This file is indexed.

/usr/share/pyshared/sklearn/lda.py is in python-sklearn 0.11.0-2+deb7u1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""
The :mod:`sklearn.lda` module implements Linear Discriminant Analysis (LDA).
"""
# Authors: Matthieu Perrot
#          Mathieu Blondel

import warnings

import numpy as np
from scipy import linalg, ndimage

from .base import BaseEstimator, ClassifierMixin, TransformerMixin
from .utils.extmath import logsumexp


class LDA(BaseEstimator, ClassifierMixin, TransformerMixin):
    """
    Linear Discriminant Analysis (LDA)

    A classifier with a linear decision boundary, generated
    by fitting class conditional densities to the data
    and using Bayes' rule.

    The model fits a Gaussian density to each class, assuming that
    all classes share the same covariance matrix.

    The fitted model can also be used to reduce the dimensionality
    of the input, by projecting it to the most discriminative
    directions.

    Parameters
    ----------

    n_components: int
        Number of components (< n_classes - 1) for dimensionality reduction

    priors : array, optional, shape = [n_classes]
        Priors on classes

    Attributes
    ----------
    `means_` : array-like, shape = [n_classes, n_features]
        Class means
    `xbar_` : float, shape = [n_features]
        Over all mean
    `priors_` : array-like, shape = [n_classes]
        Class priors (sum to 1)
    `covariance_` : array-like, shape = [n_features, n_features]
        Covariance matrix (shared by all classes)

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.lda import LDA
    >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    >>> y = np.array([1, 1, 1, 2, 2, 2])
    >>> clf = LDA()
    >>> clf.fit(X, y)
    LDA(n_components=None, priors=None)
    >>> print clf.predict([[-0.8, -1]])
    [1]

    See also
    --------
    sklearn.qda.QDA: Quadratic discriminant analysis

    """

    def __init__(self, n_components=None, priors=None):
        self.n_components = n_components
        self.priors = np.asarray(priors) if priors is not None else None

        if self.priors is not None:
            if (self.priors < 0).any():
                raise ValueError('priors must be non-negative')
            if self.priors.sum() != 1:
                print 'warning: the priors do not sum to 1. Renormalizing'
                self.priors = self.priors / self.priors.sum()

    def fit(self, X, y, store_covariance=False, tol=1.0e-4):
        """
        Fit the LDA model according to the given training data and parameters.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.
        y : array, shape = [n_samples]
            Target values (integers)
        store_covariance : boolean
            If True the covariance matrix (shared by all classes) is computed
            and stored in `self.covariance_` attribute.
        """
        X = np.asarray(X)
        y = np.asarray(y)
        if y.dtype.char.lower() not in ('b', 'h', 'i'):
            # We need integer values to be able to use
            # ndimage.measurements and np.bincount on numpy >= 2.0.
            # We currently support (u)int8, (u)int16 and (u)int32.
            # Note that versions of scipy >= 0.8 can also accept
            # (u)int64. We however don't support it for backwards
            # compatibility.
            y = y.astype(np.int32)
        if X.ndim != 2:
            raise ValueError('X must be a 2D array')
        if X.shape[0] != y.shape[0]:
            raise ValueError(
                'Incompatible shapes: X has %s samples, while y '
                'has %s' % (X.shape[0], y.shape[0]))
        n_samples = X.shape[0]
        n_features = X.shape[1]
        classes = np.unique(y)
        n_classes = classes.size
        if n_classes < 2:
            raise ValueError('y has less than 2 classes')
        classes_indices = [(y == c).ravel() for c in classes]
        if self.priors is None:
            counts = np.array(ndimage.measurements.sum(
                np.ones(n_samples, dtype=y.dtype), y, index=classes))
            self.priors_ = counts / float(n_samples)
        else:
            self.priors_ = self.priors

        # Group means n_classes*n_features matrix
        means = []
        Xc = []
        cov = None
        if store_covariance:
            cov = np.zeros((n_features, n_features))
        for group_indices in classes_indices:
            Xg = X[group_indices, :]
            meang = Xg.mean(0)
            means.append(meang)
            # centered group data
            Xgc = Xg - meang
            Xc.append(Xgc)
            if store_covariance:
                cov += np.dot(Xgc.T, Xgc)
        if store_covariance:
            cov /= (n_samples - n_classes)
            self.covariance_ = cov

        self.means_ = np.asarray(means)
        Xc = np.concatenate(Xc, 0)

        # ----------------------------
        # 1) within (univariate) scaling by with classes std-dev
        scaling = 1. / Xc.std(0)
        fac = float(1) / (n_samples - n_classes)
        # ----------------------------
        # 2) Within variance scaling
        X = np.sqrt(fac) * (Xc * scaling)
        # SVD of centered (within)scaled data
        U, S, V = linalg.svd(X, full_matrices=0)

        rank = np.sum(S > tol)
        if rank < n_features:
            warnings.warn("Variables are collinear")
        # Scaling of within covariance is: V' 1/S
        scaling = (scaling * V[:rank]).T / S[:rank]

        ## ----------------------------
        ## 3) Between variance scaling
        # Overall mean
        xbar = np.dot(self.priors_, self.means_)
        # Scale weighted centers
        X = np.dot(((np.sqrt((n_samples * self.priors_) * fac)) *
                    (means - xbar).T).T, scaling)
        # Centers are living in a space with n_classes-1 dim (maximum)
        # Use svd to find projection in the space spanned by the
        # (n_classes) centers
        _, S, V = linalg.svd(X, full_matrices=0)

        rank = np.sum(S > tol * S[0])
        # compose the scalings
        self.scaling = np.dot(scaling, V.T[:, :rank])
        self.xbar_ = xbar
        # weight vectors / centroids
        self.coef_ = np.dot(self.means_ - self.xbar_, self.scaling)
        self.intercept_ = -0.5 * np.sum(self.coef_ ** 2, axis=1) + \
                           np.log(self.priors_)

        self.classes = classes
        return self

    def decision_function(self, X):
        """
        This function return the decision function values related to each
        class on an array of test vectors X.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        C : array, shape = [n_samples, n_classes]
        """
        X = np.asarray(X)
        # center and scale data
        X = np.dot(X - self.xbar_, self.scaling)
        return np.dot(X, self.coef_.T) + self.intercept_

    def transform(self, X):
        """
        Project the data so as to maximize class separation (large separation
        between projected class means and small variance within each class).

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        X_new : array, shape = [n_samples, n_components]
        """
        X = np.asarray(X)
        # center and scale data
        X = np.dot(X - self.xbar_, self.scaling)
        n_comp = X.shape[1] if self.n_components is None else self.n_components
        return np.dot(X, self.coef_[:n_comp].T)

    def predict(self, X):
        """
        This function does classification on an array of test vectors X.

        The predicted class C for each sample in X is returned.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        C : array, shape = [n_samples]
        """
        d = self.decision_function(X)
        y_pred = self.classes[d.argmax(1)]
        return y_pred

    def predict_proba(self, X):
        """
        This function return posterior probabilities of classification
        according to each class on an array of test vectors X.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        C : array, shape = [n_samples, n_classes]
        """
        values = self.decision_function(X)
        # compute the likelihood of the underlying gaussian models
        # up to a multiplicative constant.
        likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis])
        # compute posterior probabilities
        return likelihood / likelihood.sum(axis=1)[:, np.newaxis]

    def predict_log_proba(self, X):
        """
        This function return posterior log-probabilities of classification
        according to each class on an array of test vectors X.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        C : array, shape = [n_samples, n_classes]
        """
        values = self.decision_function(X)
        loglikelihood = (values - values.max(axis=1)[:, np.newaxis])
        normalization = logsumexp(loglikelihood, axis=1)
        return loglikelihood - normalization[:, np.newaxis]