/usr/share/pyshared/sklearn/multiclass.py is in python-sklearn 0.11.0-2+deb7u1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 | """
Multiclass and multilabel classification strategies
===================================================
This module implements multiclass learning algorithms:
- one-vs-the-rest / one-vs-all
- one-vs-one
- error correcting output codes
The estimators provided in this module are meta-estimators: they require a base
estimator to be provided in their constructor. For example, it is possible to
use these estimators to turn a binary classifier or a regressor into a
multiclass classifier. It is also possible to use these estimators with
multiclass estimators in the hope that their accuracy or runtime performance
improves.
"""
# Author: Mathieu Blondel <mathieu@mblondel.org>
#
# License: BSD Style.
import numpy as np
from .base import BaseEstimator, ClassifierMixin, clone, is_classifier
from .preprocessing import LabelBinarizer
from .metrics.pairwise import euclidean_distances
from .utils import check_random_state
def _fit_binary(estimator, X, y):
"""Fit a single binary estimator."""
estimator = clone(estimator)
estimator.fit(X, y)
return estimator
def _predict_binary(estimator, X):
"""Make predictions using a single binary estimator."""
if hasattr(estimator, "decision_function"):
return np.ravel(estimator.decision_function(X))
else:
# probabilities of the positive class
return estimator.predict_proba(X)[:, 1]
def _check_estimator(estimator):
"""Make sure that an estimator implements the necessary methods."""
if not hasattr(estimator, "decision_function") and \
not hasattr(estimator, "predict_proba"):
raise ValueError("The base estimator should implement "
"decision_function or predict_proba!")
def fit_ovr(estimator, X, y):
"""Fit a one-vs-the-rest strategy."""
_check_estimator(estimator)
lb = LabelBinarizer()
Y = lb.fit_transform(y)
estimators = [_fit_binary(estimator, X, Y[:, i])
for i in range(Y.shape[1])]
return estimators, lb
def predict_ovr(estimators, label_binarizer, X):
"""Make predictions using the one-vs-the-rest strategy."""
Y = np.array([_predict_binary(e, X) for e in estimators])
e = estimators[0]
thresh = 0 if hasattr(e, "decision_function") and is_classifier(e) else .5
return label_binarizer.inverse_transform(Y.T, threshold=thresh)
class OneVsRestClassifier(BaseEstimator, ClassifierMixin):
"""One-vs-the-rest (OvR) multiclass/multilabel strategy
Also known as one-vs-all, this strategy consists in fitting one classifier
per class. For each classifier, the class is fitted against all the other
classes. In addition to its computational efficiency (only `n_classes`
classifiers are needed), one advantage of this approach is its
interpretability. Since each class is represented by one and one classifier
only, it is possible to gain knowledge about the class by inspecting its
corresponding classifier. This is the most commonly used strategy for
multiclass classification and is a fair default choice.
This strategy can also be used for multilabel learning, where a classifier
is used to predict multiple labels for instance, by fitting on a sequence
of sequences of labels (e.g., a list of tuples) rather than a single
target vector. For multilabel learning, the number of classes must be at
least three, since otherwise OvR reduces to binary classification.
Parameters
----------
estimator : estimator object
An estimator object implementing `fit` and one of `decision_function`
or `predict_proba`.
Attributes
----------
`estimators_` : list of `n_classes` estimators
Estimators used for predictions.
`label_binarizer_` : LabelBinarizer object
Object used to transform multiclass labels to binary labels and
vice-versa.
`multilabel_` : boolean
Whether a OneVsRestClassifier is a multilabel classifier.
"""
def __init__(self, estimator):
self.estimator = estimator
def fit(self, X, y):
"""Fit underlying estimators.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Data.
y : array-like, shape = [n_samples]
or sequence of sequences, len = n_samples
Multi-class targets. A sequence of sequences turns on multilabel
classification.
Returns
-------
self
"""
self.estimators_, self.label_binarizer_ = fit_ovr(self.estimator, X, y)
return self
def _check_is_fitted(self):
if not hasattr(self, "estimators_"):
raise ValueError("The object hasn't been fitted yet!")
def predict(self, X):
"""Predict multi-class targets using underlying estimators.
Parameters
----------
X: {array-like, sparse matrix}, shape = [n_samples, n_features]
Data.
Returns
-------
y : array-like, shape = [n_samples]
Predicted multi-class targets.
"""
self._check_is_fitted()
return predict_ovr(self.estimators_, self.label_binarizer_, X)
@property
def multilabel_(self):
"""Whether this is a multilabel classifier"""
return self.label_binarizer_.multilabel
def score(self, X, y):
if self.multilabel_:
raise NotImplementedError(
"score is not supported for multilabel classifiers")
else:
return super(OneVsRestClassifier, self).score(X, y)
@property
def coef_(self):
self._check_is_fitted()
if not hasattr(self.estimators_[0], "coef_"):
raise AttributeError(
"Base estimator doesn't have a coef_ attribute.")
return np.array([e.coef_.ravel() for e in self.estimators_])
@property
def intercept_(self):
self._check_is_fitted()
if not hasattr(self.estimators_[0], "intercept_"):
raise AttributeError(
"Base estimator doesn't have an intercept_ attribute.")
return np.array([e.intercept_.ravel() for e in self.estimators_])
def _fit_ovo_binary(estimator, X, y, i, j):
"""Fit a single binary estimator (one-vs-one)."""
cond = np.logical_or(y == i, y == j)
y = y[cond]
y[y == i] = 0
y[y == j] = 1
ind = np.arange(X.shape[0])
return _fit_binary(estimator, X[ind[cond]], y)
def fit_ovo(estimator, X, y):
"""Fit a one-vs-one strategy."""
classes = np.unique(y)
n_classes = classes.shape[0]
estimators = [_fit_ovo_binary(estimator, X, y, classes[i], classes[j])
for i in range(n_classes) for j in range(i + 1, n_classes)]
return estimators, classes
def predict_ovo(estimators, classes, X):
"""Make predictions using the one-vs-one strategy."""
n_samples = X.shape[0]
n_classes = classes.shape[0]
votes = np.zeros((n_samples, n_classes))
k = 0
for i in range(n_classes):
for j in range(i + 1, n_classes):
pred = estimators[k].predict(X)
votes[pred == 0, i] += 1
votes[pred == 1, j] += 1
k += 1
return classes[votes.argmax(axis=1)]
class OneVsOneClassifier(BaseEstimator, ClassifierMixin):
"""One-vs-one multiclass strategy
This strategy consists in fitting one classifier per class pair.
At prediction time, the class which received the most votes is selected.
Since it requires to fit `n_classes * (n_classes - 1) / 2` classifiers,
this method is usually slower than one-vs-the-rest, due to its
O(n_classes^2) complexity. However, this method may be advantageous for
algorithms such as kernel algorithms which don't scale well with
`n_samples`. This is because each individual learning problem only involves
a small subset of the data whereas, with one-vs-the-rest, the complete
dataset is used `n_classes` times.
Parameters
----------
estimator : estimator object
An estimator object implementing `fit` and `predict`.
Attributes
----------
`estimators_` : list of `n_classes * (n_classes - 1) / 2` estimators
Estimators used for predictions.
`classes_` : numpy array of shape [n_classes]
Array containing labels.
"""
def __init__(self, estimator):
self.estimator = estimator
def fit(self, X, y):
"""Fit underlying estimators.
Parameters
----------
X: {array-like, sparse matrix}, shape = [n_samples, n_features]
Data.
y : numpy array of shape [n_samples]
Multi-class targets.
Returns
-------
self
"""
self.estimators_, self.classes_ = fit_ovo(self.estimator, X, y)
return self
def predict(self, X):
"""Predict multi-class targets using underlying estimators.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Data.
Returns
-------
y : numpy array of shape [n_samples]
Predicted multi-class targets.
"""
if not hasattr(self, "estimators_"):
raise ValueError("The object hasn't been fitted yet!")
return predict_ovo(self.estimators_, self.classes_, X)
def fit_ecoc(estimator, X, y, code_size=1.5, random_state=None):
"""
Fit an error-correcting output-code strategy.
Parameters
----------
estimator : estimator object
An estimator object implementing `fit` and one of `decision_function`
or `predict_proba`.
code_size: float, optional
Percentage of the number of classes to be used to create the code book.
random_state: numpy.RandomState, optional
The generator used to initialize the codebook. Defaults to
numpy.random.
Returns
--------
estimators : list of `int(n_classes * code_size)` estimators
Estimators used for predictions.
classes : numpy array of shape [n_classes]
Array containing labels.
`code_book_`: numpy array of shape [n_classes, code_size]
Binary array containing the code of each class.
"""
_check_estimator(estimator)
random_state = check_random_state(random_state)
classes = np.unique(y)
n_classes = classes.shape[0]
code_size = int(n_classes * code_size)
# FIXME: there are more elaborate methods than generating the codebook
# randomly.
code_book = random_state.random_sample((n_classes, code_size))
code_book[code_book > 0.5] = 1
if hasattr(estimator, "decision_function"):
code_book[code_book != 1] = -1
else:
code_book[code_book != 1] = 0
cls_idx = dict((c, i) for i, c in enumerate(classes))
Y = np.array([code_book[cls_idx[y[i]]] for i in xrange(X.shape[0])])
estimators = [_fit_binary(estimator, X, Y[:, i])
for i in range(Y.shape[1])]
return estimators, classes, code_book
def predict_ecoc(estimators, classes, code_book, X):
"""Make predictions using the error-correcting output-code strategy."""
Y = np.array([_predict_binary(e, X) for e in estimators]).T
pred = euclidean_distances(Y, code_book).argmin(axis=1)
return classes[pred]
class OutputCodeClassifier(BaseEstimator, ClassifierMixin):
"""(Error-Correcting) Output-Code multiclass strategy
Output-code based strategies consist in representing each class with a
binary code (an array of 0s and 1s). At fitting time, one binary
classifier per bit in the code book is fitted. At prediction time, the
classifiers are used to project new points in the class space and the class
closest to the points is chosen. The main advantage of these strategies is
that the number of classifiers used can be controlled by the user, either
for compressing the model (0 < code_size < 1) or for making the model more
robust to errors (code_size > 1). See the documentation for more details.
Parameters
----------
estimator : estimator object
An estimator object implementing `fit` and one of `decision_function`
or `predict_proba`.
code_size : float
Percentage of the number of classes to be used to create the code book.
A number between 0 and 1 will require fewer classifiers than
one-vs-the-rest. A number greater than 1 will require more classifiers
than one-vs-the-rest.
random_state : numpy.RandomState, optional
The generator used to initialize the codebook. Defaults to
numpy.random.
Attributes
----------
`estimators_` : list of `int(n_classes * code_size)` estimators
Estimators used for predictions.
`classes_` : numpy array of shape [n_classes]
Array containing labels.
`code_book_` : numpy array of shape [n_classes, code_size]
Binary array containing the code of each class.
References
----------
.. [1] "Solving multiclass learning problems via error-correcting output
codes",
Dietterich T., Bakiri G.,
Journal of Artificial Intelligence Research 2,
1995.
.. [2] "The error coding method and PICTs",
James G., Hastie T.,
Journal of Computational and Graphical statistics 7,
1998.
.. [3] "The Elements of Statistical Learning",
Hastie T., Tibshirani R., Friedman J., page 606 (second-edition)
2008.
"""
def __init__(self, estimator, code_size=1.5, random_state=None):
if (code_size <= 0):
raise ValueError("code_size should be greater than 0!")
self.estimator = estimator
self.code_size = code_size
self.random_state = random_state
def fit(self, X, y):
"""Fit underlying estimators.
Parameters
----------
X: {array-like, sparse matrix}, shape = [n_samples, n_features]
Data.
y : numpy array of shape [n_samples]
Multi-class targets.
Returns
-------
self
"""
self.estimators_, self.classes_, self.code_book_ = \
fit_ecoc(self.estimator, X, y, self.code_size, self.random_state)
return self
def predict(self, X):
"""Predict multi-class targets using underlying estimators.
Parameters
----------
X: {array-like, sparse matrix}, shape = [n_samples, n_features]
Data.
Returns
-------
y : numpy array of shape [n_samples]
Predicted multi-class targets.
"""
if not hasattr(self, "estimators_"):
raise ValueError("The object hasn't been fitted yet!")
return predict_ecoc(self.estimators_, self.classes_,
self.code_book_, X)
|