This file is indexed.

/usr/share/pyshared/sklearn/qda.py is in python-sklearn 0.11.0-2+deb7u1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""
Quadratic Discriminant Analysis
"""

# Author: Matthieu Perrot <matthieu.perrot@gmail.com>
#
# License: BSD Style.

import warnings

import numpy as np
import scipy.ndimage as ndimage

from .base import BaseEstimator, ClassifierMixin


# FIXME :
# - in fit(X, y) method, many checks are common with other models
#   (in particular LDA model) and should be factorized:
#   maybe in BaseEstimator ?

class QDA(BaseEstimator, ClassifierMixin):
    """
    Quadratic Discriminant Analysis (QDA)

    A classifier with a quadratic decision boundary, generated
    by fitting class conditional densities to the data
    and using Bayes' rule.

    The model fits a Gaussian density to each class.

    Parameters
    ----------
    priors : array, optional, shape = [n_classes]
        Priors on classes

    Attributes
    ----------
    `means_` : array-like, shape = [n_classes, n_features]
        Class means
    `priors_` : array-like, shape = [n_classes]
        Class priors (sum to 1)
    `covariances_` : list of array-like, shape = [n_features, n_features]
        Covariance matrices of each class

    Examples
    --------
    >>> from sklearn.qda import QDA
    >>> import numpy as np
    >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    >>> y = np.array([1, 1, 1, 2, 2, 2])
    >>> clf = QDA()
    >>> clf.fit(X, y)
    QDA(priors=None)
    >>> print clf.predict([[-0.8, -1]])
    [1]

    See also
    --------
    sklearn.lda.LDA: Linear discriminant analysis
    """

    def __init__(self, priors=None):
        self.priors = np.asarray(priors) if priors is not None else None

    def fit(self, X, y, store_covariances=False, tol=1.0e-4):
        """
        Fit the QDA model according to the given training data and parameters.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.
        y : array, shape = [n_samples]
            Target values (integers)
        store_covariances : boolean
            If True the covariance matrices are computed and stored in the
            `self.covariances_` attribute.
        """
        X = np.asarray(X)
        y = np.asarray(y)
        if X.ndim != 2:
            raise ValueError('X must be a 2D array')
        if X.shape[0] != y.shape[0]:
            raise ValueError(
                'Incompatible shapes: X has %s samples, while y '
                'has %s' % (X.shape[0], y.shape[0]))
        if y.dtype.char.lower() not in ('b', 'h', 'i'):
            # We need integer values to be able to use
            # ndimage.measurements and np.bincount on numpy >= 2.0.
            # We currently support (u)int8, (u)int16 and (u)int32.
            # Note that versions of scipy >= 0.8 can also accept
            # (u)int64. We however don't support it for backwards
            # compatibility.
            y = y.astype(np.int32)
        n_samples, n_features = X.shape
        classes = np.unique(y)
        n_classes = classes.size
        if n_classes < 2:
            raise ValueError('y has less than 2 classes')
        classes_indices = [(y == c).ravel() for c in classes]
        if self.priors is None:
            counts = np.array(ndimage.measurements.sum(
                np.ones(n_samples, dtype=y.dtype), y, index=classes))
            self.priors_ = counts / float(n_samples)
        else:
            self.priors_ = self.priors

        cov = None
        if store_covariances:
            cov = []
        means = []
        scalings = []
        rotations = []
        for group_indices in classes_indices:
            Xg = X[group_indices, :]
            meang = Xg.mean(0)
            means.append(meang)
            Xgc = Xg - meang
            # Xgc = U * S * V.T
            U, S, Vt = np.linalg.svd(Xgc, full_matrices=False)
            rank = np.sum(S > tol)
            if rank < n_features:
                warnings.warn("Variables are collinear")
            S2 = (S ** 2) / (len(Xg) - 1)
            if store_covariances:
                # cov = V * (S^2 / (n-1)) * V.T
                cov.append(np.dot(S2 * Vt.T, Vt))
            scalings.append(S2)
            rotations.append(Vt.T)
        if store_covariances:
            self.covariances_ = cov
        self.means_ = np.asarray(means)
        self.scalings = np.asarray(scalings)
        self.rotations = rotations
        self.classes = classes
        return self

    def decision_function(self, X):
        """Apply decision function to an array of samples.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Array of samples (test vectors).

        Returns
        -------
        C : array, shape = [n_samples, n_classes]
            Decision function values related to each class, per sample.
        """
        X = np.asarray(X)
        norm2 = []
        for i in range(len(self.classes)):
            R = self.rotations[i]
            S = self.scalings[i]
            Xm = X - self.means_[i]
            X2 = np.dot(Xm, R * (S ** (-0.5)))
            norm2.append(np.sum(X2 ** 2, 1))
        norm2 = np.array(norm2).T   # shape = [len(X), n_classes]
        return (-0.5 * (norm2 + np.sum(np.log(self.scalings), 1))
                + np.log(self.priors_))

    def predict(self, X):
        """Perform classification on an array of test vectors X.

        The predicted class C for each sample in X is returned.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        C : array, shape = [n_samples]
        """
        d = self.decision_function(X)
        y_pred = self.classes[d.argmax(1)]
        return y_pred

    def predict_proba(self, X):
        """Return posterior probabilities of classification.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Array of samples/test vectors.

        Returns
        -------
        C : array, shape = [n_samples, n_classes]
            Posterior probabilities of classification per class.
        """
        values = self.decision_function(X)
        # compute the likelihood of the underlying gaussian models
        # up to a multiplicative constant.
        likelihood = np.exp(values - values.min(axis=1)[:, np.newaxis])
        # compute posterior probabilities
        return likelihood / likelihood.sum(axis=1)[:, np.newaxis]

    def predict_log_proba(self, X):
        """Return posterior probabilities of classification.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Array of samples/test vectors.

        Returns
        -------
        C : array, shape = [n_samples, n_classes]
            Posterior log-probabilities of classification per class.
        """
        # XXX : can do better to avoid precision overflows
        probas_ = self.predict_proba(X)
        return np.log(probas_)