/usr/share/pyshared/sklearn/pls.py is in python-sklearn 0.11.0-2+deb7u1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 | """
The :mod:`sklearn.pls` module implements Partial Least Squares (PLS).
"""
# Author: Edouard Duchesnay <edouard.duchesnay@cea.fr>
# License: BSD Style.
from .base import BaseEstimator
from .utils import as_float_array
import warnings
import numpy as np
from scipy import linalg
def _nipals_twoblocks_inner_loop(X, Y, mode="A", max_iter=500, tol=1e-06,
norm_y_weights=False):
"""Inner loop of the iterative NIPALS algorithm. Provides an alternative
to the svd(X'Y); returns the first left and rigth singular vectors of X'Y.
See PLS for the meaning of the parameters.
It is similar to the Power method for determining the eigenvectors and
eigenvalues of a X'Y
"""
y_score = Y[:, [0]]
x_weights_old = 0
ite = 1
X_pinv = Y_pinv = None
# Inner loop of the Wold algo.
while True:
# 1.1 Update u: the X weights
if mode == "B":
if X_pinv is None:
X_pinv = linalg.pinv(X) # compute once pinv(X)
x_weights = np.dot(X_pinv, y_score)
else: # mode A
# Mode A regress each X column on y_score
x_weights = np.dot(X.T, y_score) / np.dot(y_score.T, y_score)
# 1.2 Normalize u
x_weights /= np.sqrt(np.dot(x_weights.T, x_weights))
# 1.3 Update x_score: the X latent scores
x_score = np.dot(X, x_weights)
# 2.1 Update y_weights
if mode == "B":
if Y_pinv is None:
Y_pinv = linalg.pinv(Y) # compute once pinv(Y)
y_weights = np.dot(Y_pinv, x_score)
else:
# Mode A regress each Y column on x_score
y_weights = np.dot(Y.T, x_score) / np.dot(x_score.T, x_score)
## 2.2 Normalize y_weights
if norm_y_weights:
y_weights /= np.sqrt(np.dot(y_weights.T, y_weights))
# 2.3 Update y_score: the Y latent scores
y_score = np.dot(Y, y_weights) / np.dot(y_weights.T, y_weights)
## y_score = np.dot(Y, y_weights) / np.dot(y_score.T, y_score) ## BUG
x_weights_diff = x_weights - x_weights_old
if np.dot(x_weights_diff.T, x_weights_diff) < tol or Y.shape[1] == 1:
break
if ite == max_iter:
warnings.warn('Maximum number of iterations reached')
break
x_weights_old = x_weights
ite += 1
return x_weights, y_weights
def _svd_cross_product(X, Y):
C = np.dot(X.T, Y)
U, s, Vh = linalg.svd(C, full_matrices=False)
u = U[:, [0]]
v = Vh.T[:, [0]]
return u, v
def _center_scale_xy(X, Y, scale=True):
""" Center X, Y and scale if the scale parameter==True
Returns
-------
X, Y, x_mean, y_mean, x_std, y_std
"""
# center
x_mean = X.mean(axis=0)
X -= x_mean
y_mean = Y.mean(axis=0)
Y -= y_mean
# scale
if scale:
x_std = X.std(axis=0, ddof=1)
X /= x_std
y_std = Y.std(axis=0, ddof=1)
Y /= y_std
else:
x_std = np.ones(X.shape[1])
y_std = np.ones(Y.shape[1])
return X, Y, x_mean, y_mean, x_std, y_std
class _PLS(BaseEstimator):
"""Partial Least Squares (PLS)
This class implements the generic PLS algorithm, constructors' parameters
allow to obtain a specific implementation such as:
- PLS2 regression, i.e., PLS 2 blocks, mode A, with asymmetric deflation
and unnormlized y weights such as defined by [Tenenhaus 1998] p. 132.
With univariate response it implements PLS1.
- PLS canonical, i.e., PLS 2 blocks, mode A, with symetric deflation and
normlized y weights such as defined by [Tenenhaus 1998] (p. 132) and
[Wegelin et al. 2000]. This parametrization implements the original Wold
algorithm.
We use the terminology defined by [Wegelin et al. 2000].
This implementation uses the PLS Wold 2 blocks algorithm based on two
nested loops:
(i) The outer loop iterate over components.
(ii) The inner loop estimates the weights vectors. This can be done
with two algo. (a) the inner loop of the original NIPALS algo. or (b) a
SVD on residuals cross-covariance matrices.
Parameters
----------
X : array-like of predictors, shape = [n_samples, p]
Training vectors, where n_samples in the number of samples and
p is the number of predictors.
Y : array-like of response, shape = [n_samples, q]
Training vectors, where n_samples in the number of samples and
q is the number of response variables.
n_components : int, number of components to keep. (default 2).
scale : boolean, scale data? (default True)
deflation_mode : str, "canonical" or "regression". See notes.
mode : "A" classical PLS and "B" CCA. See notes.
norm_y_weights: boolean, normalize Y weights to one? (default False)
algorithm : string, "nipals" or "svd"
The algorithm used to estimate the weights. It will be called
n_components times, i.e. once for each iteration of the outer loop.
max_iter : an integer, the maximum number of iterations (default 500)
of the NIPALS inner loop (used only if algorithm="nipals")
tol : non-negative real, default 1e-06
The tolerance used in the iterative algorithm.
copy : boolean
Whether the deflation should be done on a copy. Let the default
value to True unless you don't care about side effects.
Attributes
----------
`x_weights_` : array, [p, n_components]
X block weights vectors.
`y_weights_` : array, [q, n_components]
Y block weights vectors.
`x_loadings_` : array, [p, n_components]
X block loadings vectors.
`y_loadings_` : array, [q, n_components]
Y block loadings vectors.
`x_scores_` : array, [n_samples, n_components]
X scores.
`y_scores_` : array, [n_samples, n_components]
Y scores.
`x_rotations_` : array, [p, n_components]
X block to latents rotations.
`y_rotations_` : array, [q, n_components]
Y block to latents rotations.
coefs: array, [p, q]
The coefficients of the linear model: Y = X coefs + Err
References
----------
Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with
emphasis on the two-block case. Technical Report 371, Department of
Statistics, University of Washington, Seattle, 2000.
In French but still a reference:
Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris:
Editions Technic.
See also
--------
PLSCanonical
PLSRegression
CCA
PLS_SVD
"""
def __init__(self, n_components=2, scale=True, deflation_mode="regression",
mode="A", algorithm="nipals", norm_y_weights=False,
max_iter=500, tol=1e-06, copy=True):
self.n_components = n_components
self.deflation_mode = deflation_mode
self.mode = mode
self.norm_y_weights = norm_y_weights
self.scale = scale
self.algorithm = algorithm
self.max_iter = max_iter
self.tol = tol
self.copy = copy
def fit(self, X, Y):
# copy since this will contains the residuals (deflated) matrices
X = as_float_array(X, copy=self.copy)
Y = as_float_array(Y, copy=self.copy)
if X.ndim != 2:
raise ValueError('X must be a 2D array')
if Y.ndim == 1:
Y = Y.reshape((Y.size, 1))
if Y.ndim != 2:
raise ValueError('Y must be a 1D or a 2D array')
n = X.shape[0]
p = X.shape[1]
q = Y.shape[1]
if n != Y.shape[0]:
raise ValueError(
'Incompatible shapes: X has %s samples, while Y '
'has %s' % (X.shape[0], Y.shape[0]))
if self.n_components < 1 or self.n_components > p:
raise ValueError('invalid number of components')
if self.algorithm not in ("svd", "nipals"):
raise ValueError("Got algorithm %s when only 'svd' "
"and 'nipals' are known" % self.algorithm)
if self.algorithm == "svd" and self.mode == "B":
raise ValueError('Incompatible configuration: mode B is not '
'implemented with svd algorithm')
if not self.deflation_mode in ["canonical", "regression"]:
raise ValueError('The deflation mode is unknown')
# Scale (in place)
X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_\
= _center_scale_xy(X, Y, self.scale)
# Residuals (deflated) matrices
Xk = X
Yk = Y
# Results matrices
self.x_scores_ = np.zeros((n, self.n_components))
self.y_scores_ = np.zeros((n, self.n_components))
self.x_weights_ = np.zeros((p, self.n_components))
self.y_weights_ = np.zeros((q, self.n_components))
self.x_loadings_ = np.zeros((p, self.n_components))
self.y_loadings_ = np.zeros((q, self.n_components))
# NIPALS algo: outer loop, over components
for k in xrange(self.n_components):
#1) weights estimation (inner loop)
# -----------------------------------
if self.algorithm == "nipals":
x_weights, y_weights = _nipals_twoblocks_inner_loop(
X=Xk, Y=Yk, mode=self.mode,
max_iter=self.max_iter, tol=self.tol,
norm_y_weights=self.norm_y_weights)
elif self.algorithm == "svd":
x_weights, y_weights = _svd_cross_product(X=Xk, Y=Yk)
# compute scores
x_scores = np.dot(Xk, x_weights)
if self.norm_y_weights:
y_ss = 1
else:
y_ss = np.dot(y_weights.T, y_weights)
y_scores = np.dot(Yk, y_weights) / y_ss
# test for null variance
if np.dot(x_scores.T, x_scores) < np.finfo(np.double).eps:
warnings.warn('X scores are null at iteration %s' % k)
#2) Deflation (in place)
# ----------------------
# Possible memory footprint reduction may done here: in order to
# avoid the allocation of a data chunk for the rank-one
# approximations matrix which is then substracted to Xk, we suggest
# to perform a column-wise deflation.
#
# - regress Xk's on x_score
x_loadings = np.dot(Xk.T, x_scores) / np.dot(x_scores.T, x_scores)
# - substract rank-one approximations to obtain remainder matrix
Xk -= np.dot(x_scores, x_loadings.T)
if self.deflation_mode == "canonical":
# - regress Yk's on y_score, then substract rank-one approx.
y_loadings = np.dot(Yk.T, y_scores) \
/ np.dot(y_scores.T, y_scores)
Yk -= np.dot(y_scores, y_loadings.T)
if self.deflation_mode == "regression":
# - regress Yk's on x_score, then substract rank-one approx.
y_loadings = np.dot(Yk.T, x_scores) \
/ np.dot(x_scores.T, x_scores)
Yk -= np.dot(x_scores, y_loadings.T)
# 3) Store weights, scores and loadings # Notation:
self.x_scores_[:, k] = x_scores.ravel() # T
self.y_scores_[:, k] = y_scores.ravel() # U
self.x_weights_[:, k] = x_weights.ravel() # W
self.y_weights_[:, k] = y_weights.ravel() # C
self.x_loadings_[:, k] = x_loadings.ravel() # P
self.y_loadings_[:, k] = y_loadings.ravel() # Q
# Such that: X = TP' + Err and Y = UQ' + Err
# 4) rotations from input space to transformed space (scores)
# T = X W(P'W)^-1 = XW* (W* : p x k matrix)
# U = Y C(Q'C)^-1 = YC* (W* : q x k matrix)
self.x_rotations_ = np.dot(self.x_weights_,
linalg.inv(np.dot(self.x_loadings_.T, self.x_weights_)))
if Y.shape[1] > 1:
self.y_rotations_ = np.dot(self.y_weights_,
linalg.inv(np.dot(self.y_loadings_.T, self.y_weights_)))
else:
self.y_rotations_ = np.ones(1)
if True or self.deflation_mode == "regression":
# Estimate regression coefficient
# Regress Y on T
# Y = TQ' + Err,
# Then express in function of X
# Y = X W(P'W)^-1Q' + Err = XB + Err
# => B = W*Q' (p x q)
self.coefs = np.dot(self.x_rotations_, self.y_loadings_.T)
self.coefs = 1. / self.x_std_.reshape((p, 1)) * \
self.coefs * self.y_std_
return self
def transform(self, X, Y=None, copy=True):
"""Apply the dimension reduction learned on the train data.
Parameters
----------
X : array-like of predictors, shape = [n_samples, p]
Training vectors, where n_samples in the number of samples and
p is the number of predictors.
Y : array-like of response, shape = [n_samples, q], optional
Training vectors, where n_samples in the number of samples and
q is the number of response variables.
copy : boolean
Whether to copy X and Y, or perform in-place normalization.
Returns
-------
x_scores if Y is not given, (x_scores, y_scores) otherwise.
"""
# Normalize
if copy:
Xc = (np.asarray(X) - self.x_mean_) / self.x_std_
if Y is not None:
Yc = (np.asarray(Y) - self.y_mean_) / self.y_std_
else:
X = np.asarray(X)
Xc -= self.x_mean_
Xc /= self.x_std_
if Y is not None:
Y = np.asarray(Y)
Yc -= self.y_mean_
Yc /= self.y_std_
# Apply rotation
x_scores = np.dot(Xc, self.x_rotations_)
if Y is not None:
y_scores = np.dot(Yc, self.y_rotations_)
return x_scores, y_scores
return x_scores
def predict(self, X, copy=True):
"""Apply the dimension reduction learned on the train data.
Parameters
----------
X : array-like of predictors, shape = [n_samples, p]
Training vectors, where n_samples in the number of samples and
p is the number of predictors.
copy : boolean
Whether to copy X and Y, or perform in-place normalization.
Notes
-----
This call require the estimation of a p x q matrix, which may
be an issue in high dimensional space.
"""
# Normalize
if copy:
Xc = (np.asarray(X) - self.x_mean_)
else:
X = np.asarray(X)
Xc -= self.x_mean_
Xc /= self.x_std_
Ypred = np.dot(Xc, self.coefs)
return Ypred + self.y_mean_
class PLSRegression(_PLS):
"""PLS regression
PLSRegression implements the PLS 2 blocks regression known as PLS2 or PLS1
in case of one dimensional response.
This class inherits from _PLS with mode="A", deflation_mode="regression",
norm_y_weights=False and algorithm="nipals".
Parameters
----------
X : array-like of predictors, shape = [n_samples, p]
Training vectors, where n_samples in the number of samples and
p is the number of predictors.
Y : array-like of response, shape = [n_samples, q]
Training vectors, where n_samples in the number of samples and
q is the number of response variables.
n_components : int, (default 2)
Number of components to keep.
scale : boolean, (default True)
whether to scale the data
max_iter : an integer, (default 500)
the maximum number of iterations of the NIPALS inner loop (used
only if algorithm="nipals")
tol : non-negative real
Tolerance used in the iterative algorithm default 1e-06.
copy : boolean, default True
Whether the deflation should be done on a copy. Let the default
value to True unless you don't care about side effect
Attributes
----------
`x_weights_` : array, [p, n_components]
X block weights vectors.
`y_weights_` : array, [q, n_components]
Y block weights vectors.
`x_loadings_` : array, [p, n_components]
X block loadings vectors.
`y_loadings_` : array, [q, n_components]
Y block loadings vectors.
`x_scores_` : array, [n_samples, n_components]
X scores.
`y_scores_` : array, [n_samples, n_components]
Y scores.
`x_rotations_` : array, [p, n_components]
X block to latents rotations.
`y_rotations_` : array, [q, n_components]
Y block to latents rotations.
coefs: array, [p, q]
The coeficients of the linear model: Y = X coefs + Err
Notes
-----
For each component k, find weights u, v that optimizes:
``max corr(Xk u, Yk v) * var(Xk u) var(Yk u)``, such that ``|u| = 1``
Note that it maximizes both the correlations between the scores and the
intra-block variances.
The residual matrix of X (Xk+1) block is obtained by the deflation on
the current X score: x_score.
The residual matrix of Y (Yk+1) block is obtained by deflation on the
current X score. This performs the PLS regression known as PLS2. This
mode is prediction oriented.
This implementation provides the same results that 3 PLS packages
provided in the R language (R-project):
- "mixOmics" with function pls(X, Y, mode = "regression")
- "plspm " with function plsreg2(X, Y)
- "pls" with function oscorespls.fit(X, Y)
Examples
--------
>>> from sklearn.pls import PLSCanonical, PLSRegression, CCA
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> pls2 = PLSRegression(n_components=2)
>>> pls2.fit(X, Y)
... # doctest: +NORMALIZE_WHITESPACE
PLSRegression(copy=True, max_iter=500, n_components=2, scale=True,
tol=1e-06)
>>> Y_pred = pls2.predict(X)
References
----------
Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with
emphasis on the two-block case. Technical Report 371, Department of
Statistics, University of Washington, Seattle, 2000.
In french but still a reference:
Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris:
Editions Technic.
"""
def __init__(self, n_components=2, scale=True,
max_iter=500, tol=1e-06, copy=True):
_PLS.__init__(self, n_components=n_components, scale=scale,
deflation_mode="regression", mode="A",
norm_y_weights=False,
max_iter=max_iter, tol=tol, copy=copy)
class PLSCanonical(_PLS):
""" PLSCanonical implements the 2 blocks canonical PLS of the original Wold
algorithm [Tenenhaus 1998] p.204, refered as PLS-C2A in [Wegelin 2000].
This class inherits from PLS with mode="A" and deflation_mode="canonical",
norm_y_weights=True and algorithm="nipals", but svd should provide similar
results up to numerical errors.
Parameters
----------
X : array-like of predictors, shape = [n_samples, p]
Training vectors, where n_samples in the number of samples and
p is the number of predictors.
Y : array-like of response, shape = [n_samples, q]
Training vectors, where n_samples in the number of samples and
q is the number of response variables.
n_components : int, number of components to keep. (default 2).
scale : boolean, scale data? (default True)
algorithm : string, "nipals" or "svd"
The algorithm used to estimate the weights. It will be called
n_components times, i.e. once for each iteration of the outer loop.
max_iter : an integer, (default 500)
the maximum number of iterations of the NIPALS inner loop (used
only if algorithm="nipals")
tol : non-negative real, default 1e-06
the tolerance used in the iterative algorithm
copy : boolean, default True
Whether the deflation should be done on a copy. Let the default
value to True unless you don't care about side effect
Attributes
----------
`x_weights_` : array, shape = [p, n_components]
X block weights vectors.
`y_weights_` : array, shape = [q, n_components]
Y block weights vectors.
`x_loadings_` : array, shape = [p, n_components]
X block loadings vectors.
`y_loadings_` : array, shape = [q, n_components]
Y block loadings vectors.
`x_scores_` : array, shape = [n_samples, n_components]
X scores.
`y_scores_` : array, shape = [n_samples, n_components]
Y scores.
`x_rotations_` : array, shape = [p, n_components]
X block to latents rotations.
`y_rotations_` : array, shape = [q, n_components]
Y block to latents rotations.
Notes
-----
For each component k, find weights u, v that optimize::
max corr(Xk u, Yk v) * var(Xk u) var(Yk u), such that ``|u| = |v| = 1``
Note that it maximizes both the correlations between the scores and the
intra-block variances.
The residual matrix of X (Xk+1) block is obtained by the deflation on the
current X score: x_score.
The residual matrix of Y (Yk+1) block is obtained by deflation on the
current Y score. This performs a canonical symetric version of the PLS
regression. But slightly different than the CCA. This is mode mostly used
for modeling.
This implementation provides the same results that the "plspm" package
provided in the R language (R-project), using the function plsca(X, Y).
Results are equal or colinear with the function
``pls(..., mode = "canonical")`` of the "mixOmics" package. The difference
relies in the fact that mixOmics implmentation does not exactly implement
the Wold algorithm since it does not normalize y_weights to one.
Examples
--------
>>> from sklearn.pls import PLSCanonical, PLSRegression, CCA
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> plsca = PLSCanonical(n_components=2)
>>> plsca.fit(X, Y)
... # doctest: +NORMALIZE_WHITESPACE
PLSCanonical(algorithm='nipals', copy=True, max_iter=500, n_components=2,
scale=True, tol=1e-06)
>>> X_c, Y_c = plsca.transform(X, Y)
References
----------
Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with
emphasis on the two-block case. Technical Report 371, Department of
Statistics, University of Washington, Seattle, 2000.
Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris:
Editions Technic.
See also
--------
CCA
PLSSVD
"""
def __init__(self, n_components=2, scale=True, algorithm="nipals",
max_iter=500, tol=1e-06, copy=True):
_PLS.__init__(self, n_components=n_components, scale=scale,
deflation_mode="canonical", mode="A",
norm_y_weights=True, algorithm=algorithm,
max_iter=max_iter, tol=tol, copy=copy)
class CCA(_PLS):
"""CCA Canonical Correlation Analysis. CCA inherits from PLS with
mode="B" and deflation_mode="canonical".
Parameters
----------
X : array-like of predictors, shape = [n_samples, p]
Training vectors, where n_samples in the number of samples and
p is the number of predictors.
Y : array-like of response, shape = [n_samples, q]
Training vectors, where n_samples in the number of samples and
q is the number of response variables.
n_components : int, (default 2).
number of components to keep.
scale : boolean, (default True)
whether to scale the data?
max_iter : an integer, (default 500)
the maximum number of iterations of the NIPALS inner loop (used
only if algorithm="nipals")
tol : non-negative real, default 1e-06.
the tolerance used in the iterative algorithm
copy : boolean
Whether the deflation be done on a copy. Let the default value
to True unless you don't care about side effects
Attributes
----------
`x_weights_` : array, [p, n_components]
X block weights vectors.
`y_weights_` : array, [q, n_components]
Y block weights vectors.
`x_loadings_` : array, [p, n_components]
X block loadings vectors.
`y_loadings_` : array, [q, n_components]
Y block loadings vectors.
`x_scores_` : array, [n_samples, n_components]
X scores.
`y_scores_` : array, [n_samples, n_components]
Y scores.
`x_rotations_` : array, [p, n_components]
X block to latents rotations.
`y_rotations_` : array, [q, n_components]
Y block to latents rotations.
Notes
-----
For each component k, find the weights u, v that maximizes
max corr(Xk u, Yk v), such that ``|u| = |v| = 1``
Note that it maximizes only the correlations between the scores.
The residual matrix of X (Xk+1) block is obtained by the deflation on the
current X score: x_score.
The residual matrix of Y (Yk+1) block is obtained by deflation on the
current Y score.
Examples
--------
>>> from sklearn.pls import PLSCanonical, PLSRegression, CCA
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> cca = CCA(n_components=1)
>>> cca.fit(X, Y)
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06)
>>> X_c, Y_c = cca.transform(X, Y)
References
----------
Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with
emphasis on the two-block case. Technical Report 371, Department of
Statistics, University of Washington, Seattle, 2000.
In french but still a reference:
Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris:
Editions Technic.
See also
--------
PLSCanonical
PLSSVD
"""
def __init__(self, n_components=2, scale=True,
max_iter=500, tol=1e-06, copy=True):
_PLS.__init__(self, n_components=n_components, scale=scale,
deflation_mode="canonical", mode="B",
norm_y_weights=True, algorithm="nipals",
max_iter=max_iter, tol=tol, copy=copy)
class PLSSVD(BaseEstimator):
"""Partial Least Square SVD
Simply perform a svd on the crosscovariance matrix: X'Y
The are no iterative deflation here.
Parameters
----------
X : array-like of predictors, shape = [n_samples, p]
Training vector, where n_samples in the number of samples and
p is the number of predictors. X will be centered before any analysis.
Y : array-like of response, shape = [n_samples, q]
Training vector, where n_samples in the number of samples and
q is the number of response variables. X will be centered before any
analysis.
n_components : int, (default 2).
number of components to keep.
scale : boolean, (default True)
scale X and Y
Attributes
----------
`x_weights_` : array, [p, n_components]
X block weights vectors.
`y_weights_` : array, [q, n_components]
Y block weights vectors.
`x_scores_` : array, [n_samples, n_components]
X scores.
`y_scores_` : array, [n_samples, n_components]
Y scores.
See also
--------
PLSCanonical
CCA
"""
def __init__(self, n_components=2, scale=True, copy=True):
self.n_components = n_components
self.scale = scale
self.copy = copy
def fit(self, X, Y):
# copy since this will contains the centered data
if self.copy:
X = np.asarray(X).copy()
Y = np.asarray(Y).copy()
else:
X = np.asarray(X)
Y = np.asarray(Y)
n = X.shape[0]
p = X.shape[1]
if X.ndim != 2:
raise ValueError('X must be a 2D array')
if n != Y.shape[0]:
raise ValueError(
'Incompatible shapes: X has %s samples, while Y '
'has %s' % (X.shape[0], Y.shape[0]))
if self.n_components < 1 or self.n_components > p:
raise ValueError('invalid number of components')
# Scale (in place)
X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_ =\
_center_scale_xy(X, Y, self.scale)
# svd(X'Y)
C = np.dot(X.T, Y)
U, s, V = linalg.svd(C, full_matrices=False)
V = V.T
self.x_scores_ = np.dot(X, U)
self.y_scores_ = np.dot(Y, V)
self.x_weights_ = U
self.y_weights_ = V
return self
def transform(self, X, Y=None):
"""Apply the dimension reduction learned on the train data."""
Xr = (X - self.x_mean_) / self.x_std_
x_scores = np.dot(Xr, self.x_weights_)
if Y is not None:
Yr = (Y - self.y_mean_) / self.y_std_
y_scores = np.dot(Yr, self.y_weights_)
return x_scores, y_scores
return x_scores
|