/usr/share/pyshared/sklearn/lda.py is in python-sklearn 0.11.0-2+deb7u1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | """
The :mod:`sklearn.lda` module implements Linear Discriminant Analysis (LDA).
"""
# Authors: Matthieu Perrot
# Mathieu Blondel
import warnings
import numpy as np
from scipy import linalg, ndimage
from .base import BaseEstimator, ClassifierMixin, TransformerMixin
from .utils.extmath import logsumexp
class LDA(BaseEstimator, ClassifierMixin, TransformerMixin):
"""
Linear Discriminant Analysis (LDA)
A classifier with a linear decision boundary, generated
by fitting class conditional densities to the data
and using Bayes' rule.
The model fits a Gaussian density to each class, assuming that
all classes share the same covariance matrix.
The fitted model can also be used to reduce the dimensionality
of the input, by projecting it to the most discriminative
directions.
Parameters
----------
n_components: int
Number of components (< n_classes - 1) for dimensionality reduction
priors : array, optional, shape = [n_classes]
Priors on classes
Attributes
----------
`means_` : array-like, shape = [n_classes, n_features]
Class means
`xbar_` : float, shape = [n_features]
Over all mean
`priors_` : array-like, shape = [n_classes]
Class priors (sum to 1)
`covariance_` : array-like, shape = [n_features, n_features]
Covariance matrix (shared by all classes)
Examples
--------
>>> import numpy as np
>>> from sklearn.lda import LDA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = LDA()
>>> clf.fit(X, y)
LDA(n_components=None, priors=None)
>>> print clf.predict([[-0.8, -1]])
[1]
See also
--------
sklearn.qda.QDA: Quadratic discriminant analysis
"""
def __init__(self, n_components=None, priors=None):
self.n_components = n_components
self.priors = np.asarray(priors) if priors is not None else None
if self.priors is not None:
if (self.priors < 0).any():
raise ValueError('priors must be non-negative')
if self.priors.sum() != 1:
print 'warning: the priors do not sum to 1. Renormalizing'
self.priors = self.priors / self.priors.sum()
def fit(self, X, y, store_covariance=False, tol=1.0e-4):
"""
Fit the LDA model according to the given training data and parameters.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vector, where n_samples in the number of samples and
n_features is the number of features.
y : array, shape = [n_samples]
Target values (integers)
store_covariance : boolean
If True the covariance matrix (shared by all classes) is computed
and stored in `self.covariance_` attribute.
"""
X = np.asarray(X)
y = np.asarray(y)
if y.dtype.char.lower() not in ('b', 'h', 'i'):
# We need integer values to be able to use
# ndimage.measurements and np.bincount on numpy >= 2.0.
# We currently support (u)int8, (u)int16 and (u)int32.
# Note that versions of scipy >= 0.8 can also accept
# (u)int64. We however don't support it for backwards
# compatibility.
y = y.astype(np.int32)
if X.ndim != 2:
raise ValueError('X must be a 2D array')
if X.shape[0] != y.shape[0]:
raise ValueError(
'Incompatible shapes: X has %s samples, while y '
'has %s' % (X.shape[0], y.shape[0]))
n_samples = X.shape[0]
n_features = X.shape[1]
classes = np.unique(y)
n_classes = classes.size
if n_classes < 2:
raise ValueError('y has less than 2 classes')
classes_indices = [(y == c).ravel() for c in classes]
if self.priors is None:
counts = np.array(ndimage.measurements.sum(
np.ones(n_samples, dtype=y.dtype), y, index=classes))
self.priors_ = counts / float(n_samples)
else:
self.priors_ = self.priors
# Group means n_classes*n_features matrix
means = []
Xc = []
cov = None
if store_covariance:
cov = np.zeros((n_features, n_features))
for group_indices in classes_indices:
Xg = X[group_indices, :]
meang = Xg.mean(0)
means.append(meang)
# centered group data
Xgc = Xg - meang
Xc.append(Xgc)
if store_covariance:
cov += np.dot(Xgc.T, Xgc)
if store_covariance:
cov /= (n_samples - n_classes)
self.covariance_ = cov
self.means_ = np.asarray(means)
Xc = np.concatenate(Xc, 0)
# ----------------------------
# 1) within (univariate) scaling by with classes std-dev
scaling = 1. / Xc.std(0)
fac = float(1) / (n_samples - n_classes)
# ----------------------------
# 2) Within variance scaling
X = np.sqrt(fac) * (Xc * scaling)
# SVD of centered (within)scaled data
U, S, V = linalg.svd(X, full_matrices=0)
rank = np.sum(S > tol)
if rank < n_features:
warnings.warn("Variables are collinear")
# Scaling of within covariance is: V' 1/S
scaling = (scaling * V[:rank]).T / S[:rank]
## ----------------------------
## 3) Between variance scaling
# Overall mean
xbar = np.dot(self.priors_, self.means_)
# Scale weighted centers
X = np.dot(((np.sqrt((n_samples * self.priors_) * fac)) *
(means - xbar).T).T, scaling)
# Centers are living in a space with n_classes-1 dim (maximum)
# Use svd to find projection in the space spanned by the
# (n_classes) centers
_, S, V = linalg.svd(X, full_matrices=0)
rank = np.sum(S > tol * S[0])
# compose the scalings
self.scaling = np.dot(scaling, V.T[:, :rank])
self.xbar_ = xbar
# weight vectors / centroids
self.coef_ = np.dot(self.means_ - self.xbar_, self.scaling)
self.intercept_ = -0.5 * np.sum(self.coef_ ** 2, axis=1) + \
np.log(self.priors_)
self.classes = classes
return self
def decision_function(self, X):
"""
This function return the decision function values related to each
class on an array of test vectors X.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
C : array, shape = [n_samples, n_classes]
"""
X = np.asarray(X)
# center and scale data
X = np.dot(X - self.xbar_, self.scaling)
return np.dot(X, self.coef_.T) + self.intercept_
def transform(self, X):
"""
Project the data so as to maximize class separation (large separation
between projected class means and small variance within each class).
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
X_new : array, shape = [n_samples, n_components]
"""
X = np.asarray(X)
# center and scale data
X = np.dot(X - self.xbar_, self.scaling)
n_comp = X.shape[1] if self.n_components is None else self.n_components
return np.dot(X, self.coef_[:n_comp].T)
def predict(self, X):
"""
This function does classification on an array of test vectors X.
The predicted class C for each sample in X is returned.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
C : array, shape = [n_samples]
"""
d = self.decision_function(X)
y_pred = self.classes[d.argmax(1)]
return y_pred
def predict_proba(self, X):
"""
This function return posterior probabilities of classification
according to each class on an array of test vectors X.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
C : array, shape = [n_samples, n_classes]
"""
values = self.decision_function(X)
# compute the likelihood of the underlying gaussian models
# up to a multiplicative constant.
likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis])
# compute posterior probabilities
return likelihood / likelihood.sum(axis=1)[:, np.newaxis]
def predict_log_proba(self, X):
"""
This function return posterior log-probabilities of classification
according to each class on an array of test vectors X.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
C : array, shape = [n_samples, n_classes]
"""
values = self.decision_function(X)
loglikelihood = (values - values.max(axis=1)[:, np.newaxis])
normalization = logsumexp(loglikelihood, axis=1)
return loglikelihood - normalization[:, np.newaxis]
|