis,newaxis,:]*mult_fact
        else:
            if not sparse:
                mult_fact = ones((len(y),len(x),len(z)))
            return x[newaxis,:,newaxis]*mult_fact, \
                   y[:,newaxis,newaxis]*mult_fact, \
                   z[newaxis,newaxis,:]*mult_fact

    # at this stage we assume that we just have scalars:
    l = []
    if x is not None:
        l.append(x)
    if y is not None:
        l.append(y)
    if z is not None:
        l.append(z)
    if len(l) == 1:
        return l[0]
    else:
        return tuple(l)


def ndgrid(*args,**kwargs):
    """
    Same as calling ``meshgrid`` with *indexing* = ``'ij'`` (see
    ``meshgrid`` for documentation).
    """
    kwargs['indexing'] = 'ij'
    return meshgrid(*args,**kwargs)

def length(a):
    """Return the length of the largest dimension of array a."""
    return max(a.shape)

def cut_noise(a, tol=1E-10):
    """
    Set elements in array a to zero if the absolute value is
    less than tol.
    """
    a[abs(a) < tol] = 0
    return a


def Gram_Schmidt1(vecs, row_wise_storage=True):
    """
    Apply the Gram-Schmidt orthogonalization algorithm to a set
    of vectors. vecs is a two-dimensional array where the vectors
    are stored row-wise, or vecs may be a list of vectors, where
    each vector can be a list or a one-dimensional array.
    An array basis is returned, where basis[i,:] (row_wise_storage
    is True) or basis[:,i] (row_wise_storage is False) is the i-th
    orthonormal vector in the basis.

    This function does not handle null vectors, see Gram_Schmidt
    for a (slower) function that does.
    """
    from numpy.linalg import inv
    from math import sqrt

    vecs = asarray(vecs)  # transform to array if list of vectors
    m, n = vecs.shape
    basis = array(transpose(vecs))
    eye = identity(n).astype(float)

    basis[:,0] /= sqrt(dot(basis[:,0], basis[:,0]))
    for i in range(1, m):
	v = basis[:,i]/sqrt(dot(basis[:,i], basis[:,i]))
    	U = basis[:,:i]
	P = eye - dot(U, dot(inv(dot(transpose(U), U)), transpose(U)))
	basis[:, i] = dot(P, v)
	basis[:, i] /= sqrt(dot(basis[:, i], basis[:, i]))

    return transpose(basis) if row_wise_storage else basis


def Gram_Schmidt(vecs, row_wise_storage=True, tol=1E-10,
                 normalize=False, remove_null_vectors=False,
                 remove_noise=False):
    """
    Apply the Gram-Schmidt orthogonalization algorithm to a set
    of vectors. vecs is a two-dimensional array where the vectors
    are stored row-wise, or vecs may be a list of vectors, where
    each vector can be a list or a one-dimensional array.

    The argument tol is a tolerance for null vectors (the absolute
    value of all elements must be less than tol to have a null
    vector).

    If normalize is True, the orthogonal vectors are normalized to form
    an orthonormal basis.

    If remove_null_vectors is True, all null vectors are removed from
    the resulting basis.

    If remove_noise is True, all elements whose absolute values are
    less than tol are set to zero.

    An array basis is returned, where basis[i,:] (row_wise_storage
    is True) or basis[:,i] (row_wise_storage is False) is the i-th
    orthogonal vector in the basis.

    This function handles null vectors, see Gram_Schmidt1
    for a (faster) function that does not.
    """
    # The algorithm below views vecs as a matrix A with the vectors
    # stored as columns:
    vecs = asarray(vecs)  # transform to array if list of vectors
    if row_wise_storage:
        A = transpose(vecs).copy()
    else:
        A = vecs.copy()

    m, n = A.shape
    V = zeros((m,n))

    for j in xrange(n):
        v0 = A[:,j]
        v = v0.copy()
        for i in xrange(j):
            vi = V[:,i]

            if (abs(vi) > tol).any():
                v -= (vdot(v0,vi)/vdot(vi,vi))*vi
        V[:,j] = v

    if remove_null_vectors:
        indices = [i for i in xrange(n) if (abs(V[:,i]) < tol).all()]
        V = V[ix_(range(m), indices)]

    if normalize:
        for j in xrange(V.shape[1]):
            V[:,j] /= linalg.norm(V[:,j])

    if remove_noise:
        V = cut_noise(V, tol)

    return transpose(V) if row_wise_storage else V


def matrix_rank(A):
    """
    Returns the rank of a matrix A (rank means an estimate of
    the number of linearly independent rows or columns).
    """
    A = asarray(A)
    u, s, v = svd(A)
    maxabs = norm(x)
    maxdim = max(A.shape)
    tol = maxabs*maxdim*1E-13
    r = s > tol
    return sum(r)


def orth(A):
    """
    (Plain copy from scipy.linalg.orth - this one here applies numpy.svd
    and avoids the need for having scipy installed.)

    Construct an orthonormal basis for the range of A using SVD.

    @param A: array, shape (M, N)
    @return:
        Q : array, shape (M, K)
        Orthonormal basis for the range of A.
        K = effective rank of A, as determined by automatic cutoff

    see also svd (singular value decomposition of a matrix in scipy.linalg)
    """
    u,s,vh = svd(A)
    M,N = A.shape
    tol = max(M,N)*numpy.amax(s)*eps
    num = numpy.sum(s > tol,dtype=int)
    Q = u[:,:num]
    return Q


def null(A, tol=1e-10, row_wise_storage=True):
    """
    Return the null space of a matrix A.
    If row_wise_storage is True, a two-dimensional array where the
    vectors that span the null space are stored as rows, otherwise
    they are stored as columns.

    Code by Bastian Weber based on code by Robert Kern and Ryan Krauss.
    """
    n, m = A.shape
    if n > m :
        return transpose(null(transpose(A), tol))

    u, s, vh = linalg.svd(A)
    s = append(s, zeros(m))[0:m]
    null_mask = (s <= tol)
    null_space = compress(null_mask, vh, axis=0)
    null_space = conjugate(null_space)  # in case of complex values
    if row_wise_storage:
        return null_space
    else:
        return transpose(null_space)


class Heaviside:
    """Standard and smoothed Heaviside function."""

    def __init__(self, eps=0):
        self.eps = eps          # smoothing parameter

    def __call__(self, x):
        if self.eps == 0:
            r = x >= 0
            if isinstance(x, (int,float)):
                return int(r)
            elif isinstance(x, ndarray):
                return asarray(r, dtype=int)
        else:
            if isinstance(x, (int,float)):
                return self._smooth_scalar(x)
            elif isinstance(x, ndarray):
                return self._smooth_vec(x)

    def _exact_scalar(self, x):
        return 1 if x >= 0 else 0

    def _exact_bool(self, x):
        return x >= 0  # works for scalars and arrays, but returns bool

    def _exact_vec1(self, x):
        return where(x >= 0, 1, 0)

    def _exact_vec2(self, x):
        r = zeros_like(x)
        r[x >= 0] = 1
        return r

    def _smooth_scalar(self, x):
        eps = self.eps
        if x < -eps:
            return 0
        elif x > eps:
            return 1
        else:
            return 0.5 + x/(2*eps) + 1./(2*pi)*sin(pi*x/eps)

    def _smooth_vec(self, x):
        eps = self.eps
        r = zeros_like(x)
        condition1 = operator.and_(x >= -eps, x <= eps)
        xc = x[condition1]
        r[condition1] = 0.5 + xc/(2*eps) + 1./(2*pi)*sin(pi*xc/eps)
        r[x > eps] = 1
        return r

    def plot(self, center=0, xmin=-1, xmax=1):
        """
        Return arrays x, y for plotting the Heaviside function
        H(x-`center`) on [`xmin`, `xmax`]. For the exact
        Heaviside function,
        ``x = [xmin, center, center, xmax]; y = [0, 0, 1, 1]``,
        while for the smoothed version, the ``x`` array
        is computed on basis of the `eps` parameter.
        """
        if self.eps == 0:
            return [xmin, center, center, xmax], [0, 0, 1, 1]
        else:
            n = 200./self.eps
            x = concatenate(
                linspace(xmin, center-self.eps, 21),
                linspace(center-self.eps, center+self.eps, n+1),
                linspace(center+self.eps, xmax, 21))
            y = self(x)
            return x, y


class DiracDelta:
    """
    Smoothed Dirac delta function:
    $\frac{1}{2\epsilon}(1 + \cos(\pi x/\epsilon)$ when
    $x\in [-\epsilon, \epsilon]$ and 0 elsewhere.
    """
    def __init__(self, eps, vectorized=False):
        self.eps = eps
        if self.eps == 0:
            raise ValueError('eps=0 is not allowed in class DiracDelta.')

    def __call__(self, x):
        if isinstance(x, (float, int)):
            return _smooth(x)
        elif isinstance(x, ndarray):
            return _smooth_vec(x)
        else:
            raise TypeError('%s x is wrong' % type(x))

    def _smooth(self, x):
        eps = self.eps
        if x < -eps or x > eps:
            return 0
        else:
            return 1./(2*eps)*(1 + cos(pi*x/eps))

    def _smooth_vec(self, x):
        eps = self.eps
        r = zeros_like(x)
        condition1 - operator.and_(x >= -eps, x <= eps)
        xc = x[condition1]
        r[condition1] = 1./(2*eps)*(1 + cos(pi*xc/eps))
        return r

    def plot(self, center=0, xmin=-1, xmax=1):
        """
        Return arrays x, y for plotting the DiracDelta function
        centered in `center` on the interval [`xmin`, `xmax`].
        """
        n = 200./self.eps
        x = concatenate(
            linspace(xmin, center-self.eps, 21),
            linspace(center-self.eps, center+self.eps, n+1),
            linspace(center+self.eps, xmax, 21))
        y = self(x)
        return x, y

class IndicatorFunction:
    """
    Indicator function $I(x; L, R)$, which is 1 in $[L, R]$, and 0
    outside. Two parameters ``eps_L`` and ``eps_R`` can be set
    to provide smoothing of the left and/or right discontinuity
    in the indicator function. The indicator function is
    defined in terms of the Heaviside function (using class
    :class:`Heaviside`): $I(x; R, L) = H(x-L)H(R-x)$.
    """
    def __init__(self, interval, eps_L=0, eps_R=0):
        """
        `interval` is a 2-tuple/list defining the interval [L, R] where
        the indicator function is 1.
        `eps` is a smoothing parameter: ``eps=0`` gives the standard
        discontinuous indicator function, while a value different
        from 0 gives rapid change from 0 to 1 over an interval of
        length 2*`eps`.
        """
        self.L, self.R = interval
        self.eps_L, self.eps_R = eps_L, eps_R
        self.Heaviside_L = Heaviside(eps_L)
        self.Heaviside_R = Heaviside(eps_R)

    def __call__(self, x):
        if self.eps_L == 0 and self.eps_R == 0:
            # Avoid using Heaviside functions since we want 1
            # as value for x in [L,R) (important when indicator
            # functions are added)
            tol = 1E-10
            if isinstance(x, (float, int)):
                #return 0 if x < self.L or x >= self.R else 1
                return 0 if x < self.L or x > self.R else 1
            elif isinstance(x, ndarray):
                r = ones_like(x)
                r[x < self.L] = 0
                #r[x >= self.R] = 0
                r[x > self.R] = 0
                return r
        else:
            return self.Heaviside_L(x - self.L)*self.Heaviside_R(self.R - x)

    def plot(self, xmin=-1, xmax=1):
        """
        Return arrays x, y for plotting IndicatorFunction
        on [`xmin`, `xmax`]. For the exact discontinuous
        indicator function, we typically have
        ``x = [xmin, L, L, R, R, xmax]; y = [0, 0, 1, 1, 0, 0]``,
        while for the smoothed version, the densities of
        coordinates in the ``x`` array is computed on basis of the
        `eps` parameter.
        """
        if xmin > self.L or xmax < self.R:
            raise ValueError('xmin=%g > L=%g or xmax=%g < R=%g is meaningless for plot' % (xmin, self.L, xmax, self.R))

        if self.eps == 0:
            return [xmin, L, L, R, R, xmax], [0, 0, 1, 1, 0, 0]
        else:
            n = 200./self.eps
            x = concatenate(
                linspace(xmin, self.L-self.eps, 21),
                linspace(self.L-self.eps, self.R+self.eps, n+1),
                linspace(self.R+self.eps, xmax, 21))
            y = self(x)
            return x, y

    def __str__(self):
        e = 'eps=%g' % self.eps if self.eps else ''
        return 'I(x)=1 on [%g, %g] %s' % (self.L, self.R, e)

    def __repr__(self):
        return 'IndicatorFunction([%g, %g], eps=%g)' % \
               (self.L, self.R, self.eps)

class PiecewiseConstant:
    """
    Representation of a piecewise constant function.
    The discontinuities can be smoothed out.
    In this latter case the piecewise constant function is represented
    as a sum of indicator functions (:class:`IndicatorFunction`)
    times corresponding values.
    """
    def __init__(self, domain, data, eps=0):
        self.L, self.R = domain
        self.data = data
        self.eps = eps
        if self.L != self.data[0][0]:
            raise ValueError('domain starts at %g, while data[0][0]=%g' % \
                             (self.L, self.data[0][0]))
        self._boundaries = [x for x, value in data]
        self._boundaries.append(self.R)
        self._values = [value for x, value in data]
        self._boundaries = array(self._boundaries, float)
        self._values = array(self._values, float)

        self._indicator_functions = []
        # Ensure eps_L=0 at the left and eps_R=0 at the right,
        # while both are eps at internal boundaries,
        # i.e., the function is always discontinuous at the start and end
        for i in range(len(self.data)):
            if i == 0:
                eps_L = 0; eps_R = eps  # left boundary
            elif i == len(self.data)-1:
                eps_R = 0; eps_L = eps  # right boundary
            else:
                eps_L = eps_R = eps     # internal boundary
            self._indicator_functions.append(IndicatorFunction(
                [self._boundaries[i], self._boundaries[i+1]],
                 eps_L=eps_L, eps_R=eps_R))

    def __call__(self, x):
        if self.eps == 0:
            return self.value(x)
        else:
            return sum(value*I(x) \
                       for I, value in \
                       zip(self._indicator_functions, self._values))

    def value(self, x):
        """Alternative implementation to __call__."""
        if isinstance(x, (float,int)):
            return self._values[x >= self._boundaries[:-1]][-1]
        else:
            a = array([self._values[xi >= self._boundaries[:-1]][-1]
                       for xi in x])
            return a

    def plot(self):
        if self.eps == 0:
            x = []; y = []
            for I, value in zip(self._indicator_functions, self._values):
                x.append(I.L)
                y.append(value)
                x.append(I.R)
                y.append(value)
            return x, y
        else:
            n = 200/self.eps
            if len(self.data) == 1:
                return [self.L, self.R], [self._values[0], self._values[0]]
            else:
                x = [linspace(self.data[0][0], self.data[1][0]-self.eps, 21)]
                # Iterate over all internal discontinuities
                for I in self._indicator_functions[1:]:
                    x.append(linspace(I.L-self.eps, I.L+self.eps, n+1))
                    x.append(linspace(I.L+self.eps, I.R-self.eps, 21))
                # Last part
                x.append(linspace(I.R-self.eps, I.R, 3))
                x = concatenate(x)
                y = self(x)
                return x, y


# the norm_* functions also work for arrays with dimensions larger than 2,
# in contrast to (most of) the numpy.linalg.norm functions

def norm_l2(u):
    """
    Standard l2 norm of a multi-dimensional array u viewed as a vector.
    """
    return linalg.norm(u.ravel())

def norm_L2(u):
    """
    L2 norm of a multi-dimensional array u viewed as a vector
    (norm is norm_l2/n, where n is length of u (no of elements)).

    If u holds function values and the norm of u is supposed to
    approximate an integral (L2 norm) of the function, this (and
    not norm_l2) is the right norm function to use.
    """
    return norm_l2(u)/sqrt(float(u.size))

def norm_l1(u):
    """
    l1 norm of a multi-dimensional array u viewed as a vector:
    ``linalg.norm(u.ravel(),1)``.
    """
    #return sum(abs(u.ravel()))
    return linalg.norm(u.ravel(),1)

def norm_L1(u):
    """
    L1 norm of a multi-dimensional array u viewed as a vector:
    ``norm_l1(u)/float(u.size)``.

    If *u* holds function values and the norm of u is supposed to
    approximate an integral (L1 norm) of the function, this (and
    not norm_l1) is the right norm function to use.
    """
    return norm_l1(u)/float(u.size)

def norm_inf(u):
    """Infinity/max norm of a multi-dimensional array u viewed as a vector."""
    #return abs(u.ravel()).max()
    return linalg.norm(u.ravel(), inf)


def solve_tridiag_linear_system(A, b):
    """
    Solve an n times n tridiagonal linear system of the form::

     A[0,1]*x[0] + A[0,2]*x[1]                                        = 0
     A[1,0]*x[0] + A[1,1]*x[1] + A[1,2]*x[2]                          = 0
     ...
     ...
              A[k,0]*x[k-1] + A[k,1]*x[k] + A[k,2]*x[k+1]             = 0
     ...
                  A[n-2,0]*x[n-3] + A[n-2,1]*x[n-2] + A[n-2,2]*x[n-1] = 0
     ...
                                    A[n-1,0]*x[n-2] + A[n-1,1]*x[n-1] = 0

    The diagonal of the coefficent matrix is stored in A[:,1],
    the subdiagonal is stored in A[1:,0], and the superdiagonal
    is stored in A[:-1,2].
    """

    #The storage is not memory friendly in Python/C (diagonals stored
    #columnwise in A), but if A is sent to F77 for high-performance
    #computing, a copy is taken and the F77 routine works with the
    #same algorithm and hence optimal (columnwise traversal)
    #Fortran storage.

    c, d = factorize_tridiag_matrix(A)
    return solve_tridiag_factored_system(b, A, c, d)


def factorize_tridiag_matrix(A):
    """
    Perform the factorization step only in solving a tridiagonal
    linear system. See the function solve_tridiag_linear_system
    for how the matrix *A* is stored.
    Two arrays, *c* and *d*, are returned, and these represent,
    together with superdiagonal *A[:-1,2]*, the factorized form of
    *A*. To solve a system with ``solve_tridiag_factored_system``,
    *A*, *c*, and *d* must be passed as arguments.
    """
    n = len(b)
    # scratch arrays:
    d = zeros(n, 'd');  c = zeros(n, 'd');  m = zeros(n, 'd')

    d[0] = A[0,1]
    c[0] = b[0]

    for k in iseq(start=1, stop=n-1, inc=1):
        m[k] = A[k,0]/d[k-1]
        d[k] = A[k,1] - m[k]*A[k-1,2]
        c[k] = b[k] - m[k]*c[k-1]
    return c, d


def solve_tridiag_factored_system(b, A, c, d):
    """
    The backsubsitution part of solving a tridiagonal linear system.
    The right-hand side is b, while *A*, *c*, and *d* represent the
    factored matrix (see the factorize_tridiag_matrix function).
    The solution x to A*x=b is returned.
    """
    n = len(b)
    x = zeros(n, 'd')  # solution

    # back substitution:
    x[n-1] = c[n-1]/d[n-1]
    for k in iseq(start=n-2, stop=0, inc=-1):
        x[k] = (c[k] - A[k,2]*x[k+1])/d[k]
    return x



try:
    import Pmw
    class NumPy2BltVector(Pmw.Blt.Vector):
        """
        Copy a numpy array to a BLT vector:
        # a: some numpy array
        b = NumPy2BltVector(a)  # b is BLT vector
        g = Pmw.Blt.Graph(someframe)
        # send b to g for plotting
        """
        def __init__(self, array):
            Pmw.Blt.Vector.__init__(self, len(array))
            self.set(tuple(array))  # copy elements
except:
    class NumPy2BltVector:
        def __init__(self, array):
            raise ImportError("Python is not working properly with BLT")

try:
    from scitools.StringFunction import StringFunction
except:
    pass  # wrap2callable may not work


class WrapNo2Callable:
    """Turn a number (constant) into a callable function."""
    def __init__(self, constant):
        self.constant = constant
        self._array_shape = None

    def __call__(self, *args):
        """
        >>> w = WrapNo2Callable(4.4)
        >>> w(99)
        4.4000000000000004
        >>> # try vectorized computations:
        >>> x = linspace(1, 4, 4)
        >>> y = linspace(1, 2, 2)
        >>> xv = x[:,NewAxis]; yv = y[NewAxis,:]
        >>> xv + yv
        array([[ 2.,  3.],
               [ 3.,  4.],
               [ 4.,  5.],
               [ 5.,  6.]])
        >>> w(xv, yv)
        array([[ 4.4,  4.4],
               [ 4.4,  4.4],
               [ 4.4,  4.4],
               [ 4.4,  4.4]])

        If you want to call such a function object with space-time
        arguments and vectorized expressions, make sure the time
        argument is not the first argument. That is,
        w(xv, yv, t) is fine, but w(t, xv, yv) will return 4.4,
        not the desired array!
        """
        if isinstance(args[0], (float, int, complex)):
            # scalar version:
            # (operator.isNumberType(args[0]) cannot be used as it is
            # true also for numpy arrays
            return self.constant
        else: # assume numpy array
            if self._array_shape is None:
                self._set_array_shape()
            else:
                r = self.constant*ones(self._array_shape, 'd')
                # could store r (allocated once) and just return reference
                return r

    def _set_array_shape(self, arg):
        # vectorized version:
        r = arg.copy()
        # to get right dimension of the return array,
        # compute with args in a simple formula (sum of args)
        for a in args[1:]:
            r = r + a  # in-place r+= won't work
            # (handles x,y,t - the last t just adds a constant)
            # an argument sequence t, x, y  will fail (1st arg
            # is not a numpy array)
        self._array_shape = r.shape

    # The problem with this class is that, in the vectorized version,
    # the array shape is determined in the first call, i.e., later
    # calls may return an array with the wrong shape if the shape of
    # the input arguments change! Sometimes, when called along boundaries
    # of grids, the shape may change so the next implementation is
    # slower and safer.

class WrapNo2Callable:
    """Turn a number (constant) into a callable function."""
    def __init__(self, constant):
        self.constant = constant

    def __call__(self, *args):
        """
        >>> w = WrapNo2Callable(4.4)
        >>> w(99)
        4.4000000000000004
        >>> # try vectorized computations:
        >>> x = linspace(1, 4, 4)
        >>> y = linspace(1, 2, 2)
        >>> xv = x[:,NewAxis]; yv = y[NewAxis,:]
        >>> xv + yv
        array([[ 2.,  3.],
               [ 3.,  4.],
               [ 4.,  5.],
               [ 5.,  6.]])
        >>> w(xv, yv)
        array([[ 4.4,  4.4],
               [ 4.4,  4.4],
               [ 4.4,  4.4],
               [ 4.4,  4.4]])

        If you want to call such a function object with space-time
        arguments and vectorized expressions, make sure the time
        argument is not the first argument. That is,
        w(xv, yv, t) is fine, but w(t, xv, yv) will return 4.4,
        not the desired array!

        """
        if isinstance(args[0], (float, int, complex)):
            # scalar version:
            return self.constant
        else:
            # vectorized version:
            r = args[0].copy()
            # to get right dimension of the return array,
            # compute with args in a simple formula (sum of args)
            for a in args[1:]:
                r = r + a  # in-place r+= won't work
                # (handles x,y,t - the last t just adds a constant)
            r[:] = self.constant
            return r


class WrapDiscreteData2Callable:
    """
    Turn discrete data on a uniform grid into a callable function,
    i.e., equip the data with an interpolation function.

    >>> x = linspace(0, 1, 11)
    >>> y = 1+2*x
    >>> f = WrapDiscreteData2Callable((x,y))
    >>> # or just use the wrap2callable generic function:
    >>> f = wrap2callable((x,y))
    >>> f(0.5)   # evaluate f(x) by interpolation
    1.5
    >>> f(0.5, 0.1)  # discrete data with extra time prm: f(x,t)
    1.5
    """
    def __init__(self, data):
        self.data = data  # (x,y,f) data for an f(x,y) function

        from scitools.misc import import_module
        InterpolatingFunction = import_module(
            'Scientific.Functions.Interpolation', 'InterpolatingFunction')
        import Scientific
        v = Scientific.__version__
        target = '2.9.1'
        if v < target:
            raise ImportError(
                'ScientificPython is in (old) version %s, need %s' \
                % (v, target))

        self.interpolating_function = \
             InterpolatingFunction(self.data[:-1], self.data[-1])
        self.ndims = len(self.data[:-1])  # no of spatial dim.

    def __call__(self, *args):
        # allow more arguments (typically time) after spatial pos.:
        args = args[:self.ndims]
        # args can be tuple of scalars (point) or tuple of vectors
        if isinstance(args[0], (float, int, complex)):
            return self.interpolating_function(*args)
        else:
            # args is tuple of vectors; Interpolation must work
            # with one point at a time:
            r = [self.interpolating_function(*a) for a in zip(*args)]
            return array(r)  # wrap in numpy array


def wrap2callable(f, **kwargs):
    """
    Allow constants, string formulas, discrete data points,
    user-defined functions and (callable) classes to be wrapped
    in a new callable function. That is, all the mentioned data
    structures can be used as a function, usually of space and/or
    time.
    (kwargs is used for string formulas)

    >>> f1 = wrap2callable(2.0)
    >>> f1(0.5)
    2.0
    >>> f2 = wrap2callable('1+2*x')
    >>> f2(0.5)
    2.0
    >>> f3 = wrap2callable('1+2*t', independent_variable='t')
    >>> f3(0.5)
    2.0
    >>> f4 = wrap2callable('a+b*t')
    >>> f4(0.5)
    Traceback (most recent call last):
    ...
    NameError: name 'a' is not defined
    >>> f4 = wrap2callable('a+b*t', independent_variable='t', a=1, b=2)
    >>> f4(0.5)
    2.0

    >>> x = linspace(0, 1, 3); y=1+2*x
    >>> f5 = wrap2callable((x,y))
    >>> f5(0.5)
    2.0
    >>> def myfunc(x):  return 1+2*x
    >>> f6 = wrap2callable(myfunc)
    >>> f6(0.5)
    2.0
    >>> f7 = wrap2callable(lambda x: 1+2*x)
    >>> f7(0.5)
    2.0
    >>> class MyClass:
            'Representation of a function f(x; a, b) =a + b*x'
            def __init__(self, a=1, b=1):
                self.a = a;  self.b = b
            def __call__(self, x):
                return self.a + self.b*x
    >>> myclass = MyClass(a=1, b=2)
    >>> f8 = wrap2callable(myclass)
    >>> f8(0.5)
    2.0
    >>> # 3D functions:
    >>> f9 = wrap2callable('1+2*x+3*y+4*z', independent_variables=('x','y','z'))
    >>> f9(0.5,1/3.,0.25)
    4.0
    >>> # discrete 3D data:
    >>> y = linspace(0, 1, 3); z = linspace(-1, 0.5, 16)
    >>> xv = reshape(x, (len(x),1,1))
    >>> yv = reshape(y, (1,len(y),1))
    >>> zv = reshape(z, (1,1,len(z)))
    >>> def myfunc3(x,y,z):  return 1+2*x+3*y+4*z

    >>> values = myfunc3(xv, yv, zv)
    >>> f10 = wrap2callable((x, y, z, values))
    >>> f10(0.5, 1/3., 0.25)
    4.0

    One can also check what the object is wrapped as and do more
    specific operations, e.g.,

    >>> f9.__class__.__name__
    'StringFunction'
    >>> str(f9)     # look at function formula
    '1+2*x+3*y+4*z'
    >>> f8.__class__.__name__
    'MyClass'
    >>> f8.a, f8.b  # access MyClass-specific data
    (1, 2)

    Troubleshooting regarding string functions:
    If you use a string formula with a numpy array, you typically get
    error messages like::

       TypeError: only rank-0 arrays can be converted to Python scalars.

    You must then make the right import (numpy is recommended)::

       from Numeric/numarray/numpy/scitools.numpytools import *

    in the calling code and supply the keyword argument::

       globals=globals()

    to wrap2callable. See also the documentation of class StringFunction
    for more information.
    """
    if isinstance(f, str):
        return StringFunction(f, **kwargs)
        # this is a considerable optimization (up to a factor of 3),
        # but then the additional info in the StringFunction instance
        # is lost in the calling code:
        # return StringFunction(f, **kwargs).__call__
    elif isinstance(f, (float, int, complex)):
        return WrapNo2Callable(f)
    elif isinstance(f, (list,tuple)):
        return WrapDiscreteData2Callable(f)
    elif callable(f):
        return f
    else:
        raise TypeError('f of type %s is not callable' % type(f))


# problem: setitem in ArrayGen does not support multiple indices
# relying on inherited __setitem__ works fine

def NumPy_array_iterator(a, **kwargs):
    """
    Iterate over all elements in a numpy array a.
    Two return values: a generator function and the code of this function.
    The ``numpy.ndenumerate`` iterator performs the same iteration over
    an array, but ``NumPy_array_iterator`` has some additional features
    (especially handy for coding finite difference stencils, see next
    paragraph).

    The keyword arguments specify offsets in the start and stop value
    of the index in each dimension. Legal argument names are
    ``offset0_start``, ``offset0_stop``, ``offset1_start``,
    ``offset1_stop``, etc.  Also ``offset_start`` and ``offset_stop``
    are legal keyword arguments, these imply the same offset value for
    all dimensions.

    Another keyword argument is ``no_value``, which can be True or False.
    If the value is True, the iterator returns the indices as a tuple,
    otherwise (default) the iterator returns a two-tuple consisting of
    the value of the array and the corresponding indices (as a tuple).

    Examples::

    >>> q = linspace(1, 2*3*4, 2*3*4);  q.shape = (2,3,4)
    >>> it, code = NumPy_array_iterator(q)

    >>> print code  # generator function with 3 nested loops:
    def nested_loops(a):
        for i0 in xrange(0, a.shape[0]-0):
            for i1 in xrange(0, a.shape[1]-0):
                for i2 in xrange(0, a.shape[2]-0):
                    yield a[i0, i1, i2], (i0, i1, i2)

    >>> type(it)
    <type 'function'>
    >>> for value, index in it(q):
    ...     print 'a%s = %g' % (index, value)
    ...
    a(0, 0, 0) = 1
    a(0, 0, 1) = 2
    a(0, 0, 2) = 3
    a(0, 0, 3) = 4
    a(0, 1, 0) = 5
    a(0, 1, 1) = 6
    a(0, 1, 2) = 7
    a(0, 1, 3) = 8
    a(0, 2, 0) = 9
    a(0, 2, 1) = 10
    a(0, 2, 2) = 11
    a(0, 2, 3) = 12
    a(1, 0, 0) = 13
    a(1, 0, 1) = 14
    a(1, 0, 2) = 15
    a(1, 0, 3) = 16
    a(1, 1, 0) = 17
    a(1, 1, 1) = 18
    a(1, 1, 2) = 19
    a(1, 1, 3) = 20
    a(1, 2, 0) = 21
    a(1, 2, 1) = 22
    a(1, 2, 2) = 23
    a(1, 2, 3) = 24

    Here is the version where only the indices and no the values
    are returned by the iterator::

    >>> q = linspace(1, 1*3, 3);  q.shape = (1,3)
    >>> it, code = NumPy_array_iterator(q, no_value=True)

    >>> print code
    def nested_loops(a):
        for i0 in xrange(0, a.shape[0]-0):
            for i1 in xrange(0, a.shape[1]-0):
                yield i0, i1

    >>> for i,j in it(q):
    ...   print i,j
    0 0
    0 1
    0 2


    Now let us try some offsets::

    >>> it, code = NumPy_array_iterator(q, offset1_stop=1, offset_start=1)

    >>> print code
    def nested_loops(a):
        for i0 in xrange(1, a.shape[0]-0):
            for i1 in xrange(1, a.shape[1]-1):
                for i2 in xrange(1, a.shape[2]-0):
                    yield a[i0, i1, i2], (i0, i1, i2)

    >>> # note: the offsets appear in the xrange arguments
    >>> for value, index in it(q):
    ...     print 'a%s = %g' % (index, value)
    ...
    a(1, 1, 1) = 18
    a(1, 1, 2) = 19
    a(1, 1, 3) = 20

    """
    # build the code of the generator function in a text string
    # (since the number of nested loops needed to iterate over all
    # elements are parameterized through len(a.shape))
    dims = range(len(a.shape))
    offset_code1 = ['offset%d_start=0' % d for d in dims]
    offset_code2 = ['offset%d_stop=0'  % d for d in dims]
    for d in range(len(a.shape)):
        key1 = 'offset%d_start' % d
        key2 = 'offset%d_stop' % d
        if key1 in kwargs:
            offset_code1.append(key1 + '=' + str(kwargs[key1]))
        if key2 in kwargs:
            offset_code2.append(key2 + '=' + str(kwargs[key2]))

    for key in kwargs:
        if key == 'offset_start':
            offset_code1.extend(['offset%d_start=%d' % (d, kwargs[key]) \
                            for d in range(len(a.shape))])
        if key == 'offset_stop':
            offset_code2.extend(['offset%d_stop=%d' % (d, kwargs[key]) \
                            for d in range(len(a.shape))])

    no_value = kwargs.get('no_value', False)

    for line in offset_code1:
        exec line
    for line in offset_code2:
        exec line
    code = 'def nested_loops(a):\n'
    indentation = ' '*4
    indent = '' + indentation
    for dim in range(len(a.shape)):
        code += indent + \
        'for i%d in xrange(%d, a.shape[%d]-%d):\n' \
                % (dim, eval('offset%d_start' % dim),
                   dim, eval('offset%d_stop' % dim))
        indent += indentation
    index = ', '.join(['i%d' % d for d in range(len(a.shape))])
    if no_value:
        code += indent + 'yield ' + index
    else:
        code += indent + 'yield ' + 'a[%s]' % index + ', (' + index + ')'
    exec code
    return nested_loops, code

def compute_histogram(samples, nbins=50, piecewise_constant=True):
    """
    Given a numpy array samples with random samples, this function
    returns the (x,y) arrays in a plot-ready version of the histogram.
    If piecewise_constant is True, the (x,y) arrays gives a piecewise
    constant curve when plotted, otherwise the (x,y) arrays gives a
    piecewise linear curve where the x coordinates coincide with the
    center points in each bin. The function makes use of
    numpy.lib.function_base.histogram with some additional code
    (for a piecewise curve or displaced x values to the centes of
    the bins).
    """
    import sys
    if 'numpy' in sys.modules:
        y0, bin_edges = histogram(samples, bins=nbins, normed=True)
    h = bin_edges[1] - bin_edges[0]  # bin width
    if piecewise_constant:
        x = zeros(2*len(bin_edges), type(bin_edges[0]))
        y = x.copy()
        x[0] = bin_edges[0]
        y[0] = 0
        for i in range(len(bin_edges)-1):
            x[2*i+1] = bin_edges[i]
            x[2*i+2] = bin_edges[i+1]
            y[2*i+1] = y0[i]
            y[2*i+2] = y0[i]
        x[-1] = bin_edges[-1]
        y[-1] = 0
    else:
        x = zeros(len(bin_edges)-1, type(bin_edges[0]))
        y = y0.copy()
        for i in range(len(x)):
            x[i] = (bin_edges[i] + bin_edges[i+1])/2.0
    return x, y


def factorial(n, method='reduce'):
    """
    Compute the factorial n! using long integers (and pure Python code).
    Different implementations are available (see source code for
    implementation details).

    Note: The math module in Python 2.6 features a factorial
    function, making the present function redundant (except that
    the various pure Python implementations can be of interest
    for comparison).

    Here is an efficiency comparison of the methods (computing 80!):

    ==========================   =====================
            Method                Normalized CPU time
    ==========================   =====================
    reduce                             1.00
    lambda list comprehension          1.70
    lambda functional                  3.08
    plain recursive                    5.83
    lambda recursive                  21.73
    scipy                            131.18
    ==========================   =====================

    """
    if not isinstance(n, (int, long, float)):
        raise TypeError('factorial(n): n must be integer not %s' % type(n))
    n = long(n)

    if n == 0 or n == 1:
        return 1

    if method == 'plain iterative':
        f = 1
        for i in range(1, n+1):
            f *= i
        return f
    elif method == 'plain recursive':
        if n == 1:
            return 1
        else:
            return n*factorial(n-1, method)
    elif method == 'lambda recursive':
        fc = lambda n: n and fc(n-1)*long(n) or 1
        return fc(n)
    elif method == 'lambda functional':
        fc = lambda n: n<=0 or \
             reduce(lambda a,b: long(a)*long(b), xrange(1,n+1))
        return fc(n)
    elif method == 'lambda list comprehension':
        fc = lambda n: [j for j in [1] for i in range(2,n+1) \
                        for j in [j*i]] [-1]
        return fc(n)
    elif method == 'reduce':
        return reduce(operator.mul, xrange(2, n+1))
    elif method == 'scipy':
        try:
            import scipy.misc.common as sc
            return sc.factorial(n)
        except ImportError:
            print 'numpyutils.factorial: scipy is not available'
            print 'default method="reduce" is used instead'
            return reduce(operator.mul, xrange(2, n+1))
            # or return factorial(n)
    else:
        raise ValueError('factorial: method="%s" is not supported' % method)


def asarray_cpwarn(a, dtype=None, message='warning', comment=''):
    """
    As asarray, but a warning or exception is issued if the
    a array is copied.
    """
    a_new = asarray(a, dtype)
    # must drop numpy's order argument since it conflicts
    # with Numeric's savespace

    # did we copy?
    if a_new is not a:
        # we do not return the identical array, i.e., copy has taken place
        msg = '%s  copy of array %s, from %s to %s' % \
              (comment, a.shape, type(a), type(a_new))
        if message == 'warning':
            print 'Warning: %s' % msg
        elif message == 'exception':
            raise TypeError(msg)
    return a_new


def seq(min=0.0, max=None, inc=1.0, type=float,
        return_type='NumPyArray'):
    """
    Generate numbers from min to (and including!) max,
    with increment of inc. Safe alternative to arange.
    The return_type string governs the type of the returned
    sequence of numbers ('NumPyArray', 'list', or 'tuple').
    """
    if max is None: # allow sequence(3) to be 0., 1., 2., 3.
        # take 1st arg as max, min as 0, and inc=1
        max = min; min = 0.0; inc = 1.0
    r = arange(min, max + inc/2.0, inc, type)
    if return_type == 'NumPyArray' or return_type == ndarray:
        return r
    elif return_type == 'list':
        return r.tolist()
    elif return_type == 'tuple':
        return tuple(r.tolist())


def iseq(start=0, stop=None, inc=1):
    """
    Generate integers from start to (and including) stop,
    with increment of inc. Alternative to range/xrange.
    """
    if stop is None: # allow isequence(3) to be 0, 1, 2, 3
        # take 1st arg as stop, start as 0, and inc=1
        stop = start; start = 0; inc = 1
    return xrange(start, stop+inc, inc)

sequence = seq  # backward compatibility
isequence = iseq  # backward compatibility


def arr(shape=None, element_type=float,
        interval=None,
        data=None, copy=True,
        file_=None,
        order='C'):
    """
    Compact and flexible interface for creating numpy arrays,
    including several consistency and error checks.

     - *shape*: length of each dimension, tuple or int
     - *data*: list, tuple, or numpy array with data elements
     - *copy*: copy data if true, share data if false, boolean
     - *element_type*: float, int, int16, float64, bool, etc.
     - *interval*: make elements from a to b (shape gives no of elms), tuple or list
     - *file_*: filename or file object containing array data, string
     - *order*: 'Fortran' or 'C' storage, string
     - return value: created Numerical Python array

    The array can be created in four ways:

      1. as zeros (just shape specified),

      2. as uniformly spaced coordinates in an interval [a,b]

      3. as a copy of or reference to (depending on copy=True,False resp.)
         a list, tuple, or numpy array (provided as the data argument),

      4. from data in a file (for one- or two-dimensional real-valued arrays).

    The function calls the underlying numpy functions zeros, array and
    linspace (see the numpy manual for the functionality of these
    functions).  In case of data in a file, the first line determines
    the number of columns in the array. The file format is just rows
    and columns with numbers, no decorations (square brackets, commas,
    etc.) are allowed.

    >>> arr((3,4))
    array([[ 0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.]])

    >>> arr(4, element_type=int) + 4  # integer array
    array([4, 4, 4, 4])

    >>> arr(3, interval=[0,2])
    array([ 0.,  1.,  2.])

    >>> somelist=[[0,1],[5,5]]
    >>> a = arr(data=somelist)
    >>> a  # a has always float elements by default
    array([[ 0.,  1.],
           [ 5.,  5.]])
    >>> a = arr(data=somelist, element_type=int)
    >>> a
    array([[0, 1],
           [5, 5]])
    >>> b = a + 1

    >>> c = arr(data=b, copy=False)  # let c share data with b
    >>> b is c
    True
    >>> id(b) == id(c)
    True

    >>> # make a file with array data:
    >>> f = open('tmp.dat', 'w')
    >>> f.write('''\
    ... 1 3
    ... 2 6
    ... 3 12
    ... 3.5 20
    ... ''')
    >>> f.close()
    >>> # read array data from file:
    >>> a = arr(file_='tmp.dat')
    >>> a
    array([[  1. ,   3. ],
           [  2. ,   6. ],
           [  3. ,  12. ],
           [  3.5,  20. ]])
    """
    if data is None and file_ is None and shape is None:
        return None

    if data is not None:

        if not operator.isSequenceType(data):
            raise TypeError('arr: data argument is not a sequence type')

        if isinstance(shape, (list,tuple)):
            # check that shape and data are compatible:
            if reduce(operator.mul, shape) != size(data):
                raise ValueError(
                    'arr: shape=%s is not compatible with %d '\
                    'elements in the provided data' % (shape, size(data)))
        elif isinstance(shape, int):
            if shape != size(data):
                raise ValueError(
                    'arr: shape=%d is not compatible with %d '\
                    'elements in the provided data' % (shape, size(data)))
        elif shape is None:
            if isinstance(data, (list,tuple)) and copy == False:
                # cannot share data (data is list/tuple)
                copy = True
            return array(data, dtype=element_type, copy=copy, order=order)
        else:
            raise TypeError(
                'shape is %s, must be list/tuple or int' % type(shape))
    elif file_ is not None:
        if not isinstance(file_, (basestring, file, StringIO)):
            raise TypeError(
                'file_ argument must be a string (filename) or '\
                'open file object, not %s' % type(file_))

        if isinstance(file_, basestring):
            file_ = open(file_, 'r')
        # skip blank lines:
        while True:
            line1 = file_.readline().strip()
            if line1 != '':
                break
        ncolumns = len(line1.split())
        file_.seek(0)
        # we assume that array data in file has element_type=float:
        if not (element_type == float or element_type == 'd'):
            raise ValueError('element_type must be float_/"%s", not "%s"' % \
                             ('d', element_type))

        d = array([float(word) for word in file_.read().split()])
        if isinstance(file_, basestring):
            f.close()
        # shape array d:
        if ncolumns > 1:
            suggested_shape = (int(len(d)/ncolumns), ncolumns)
            total_size = suggested_shape[0]*suggested_shape[1]
            if total_size != len(d):
                raise ValueError(
                    'found %d array entries in file "%s", but first line\n'\
                    'contains %d elements - no shape is compatible with\n'\
                    'these values' % (len(d), file, ncolumns))
            d.shape = suggested_shape
        if shape is not None:
            if shape != d.shape:
                raise ValueError(
                    'shape=%s is not compatible with shape %s found in "%s"' % \
                    (shape, d.shape, file))
        return d

    elif interval is not None and shape is not None:
        if not isinstance(shape, int):
            raise TypeError('For array values in an interval, '\
                            'shape must be an integer')
        if not isinstance(interval, (list,tuple)):
            raise TypeError('interval must be list or tuple, not %s' % \
                            type(interval))
        if len(interval) != 2:
            raise ValueError('interval must be a 2-tuple (or list)')

        try:
            return linspace(interval[0], interval[1], shape)
        except MemoryError, e:
            # print more information (size of data):
            print e, 'of size %s' % shape

    else:
        # no data, no file, just make zeros

        if not isinstance(shape, (tuple, int, list)):
            raise TypeError('arr: shape (1st arg) must be tuple or int')
        if shape is None:
            raise ValueError(
                'arr: either shape, data, or from_function must be specified')

        try:
            return zeros(shape, dtype=element_type, order=order)
        except MemoryError, e:
            # print more information (size of data):
            print e, 'of size %s' % shape

def _test():
    _test_FloatComparison()
    # test norm functions for multi-dimensional arrays:
    a = array(range(27))
    a.shape = (3,3,3)
    functions = [norm_l2, norm_L2, norm_l1, norm_L1, norm_inf]
    results = [78.7464284904401239, 15.1547572288924073, 351, 13, 26]
    for f, r in zip(functions, results):
        if not float_eq(f(a), r):
            print '%s failed: result=%g, not %g' % (f.__name__, f(a), r)

    # Gram-Schmidt:
    A = array([[1,2,3], [3,4,5], [6,4,1]], float)
    V1 = Gram_Schmidt(A, normalize=True)
    V2 = Gram_Schmidt1(A)
    if not float_eq(V1, V2):
        print 'The two Gram_Schmidt versions did not give equal results'
        print 'Gram_Schmidt:\n', V1
        print 'Gram_Schmidt1:\n', V2

    # Null space:
    K = array([[1,2,3], [1,2,3], [0,0,0], [-1, -2, -3]], float)
    #K = random.random(3*7).reshape(7,3) # does not work...
    print 'K=\n', K
    print 'null(K)=\n', null(K)
    r = K*null(K)
    print 'K*null(K):', r


if __name__ == '__main__':
    from numpy import *
    _test()