/usr/share/pyshared/sqlalchemy/ext/declarative.py is in python-sqlalchemy 0.7.8-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 | # ext/declarative.py
# Copyright (C) 2005-2012 the SQLAlchemy authors and contributors <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php
"""
Synopsis
========
SQLAlchemy object-relational configuration involves the
combination of :class:`.Table`, :func:`.mapper`, and class
objects to define a mapped class.
:mod:`~sqlalchemy.ext.declarative` allows all three to be
expressed at once within the class declaration. As much as
possible, regular SQLAlchemy schema and ORM constructs are
used directly, so that configuration between "classical" ORM
usage and declarative remain highly similar.
As a simple example::
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class SomeClass(Base):
__tablename__ = 'some_table'
id = Column(Integer, primary_key=True)
name = Column(String(50))
Above, the :func:`declarative_base` callable returns a new base class from
which all mapped classes should inherit. When the class definition is
completed, a new :class:`.Table` and
:func:`.mapper` will have been generated.
The resulting table and mapper are accessible via
``__table__`` and ``__mapper__`` attributes on the
``SomeClass`` class::
# access the mapped Table
SomeClass.__table__
# access the Mapper
SomeClass.__mapper__
Defining Attributes
===================
In the previous example, the :class:`.Column` objects are
automatically named with the name of the attribute to which they are
assigned.
To name columns explicitly with a name distinct from their mapped attribute,
just give the column a name. Below, column "some_table_id" is mapped to the
"id" attribute of `SomeClass`, but in SQL will be represented as "some_table_id"::
class SomeClass(Base):
__tablename__ = 'some_table'
id = Column("some_table_id", Integer, primary_key=True)
Attributes may be added to the class after its construction, and they will be
added to the underlying :class:`.Table` and
:func:`.mapper()` definitions as appropriate::
SomeClass.data = Column('data', Unicode)
SomeClass.related = relationship(RelatedInfo)
Classes which are constructed using declarative can interact freely
with classes that are mapped explicitly with :func:`mapper`.
It is recommended, though not required, that all tables
share the same underlying :class:`~sqlalchemy.schema.MetaData` object,
so that string-configured :class:`~sqlalchemy.schema.ForeignKey`
references can be resolved without issue.
Accessing the MetaData
=======================
The :func:`declarative_base` base class contains a
:class:`.MetaData` object where newly defined
:class:`.Table` objects are collected. This object is
intended to be accessed directly for
:class:`.MetaData`-specific operations. Such as, to issue
CREATE statements for all tables::
engine = create_engine('sqlite://')
Base.metadata.create_all(engine)
The usual techniques of associating :class:`.MetaData:` with :class:`.Engine`
apply, such as assigning to the ``bind`` attribute::
Base.metadata.bind = create_engine('sqlite://')
To associate the engine with the :func:`declarative_base` at time
of construction, the ``bind`` argument is accepted::
Base = declarative_base(bind=create_engine('sqlite://'))
:func:`declarative_base` can also receive a pre-existing
:class:`.MetaData` object, which allows a
declarative setup to be associated with an already
existing traditional collection of :class:`~sqlalchemy.schema.Table`
objects::
mymetadata = MetaData()
Base = declarative_base(metadata=mymetadata)
Configuring Relationships
=========================
Relationships to other classes are done in the usual way, with the added
feature that the class specified to :func:`~sqlalchemy.orm.relationship`
may be a string name. The "class registry" associated with ``Base``
is used at mapper compilation time to resolve the name into the actual
class object, which is expected to have been defined once the mapper
configuration is used::
class User(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String(50))
addresses = relationship("Address", backref="user")
class Address(Base):
__tablename__ = 'addresses'
id = Column(Integer, primary_key=True)
email = Column(String(50))
user_id = Column(Integer, ForeignKey('users.id'))
Column constructs, since they are just that, are immediately usable,
as below where we define a primary join condition on the ``Address``
class using them::
class Address(Base):
__tablename__ = 'addresses'
id = Column(Integer, primary_key=True)
email = Column(String(50))
user_id = Column(Integer, ForeignKey('users.id'))
user = relationship(User, primaryjoin=user_id == User.id)
In addition to the main argument for :func:`~sqlalchemy.orm.relationship`,
other arguments which depend upon the columns present on an as-yet
undefined class may also be specified as strings. These strings are
evaluated as Python expressions. The full namespace available within
this evaluation includes all classes mapped for this declarative base,
as well as the contents of the ``sqlalchemy`` package, including
expression functions like :func:`~sqlalchemy.sql.expression.desc` and
:attr:`~sqlalchemy.sql.expression.func`::
class User(Base):
# ....
addresses = relationship("Address",
order_by="desc(Address.email)",
primaryjoin="Address.user_id==User.id")
As an alternative to string-based attributes, attributes may also be
defined after all classes have been created. Just add them to the target
class after the fact::
User.addresses = relationship(Address,
primaryjoin=Address.user_id==User.id)
Configuring Many-to-Many Relationships
======================================
Many-to-many relationships are also declared in the same way
with declarative as with traditional mappings. The
``secondary`` argument to
:func:`.relationship` is as usual passed a
:class:`.Table` object, which is typically declared in the
traditional way. The :class:`.Table` usually shares
the :class:`.MetaData` object used by the declarative base::
keywords = Table(
'keywords', Base.metadata,
Column('author_id', Integer, ForeignKey('authors.id')),
Column('keyword_id', Integer, ForeignKey('keywords.id'))
)
class Author(Base):
__tablename__ = 'authors'
id = Column(Integer, primary_key=True)
keywords = relationship("Keyword", secondary=keywords)
Like other :func:`.relationship` arguments, a string is accepted as well,
passing the string name of the table as defined in the ``Base.metadata.tables``
collection::
class Author(Base):
__tablename__ = 'authors'
id = Column(Integer, primary_key=True)
keywords = relationship("Keyword", secondary="keywords")
As with traditional mapping, its generally not a good idea to use
a :class:`.Table` as the "secondary" argument which is also mapped to
a class, unless the :class:`.relationship` is declared with ``viewonly=True``.
Otherwise, the unit-of-work system may attempt duplicate INSERT and
DELETE statements against the underlying table.
.. _declarative_sql_expressions:
Defining SQL Expressions
========================
See :ref:`mapper_sql_expressions` for examples on declaratively
mapping attributes to SQL expressions.
.. _declarative_table_args:
Table Configuration
===================
Table arguments other than the name, metadata, and mapped Column
arguments are specified using the ``__table_args__`` class attribute.
This attribute accommodates both positional as well as keyword
arguments that are normally sent to the
:class:`~sqlalchemy.schema.Table` constructor.
The attribute can be specified in one of two forms. One is as a
dictionary::
class MyClass(Base):
__tablename__ = 'sometable'
__table_args__ = {'mysql_engine':'InnoDB'}
The other, a tuple, where each argument is positional
(usually constraints)::
class MyClass(Base):
__tablename__ = 'sometable'
__table_args__ = (
ForeignKeyConstraint(['id'], ['remote_table.id']),
UniqueConstraint('foo'),
)
Keyword arguments can be specified with the above form by
specifying the last argument as a dictionary::
class MyClass(Base):
__tablename__ = 'sometable'
__table_args__ = (
ForeignKeyConstraint(['id'], ['remote_table.id']),
UniqueConstraint('foo'),
{'autoload':True}
)
Using a Hybrid Approach with __table__
=======================================
As an alternative to ``__tablename__``, a direct
:class:`~sqlalchemy.schema.Table` construct may be used. The
:class:`~sqlalchemy.schema.Column` objects, which in this case require
their names, will be added to the mapping just like a regular mapping
to a table::
class MyClass(Base):
__table__ = Table('my_table', Base.metadata,
Column('id', Integer, primary_key=True),
Column('name', String(50))
)
``__table__`` provides a more focused point of control for establishing
table metadata, while still getting most of the benefits of using declarative.
An application that uses reflection might want to load table metadata elsewhere
and pass it to declarative classes::
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
Base.metadata.reflect(some_engine)
class User(Base):
__table__ = metadata.tables['user']
class Address(Base):
__table__ = metadata.tables['address']
Some configuration schemes may find it more appropriate to use ``__table__``,
such as those which already take advantage of the data-driven nature of
:class:`.Table` to customize and/or automate schema definition.
Note that when the ``__table__`` approach is used, the object is immediately
usable as a plain :class:`.Table` within the class declaration body itself,
as a Python class is only another syntactical block. Below this is illustrated
by using the ``id`` column in the ``primaryjoin`` condition of a :func:`.relationship`::
class MyClass(Base):
__table__ = Table('my_table', Base.metadata,
Column('id', Integer, primary_key=True),
Column('name', String(50))
)
widgets = relationship(Widget,
primaryjoin=Widget.myclass_id==__table__.c.id)
Similarly, mapped attributes which refer to ``__table__`` can be placed inline,
as below where we assign the ``name`` column to the attribute ``_name``, generating
a synonym for ``name``::
from sqlalchemy.ext.declarative import synonym_for
class MyClass(Base):
__table__ = Table('my_table', Base.metadata,
Column('id', Integer, primary_key=True),
Column('name', String(50))
)
_name = __table__.c.name
@synonym_for("_name")
def name(self):
return "Name: %s" % _name
Using Reflection with Declarative
=================================
It's easy to set up a :class:`.Table` that uses ``autoload=True``
in conjunction with a mapped class::
class MyClass(Base):
__table__ = Table('mytable', Base.metadata,
autoload=True, autoload_with=some_engine)
However, one improvement that can be made here is to not
require the :class:`.Engine` to be available when classes are
being first declared. To achieve this, use the example
described at :ref:`examples_declarative_reflection` to build a
declarative base that sets up mappings only after a special
``prepare(engine)`` step is called::
Base = declarative_base(cls=DeclarativeReflectedBase)
class Foo(Base):
__tablename__ = 'foo'
bars = relationship("Bar")
class Bar(Base):
__tablename__ = 'bar'
# illustrate overriding of "bar.foo_id" to have
# a foreign key constraint otherwise not
# reflected, such as when using MySQL
foo_id = Column(Integer, ForeignKey('foo.id'))
Base.prepare(e)
Mapper Configuration
====================
Declarative makes use of the :func:`~.orm.mapper` function internally
when it creates the mapping to the declared table. The options
for :func:`~.orm.mapper` are passed directly through via the ``__mapper_args__``
class attribute. As always, arguments which reference locally
mapped columns can reference them directly from within the
class declaration::
from datetime import datetime
class Widget(Base):
__tablename__ = 'widgets'
id = Column(Integer, primary_key=True)
timestamp = Column(DateTime, nullable=False)
__mapper_args__ = {
'version_id_col': timestamp,
'version_id_generator': lambda v:datetime.now()
}
.. _declarative_inheritance:
Inheritance Configuration
=========================
Declarative supports all three forms of inheritance as intuitively
as possible. The ``inherits`` mapper keyword argument is not needed
as declarative will determine this from the class itself. The various
"polymorphic" keyword arguments are specified using ``__mapper_args__``.
Joined Table Inheritance
~~~~~~~~~~~~~~~~~~~~~~~~
Joined table inheritance is defined as a subclass that defines its own
table::
class Person(Base):
__tablename__ = 'people'
id = Column(Integer, primary_key=True)
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__tablename__ = 'engineers'
__mapper_args__ = {'polymorphic_identity': 'engineer'}
id = Column(Integer, ForeignKey('people.id'), primary_key=True)
primary_language = Column(String(50))
Note that above, the ``Engineer.id`` attribute, since it shares the
same attribute name as the ``Person.id`` attribute, will in fact
represent the ``people.id`` and ``engineers.id`` columns together, and
will render inside a query as ``"people.id"``.
To provide the ``Engineer`` class with an attribute that represents
only the ``engineers.id`` column, give it a different attribute name::
class Engineer(Person):
__tablename__ = 'engineers'
__mapper_args__ = {'polymorphic_identity': 'engineer'}
engineer_id = Column('id', Integer, ForeignKey('people.id'),
primary_key=True)
primary_language = Column(String(50))
Single Table Inheritance
~~~~~~~~~~~~~~~~~~~~~~~~
Single table inheritance is defined as a subclass that does not have
its own table; you just leave out the ``__table__`` and ``__tablename__``
attributes::
class Person(Base):
__tablename__ = 'people'
id = Column(Integer, primary_key=True)
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__mapper_args__ = {'polymorphic_identity': 'engineer'}
primary_language = Column(String(50))
When the above mappers are configured, the ``Person`` class is mapped
to the ``people`` table *before* the ``primary_language`` column is
defined, and this column will not be included in its own mapping.
When ``Engineer`` then defines the ``primary_language`` column, the
column is added to the ``people`` table so that it is included in the
mapping for ``Engineer`` and is also part of the table's full set of
columns. Columns which are not mapped to ``Person`` are also excluded
from any other single or joined inheriting classes using the
``exclude_properties`` mapper argument. Below, ``Manager`` will have
all the attributes of ``Person`` and ``Manager`` but *not* the
``primary_language`` attribute of ``Engineer``::
class Manager(Person):
__mapper_args__ = {'polymorphic_identity': 'manager'}
golf_swing = Column(String(50))
The attribute exclusion logic is provided by the
``exclude_properties`` mapper argument, and declarative's default
behavior can be disabled by passing an explicit ``exclude_properties``
collection (empty or otherwise) to the ``__mapper_args__``.
Concrete Table Inheritance
~~~~~~~~~~~~~~~~~~~~~~~~~~
Concrete is defined as a subclass which has its own table and sets the
``concrete`` keyword argument to ``True``::
class Person(Base):
__tablename__ = 'people'
id = Column(Integer, primary_key=True)
name = Column(String(50))
class Engineer(Person):
__tablename__ = 'engineers'
__mapper_args__ = {'concrete':True}
id = Column(Integer, primary_key=True)
primary_language = Column(String(50))
name = Column(String(50))
Usage of an abstract base class is a little less straightforward as it
requires usage of :func:`~sqlalchemy.orm.util.polymorphic_union`,
which needs to be created with the :class:`.Table` objects
before the class is built::
engineers = Table('engineers', Base.metadata,
Column('id', Integer, primary_key=True),
Column('name', String(50)),
Column('primary_language', String(50))
)
managers = Table('managers', Base.metadata,
Column('id', Integer, primary_key=True),
Column('name', String(50)),
Column('golf_swing', String(50))
)
punion = polymorphic_union({
'engineer':engineers,
'manager':managers
}, 'type', 'punion')
class Person(Base):
__table__ = punion
__mapper_args__ = {'polymorphic_on':punion.c.type}
class Engineer(Person):
__table__ = engineers
__mapper_args__ = {'polymorphic_identity':'engineer', 'concrete':True}
class Manager(Person):
__table__ = managers
__mapper_args__ = {'polymorphic_identity':'manager', 'concrete':True}
.. _declarative_concrete_helpers:
Using the Concrete Helpers
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Helper classes provides a simpler pattern for concrete inheritance.
With these objects, the ``__declare_last__`` helper is used to configure the "polymorphic"
loader for the mapper after all subclasses have been declared.
.. versionadded:: 0.7.3
An abstract base can be declared using the :class:`.AbstractConcreteBase` class::
from sqlalchemy.ext.declarative import AbstractConcreteBase
class Employee(AbstractConcreteBase, Base):
pass
To have a concrete ``employee`` table, use :class:`.ConcreteBase` instead::
from sqlalchemy.ext.declarative import ConcreteBase
class Employee(ConcreteBase, Base):
__tablename__ = 'employee'
employee_id = Column(Integer, primary_key=True)
name = Column(String(50))
__mapper_args__ = {
'polymorphic_identity':'employee',
'concrete':True}
Either ``Employee`` base can be used in the normal fashion::
class Manager(Employee):
__tablename__ = 'manager'
employee_id = Column(Integer, primary_key=True)
name = Column(String(50))
manager_data = Column(String(40))
__mapper_args__ = {
'polymorphic_identity':'manager',
'concrete':True}
class Engineer(Employee):
__tablename__ = 'engineer'
employee_id = Column(Integer, primary_key=True)
name = Column(String(50))
engineer_info = Column(String(40))
__mapper_args__ = {'polymorphic_identity':'engineer',
'concrete':True}
.. _declarative_mixins:
Mixin and Custom Base Classes
==============================
A common need when using :mod:`~sqlalchemy.ext.declarative` is to
share some functionality, such as a set of common columns, some common
table options, or other mapped properties, across many
classes. The standard Python idioms for this is to have the classes
inherit from a base which includes these common features.
When using :mod:`~sqlalchemy.ext.declarative`, this idiom is allowed
via the usage of a custom declarative base class, as well as a "mixin" class
which is inherited from in addition to the primary base. Declarative
includes several helper features to make this work in terms of how
mappings are declared. An example of some commonly mixed-in
idioms is below::
from sqlalchemy.ext.declarative import declared_attr
class MyMixin(object):
@declared_attr
def __tablename__(cls):
return cls.__name__.lower()
__table_args__ = {'mysql_engine': 'InnoDB'}
__mapper_args__= {'always_refresh': True}
id = Column(Integer, primary_key=True)
class MyModel(MyMixin, Base):
name = Column(String(1000))
Where above, the class ``MyModel`` will contain an "id" column
as the primary key, a ``__tablename__`` attribute that derives
from the name of the class itself, as well as ``__table_args__``
and ``__mapper_args__`` defined by the ``MyMixin`` mixin class.
There's no fixed convention over whether ``MyMixin`` precedes
``Base`` or not. Normal Python method resolution rules apply, and
the above example would work just as well with::
class MyModel(Base, MyMixin):
name = Column(String(1000))
This works because ``Base`` here doesn't define any of the
variables that ``MyMixin`` defines, i.e. ``__tablename__``,
``__table_args__``, ``id``, etc. If the ``Base`` did define
an attribute of the same name, the class placed first in the
inherits list would determine which attribute is used on the
newly defined class.
Augmenting the Base
~~~~~~~~~~~~~~~~~~~
In addition to using a pure mixin, most of the techniques in this
section can also be applied to the base class itself, for patterns that
should apply to all classes derived from a particular base. This
is achieved using the ``cls`` argument of the :func:`.declarative_base` function::
from sqlalchemy.ext.declarative import declared_attr
class Base(object):
@declared_attr
def __tablename__(cls):
return cls.__name__.lower()
__table_args__ = {'mysql_engine': 'InnoDB'}
id = Column(Integer, primary_key=True)
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base(cls=Base)
class MyModel(Base):
name = Column(String(1000))
Where above, ``MyModel`` and all other classes that derive from ``Base`` will have
a table name derived from the class name, an ``id`` primary key column, as well as
the "InnoDB" engine for MySQL.
Mixing in Columns
~~~~~~~~~~~~~~~~~
The most basic way to specify a column on a mixin is by simple
declaration::
class TimestampMixin(object):
created_at = Column(DateTime, default=func.now())
class MyModel(TimestampMixin, Base):
__tablename__ = 'test'
id = Column(Integer, primary_key=True)
name = Column(String(1000))
Where above, all declarative classes that include ``TimestampMixin``
will also have a column ``created_at`` that applies a timestamp to
all row insertions.
Those familiar with the SQLAlchemy expression language know that
the object identity of clause elements defines their role in a schema.
Two ``Table`` objects ``a`` and ``b`` may both have a column called
``id``, but the way these are differentiated is that ``a.c.id``
and ``b.c.id`` are two distinct Python objects, referencing their
parent tables ``a`` and ``b`` respectively.
In the case of the mixin column, it seems that only one
:class:`.Column` object is explicitly created, yet the ultimate
``created_at`` column above must exist as a distinct Python object
for each separate destination class. To accomplish this, the declarative
extension creates a **copy** of each :class:`.Column` object encountered on
a class that is detected as a mixin.
This copy mechanism is limited to simple columns that have no foreign
keys, as a :class:`.ForeignKey` itself contains references to columns
which can't be properly recreated at this level. For columns that
have foreign keys, as well as for the variety of mapper-level constructs
that require destination-explicit context, the
:func:`~.declared_attr` decorator is provided so that
patterns common to many classes can be defined as callables::
from sqlalchemy.ext.declarative import declared_attr
class ReferenceAddressMixin(object):
@declared_attr
def address_id(cls):
return Column(Integer, ForeignKey('address.id'))
class User(ReferenceAddressMixin, Base):
__tablename__ = 'user'
id = Column(Integer, primary_key=True)
Where above, the ``address_id`` class-level callable is executed at the
point at which the ``User`` class is constructed, and the declarative
extension can use the resulting :class:`.Column` object as returned by
the method without the need to copy it.
.. versionchanged:: > 0.6.5
Rename 0.6.5 ``sqlalchemy.util.classproperty`` into :func:`~.declared_attr`.
Columns generated by :func:`~.declared_attr` can also be
referenced by ``__mapper_args__`` to a limited degree, currently
by ``polymorphic_on`` and ``version_id_col``, by specifying the
classdecorator itself into the dictionary - the declarative extension
will resolve them at class construction time::
class MyMixin:
@declared_attr
def type_(cls):
return Column(String(50))
__mapper_args__= {'polymorphic_on':type_}
class MyModel(MyMixin, Base):
__tablename__='test'
id = Column(Integer, primary_key=True)
Mixing in Relationships
~~~~~~~~~~~~~~~~~~~~~~~
Relationships created by :func:`~sqlalchemy.orm.relationship` are provided
with declarative mixin classes exclusively using the
:func:`.declared_attr` approach, eliminating any ambiguity
which could arise when copying a relationship and its possibly column-bound
contents. Below is an example which combines a foreign key column and a
relationship so that two classes ``Foo`` and ``Bar`` can both be configured to
reference a common target class via many-to-one::
class RefTargetMixin(object):
@declared_attr
def target_id(cls):
return Column('target_id', ForeignKey('target.id'))
@declared_attr
def target(cls):
return relationship("Target")
class Foo(RefTargetMixin, Base):
__tablename__ = 'foo'
id = Column(Integer, primary_key=True)
class Bar(RefTargetMixin, Base):
__tablename__ = 'bar'
id = Column(Integer, primary_key=True)
class Target(Base):
__tablename__ = 'target'
id = Column(Integer, primary_key=True)
:func:`~sqlalchemy.orm.relationship` definitions which require explicit
primaryjoin, order_by etc. expressions should use the string forms
for these arguments, so that they are evaluated as late as possible.
To reference the mixin class in these expressions, use the given ``cls``
to get it's name::
class RefTargetMixin(object):
@declared_attr
def target_id(cls):
return Column('target_id', ForeignKey('target.id'))
@declared_attr
def target(cls):
return relationship("Target",
primaryjoin="Target.id==%s.target_id" % cls.__name__
)
Mixing in deferred(), column_property(), etc.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Like :func:`~sqlalchemy.orm.relationship`, all
:class:`~sqlalchemy.orm.interfaces.MapperProperty` subclasses such as
:func:`~sqlalchemy.orm.deferred`, :func:`~sqlalchemy.orm.column_property`,
etc. ultimately involve references to columns, and therefore, when
used with declarative mixins, have the :func:`.declared_attr`
requirement so that no reliance on copying is needed::
class SomethingMixin(object):
@declared_attr
def dprop(cls):
return deferred(Column(Integer))
class Something(SomethingMixin, Base):
__tablename__ = "something"
Controlling table inheritance with mixins
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``__tablename__`` attribute in conjunction with the hierarchy of
classes involved in a declarative mixin scenario controls what type of
table inheritance, if any,
is configured by the declarative extension.
If the ``__tablename__`` is computed by a mixin, you may need to
control which classes get the computed attribute in order to get the
type of table inheritance you require.
For example, if you had a mixin that computes ``__tablename__`` but
where you wanted to use that mixin in a single table inheritance
hierarchy, you can explicitly specify ``__tablename__`` as ``None`` to
indicate that the class should not have a table mapped::
from sqlalchemy.ext.declarative import declared_attr
class Tablename:
@declared_attr
def __tablename__(cls):
return cls.__name__.lower()
class Person(Tablename, Base):
id = Column(Integer, primary_key=True)
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__tablename__ = None
__mapper_args__ = {'polymorphic_identity': 'engineer'}
primary_language = Column(String(50))
Alternatively, you can make the mixin intelligent enough to only
return a ``__tablename__`` in the event that no table is already
mapped in the inheritance hierarchy. To help with this, a
:func:`~sqlalchemy.ext.declarative.has_inherited_table` helper
function is provided that returns ``True`` if a parent class already
has a mapped table.
As an example, here's a mixin that will only allow single table
inheritance::
from sqlalchemy.ext.declarative import declared_attr
from sqlalchemy.ext.declarative import has_inherited_table
class Tablename(object):
@declared_attr
def __tablename__(cls):
if has_inherited_table(cls):
return None
return cls.__name__.lower()
class Person(Tablename, Base):
id = Column(Integer, primary_key=True)
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
primary_language = Column(String(50))
__mapper_args__ = {'polymorphic_identity': 'engineer'}
If you want to use a similar pattern with a mix of single and joined
table inheritance, you would need a slightly different mixin and use
it on any joined table child classes in addition to their parent
classes::
from sqlalchemy.ext.declarative import declared_attr
from sqlalchemy.ext.declarative import has_inherited_table
class Tablename(object):
@declared_attr
def __tablename__(cls):
if (has_inherited_table(cls) and
Tablename not in cls.__bases__):
return None
return cls.__name__.lower()
class Person(Tablename, Base):
id = Column(Integer, primary_key=True)
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
# This is single table inheritance
class Engineer(Person):
primary_language = Column(String(50))
__mapper_args__ = {'polymorphic_identity': 'engineer'}
# This is joined table inheritance
class Manager(Tablename, Person):
id = Column(Integer, ForeignKey('person.id'), primary_key=True)
preferred_recreation = Column(String(50))
__mapper_args__ = {'polymorphic_identity': 'engineer'}
Combining Table/Mapper Arguments from Multiple Mixins
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the case of ``__table_args__`` or ``__mapper_args__``
specified with declarative mixins, you may want to combine
some parameters from several mixins with those you wish to
define on the class iteself. The
:func:`.declared_attr` decorator can be used
here to create user-defined collation routines that pull
from multiple collections::
from sqlalchemy.ext.declarative import declared_attr
class MySQLSettings(object):
__table_args__ = {'mysql_engine':'InnoDB'}
class MyOtherMixin(object):
__table_args__ = {'info':'foo'}
class MyModel(MySQLSettings, MyOtherMixin, Base):
__tablename__='my_model'
@declared_attr
def __table_args__(cls):
args = dict()
args.update(MySQLSettings.__table_args__)
args.update(MyOtherMixin.__table_args__)
return args
id = Column(Integer, primary_key=True)
Creating Indexes with Mixins
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To define a named, potentially multicolumn :class:`.Index` that applies to all
tables derived from a mixin, use the "inline" form of :class:`.Index` and establish
it as part of ``__table_args__``::
class MyMixin(object):
a = Column(Integer)
b = Column(Integer)
@declared_attr
def __table_args__(cls):
return (Index('test_idx_%s' % cls.__tablename__, 'a', 'b'),)
class MyModel(MyMixin, Base):
__tablename__ = 'atable'
c = Column(Integer,primary_key=True)
Special Directives
==================
``__declare_last__()``
~~~~~~~~~~~~~~~~~~~~~~
The ``__declare_last__()`` hook allows definition of
a class level function that is automatically called by the :meth:`.MapperEvents.after_configured`
event, which occurs after mappings are assumed to be completed and the 'configure' step
has finished::
class MyClass(Base):
@classmethod
def __declare_last__(cls):
""
# do something with mappings
.. versionadded:: 0.7.3
.. _declarative_abstract:
``__abstract__``
~~~~~~~~~~~~~~~~~~~
``__abstract__`` causes declarative to skip the production
of a table or mapper for the class entirely. A class can be added within a hierarchy
in the same way as mixin (see :ref:`declarative_mixins`), allowing subclasses to extend
just from the special class::
class SomeAbstractBase(Base):
__abstract__ = True
def some_helpful_method(self):
""
@declared_attr
def __mapper_args__(cls):
return {"helpful mapper arguments":True}
class MyMappedClass(SomeAbstractBase):
""
One possible use of ``__abstract__`` is to use a distinct :class:`.MetaData` for different
bases::
Base = declarative_base()
class DefaultBase(Base):
__abstract__ = True
metadata = MetaData()
class OtherBase(Base):
__abstract__ = True
metadata = MetaData()
Above, classes which inherit from ``DefaultBase`` will use one :class:`.MetaData` as the
registry of tables, and those which inherit from ``OtherBase`` will use a different one.
The tables themselves can then be created perhaps within distinct databases::
DefaultBase.metadata.create_all(some_engine)
OtherBase.metadata_create_all(some_other_engine)
.. versionadded:: 0.7.3
Class Constructor
=================
As a convenience feature, the :func:`declarative_base` sets a default
constructor on classes which takes keyword arguments, and assigns them
to the named attributes::
e = Engineer(primary_language='python')
Sessions
========
Note that ``declarative`` does nothing special with sessions, and is
only intended as an easier way to configure mappers and
:class:`~sqlalchemy.schema.Table` objects. A typical application
setup using :func:`~sqlalchemy.orm.scoped_session` might look like::
engine = create_engine('postgresql://scott:tiger@localhost/test')
Session = scoped_session(sessionmaker(autocommit=False,
autoflush=False,
bind=engine))
Base = declarative_base()
Mapped instances then make usage of
:class:`~sqlalchemy.orm.session.Session` in the usual way.
"""
from sqlalchemy.schema import Table, Column, MetaData, _get_table_key
from sqlalchemy.orm import synonym as _orm_synonym, mapper,\
comparable_property, class_mapper
from sqlalchemy.orm.interfaces import MapperProperty
from sqlalchemy.orm.properties import RelationshipProperty, ColumnProperty, CompositeProperty
from sqlalchemy.orm.util import _is_mapped_class
from sqlalchemy import util, exc
from sqlalchemy.sql import util as sql_util, expression
from sqlalchemy import event
from sqlalchemy.orm.util import polymorphic_union, _mapper_or_none
__all__ = 'declarative_base', 'synonym_for', \
'comparable_using', 'instrument_declarative'
def instrument_declarative(cls, registry, metadata):
"""Given a class, configure the class declaratively,
using the given registry, which can be any dictionary, and
MetaData object.
"""
if '_decl_class_registry' in cls.__dict__:
raise exc.InvalidRequestError(
"Class %r already has been "
"instrumented declaratively" % cls)
cls._decl_class_registry = registry
cls.metadata = metadata
_as_declarative(cls, cls.__name__, cls.__dict__)
def has_inherited_table(cls):
"""Given a class, return True if any of the classes it inherits from has a
mapped table, otherwise return False.
"""
for class_ in cls.__mro__:
if getattr(class_,'__table__',None) is not None:
return True
return False
def _as_declarative(cls, classname, dict_):
# dict_ will be a dictproxy, which we can't write to, and we need to!
dict_ = dict(dict_)
column_copies = {}
potential_columns = {}
mapper_args = {}
table_args = inherited_table_args = None
tablename = None
parent_columns = ()
declarative_props = (declared_attr, util.classproperty)
for base in cls.__mro__:
_is_declarative_inherits = hasattr(base, '_decl_class_registry')
if '__declare_last__' in base.__dict__:
@event.listens_for(mapper, "after_configured")
def go():
cls.__declare_last__()
if '__abstract__' in base.__dict__:
if (base is cls or
(base in cls.__bases__ and not _is_declarative_inherits)
):
return
class_mapped = _is_mapped_class(base)
if class_mapped:
parent_columns = base.__table__.c.keys()
for name,obj in vars(base).items():
if name == '__mapper_args__':
if not mapper_args and (
not class_mapped or
isinstance(obj, declarative_props)
):
mapper_args = cls.__mapper_args__
elif name == '__tablename__':
if not tablename and (
not class_mapped or
isinstance(obj, declarative_props)
):
tablename = cls.__tablename__
elif name == '__table_args__':
if not table_args and (
not class_mapped or
isinstance(obj, declarative_props)
):
table_args = cls.__table_args__
if not isinstance(table_args, (tuple, dict, type(None))):
raise exc.ArgumentError(
"__table_args__ value must be a tuple, "
"dict, or None")
if base is not cls:
inherited_table_args = True
elif class_mapped:
if isinstance(obj, declarative_props):
util.warn("Regular (i.e. not __special__) "
"attribute '%s.%s' uses @declared_attr, "
"but owning class %s is mapped - "
"not applying to subclass %s."
% (base.__name__, name, base, cls))
continue
elif base is not cls:
# we're a mixin.
if isinstance(obj, Column):
if obj.foreign_keys:
raise exc.InvalidRequestError(
"Columns with foreign keys to other columns "
"must be declared as @declared_attr callables "
"on declarative mixin classes. ")
if name not in dict_ and not (
'__table__' in dict_ and
(obj.name or name) in dict_['__table__'].c
) and name not in potential_columns:
potential_columns[name] = \
column_copies[obj] = \
obj.copy()
column_copies[obj]._creation_order = \
obj._creation_order
elif isinstance(obj, MapperProperty):
raise exc.InvalidRequestError(
"Mapper properties (i.e. deferred,"
"column_property(), relationship(), etc.) must "
"be declared as @declared_attr callables "
"on declarative mixin classes.")
elif isinstance(obj, declarative_props):
dict_[name] = ret = \
column_copies[obj] = getattr(cls, name)
if isinstance(ret, (Column, MapperProperty)) and \
ret.doc is None:
ret.doc = obj.__doc__
# apply inherited columns as we should
for k, v in potential_columns.items():
if tablename or (v.name or k) not in parent_columns:
dict_[k] = v
if inherited_table_args and not tablename:
table_args = None
# make sure that column copies are used rather
# than the original columns from any mixins
for k in ('version_id_col', 'polymorphic_on',):
if k in mapper_args:
v = mapper_args[k]
mapper_args[k] = column_copies.get(v,v)
if classname in cls._decl_class_registry:
util.warn("The classname %r is already in the registry of this"
" declarative base, mapped to %r" % (
classname,
cls._decl_class_registry[classname]
))
cls._decl_class_registry[classname] = cls
our_stuff = util.OrderedDict()
for k in dict_:
value = dict_[k]
if isinstance(value, declarative_props):
value = getattr(cls, k)
if (isinstance(value, tuple) and len(value) == 1 and
isinstance(value[0], (Column, MapperProperty))):
util.warn("Ignoring declarative-like tuple value of attribute "
"%s: possibly a copy-and-paste error with a comma "
"left at the end of the line?" % k)
continue
if not isinstance(value, (Column, MapperProperty)):
continue
if k == 'metadata':
raise exc.InvalidRequestError(
"Attribute name 'metadata' is reserved "
"for the MetaData instance when using a "
"declarative base class."
)
prop = _deferred_relationship(cls, value)
our_stuff[k] = prop
# set up attributes in the order they were created
our_stuff.sort(key=lambda key: our_stuff[key]._creation_order)
# extract columns from the class dict
cols = set()
for key, c in our_stuff.iteritems():
if isinstance(c, (ColumnProperty, CompositeProperty)):
for col in c.columns:
if isinstance(col, Column) and \
col.table is None:
_undefer_column_name(key, col)
cols.add(col)
elif isinstance(c, Column):
_undefer_column_name(key, c)
cols.add(c)
# if the column is the same name as the key,
# remove it from the explicit properties dict.
# the normal rules for assigning column-based properties
# will take over, including precedence of columns
# in multi-column ColumnProperties.
if key == c.key:
del our_stuff[key]
cols = sorted(cols, key=lambda c:c._creation_order)
table = None
if hasattr(cls, '__table_cls__'):
table_cls = util.unbound_method_to_callable(cls.__table_cls__)
else:
table_cls = Table
if '__table__' not in dict_:
if tablename is not None:
args, table_kw = (), {}
if table_args:
if isinstance(table_args, dict):
table_kw = table_args
elif isinstance(table_args, tuple):
if isinstance(table_args[-1], dict):
args, table_kw = table_args[0:-1], table_args[-1]
else:
args = table_args
autoload = dict_.get('__autoload__')
if autoload:
table_kw['autoload'] = True
cls.__table__ = table = table_cls(tablename, cls.metadata,
*(tuple(cols) + tuple(args)),
**table_kw)
else:
table = cls.__table__
if cols:
for c in cols:
if not table.c.contains_column(c):
raise exc.ArgumentError(
"Can't add additional column %r when "
"specifying __table__" % c.key
)
if 'inherits' not in mapper_args:
for c in cls.__bases__:
if _is_mapped_class(c):
mapper_args['inherits'] = c
break
if hasattr(cls, '__mapper_cls__'):
mapper_cls = util.unbound_method_to_callable(cls.__mapper_cls__)
else:
mapper_cls = mapper
if table is None and 'inherits' not in mapper_args:
raise exc.InvalidRequestError(
"Class %r does not have a __table__ or __tablename__ "
"specified and does not inherit from an existing "
"table-mapped class." % cls
)
elif 'inherits' in mapper_args and not mapper_args.get('concrete', False):
inherited_mapper = class_mapper(mapper_args['inherits'],
compile=False)
inherited_table = inherited_mapper.local_table
if table is None:
# single table inheritance.
# ensure no table args
if table_args:
raise exc.ArgumentError(
"Can't place __table_args__ on an inherited class "
"with no table."
)
# add any columns declared here to the inherited table.
for c in cols:
if c.primary_key:
raise exc.ArgumentError(
"Can't place primary key columns on an inherited "
"class with no table."
)
if c.name in inherited_table.c:
raise exc.ArgumentError(
"Column '%s' on class %s conflicts with "
"existing column '%s'" %
(c, cls, inherited_table.c[c.name])
)
inherited_table.append_column(c)
# single or joined inheritance
# exclude any cols on the inherited table which are not mapped on the
# parent class, to avoid
# mapping columns specific to sibling/nephew classes
inherited_mapper = class_mapper(mapper_args['inherits'],
compile=False)
inherited_table = inherited_mapper.local_table
if 'exclude_properties' not in mapper_args:
mapper_args['exclude_properties'] = exclude_properties = \
set([c.key for c in inherited_table.c
if c not in inherited_mapper._columntoproperty])
exclude_properties.difference_update([c.key for c in cols])
# look through columns in the current mapper that
# are keyed to a propname different than the colname
# (if names were the same, we'd have popped it out above,
# in which case the mapper makes this combination).
# See if the superclass has a similar column property.
# If so, join them together.
for k, col in our_stuff.items():
if not isinstance(col, expression.ColumnElement):
continue
if k in inherited_mapper._props:
p = inherited_mapper._props[k]
if isinstance(p, ColumnProperty):
# note here we place the subclass column
# first. See [ticket:1892] for background.
our_stuff[k] = [col] + p.columns
cls.__mapper__ = mapper_cls(cls,
table,
properties=our_stuff,
**mapper_args)
class DeclarativeMeta(type):
def __init__(cls, classname, bases, dict_):
if '_decl_class_registry' in cls.__dict__:
return type.__init__(cls, classname, bases, dict_)
else:
_as_declarative(cls, classname, cls.__dict__)
return type.__init__(cls, classname, bases, dict_)
def __setattr__(cls, key, value):
if '__mapper__' in cls.__dict__:
if isinstance(value, Column):
_undefer_column_name(key, value)
cls.__table__.append_column(value)
cls.__mapper__.add_property(key, value)
elif isinstance(value, ColumnProperty):
for col in value.columns:
if isinstance(col, Column) and col.table is None:
_undefer_column_name(key, col)
cls.__table__.append_column(col)
cls.__mapper__.add_property(key, value)
elif isinstance(value, MapperProperty):
cls.__mapper__.add_property(
key,
_deferred_relationship(cls, value)
)
else:
type.__setattr__(cls, key, value)
else:
type.__setattr__(cls, key, value)
class _GetColumns(object):
def __init__(self, cls):
self.cls = cls
def __getattr__(self, key):
mapper = class_mapper(self.cls, compile=False)
if mapper:
if not mapper.has_property(key):
raise exc.InvalidRequestError(
"Class %r does not have a mapped column named %r"
% (self.cls, key))
prop = mapper.get_property(key)
if not isinstance(prop, ColumnProperty):
raise exc.InvalidRequestError(
"Property %r is not an instance of"
" ColumnProperty (i.e. does not correspond"
" directly to a Column)." % key)
return getattr(self.cls, key)
class _GetTable(object):
def __init__(self, key, metadata):
self.key = key
self.metadata = metadata
def __getattr__(self, key):
return self.metadata.tables[
_get_table_key(key, self.key)
]
def _deferred_relationship(cls, prop):
def resolve_arg(arg):
import sqlalchemy
def access_cls(key):
if key in cls._decl_class_registry:
return _GetColumns(cls._decl_class_registry[key])
elif key in cls.metadata.tables:
return cls.metadata.tables[key]
elif key in cls.metadata._schemas:
return _GetTable(key, cls.metadata)
else:
return sqlalchemy.__dict__[key]
d = util.PopulateDict(access_cls)
def return_cls():
try:
x = eval(arg, globals(), d)
if isinstance(x, _GetColumns):
return x.cls
else:
return x
except NameError, n:
raise exc.InvalidRequestError(
"When initializing mapper %s, expression %r failed to "
"locate a name (%r). If this is a class name, consider "
"adding this relationship() to the %r class after "
"both dependent classes have been defined." %
(prop.parent, arg, n.args[0], cls)
)
return return_cls
if isinstance(prop, RelationshipProperty):
for attr in ('argument', 'order_by', 'primaryjoin', 'secondaryjoin',
'secondary', '_user_defined_foreign_keys', 'remote_side'):
v = getattr(prop, attr)
if isinstance(v, basestring):
setattr(prop, attr, resolve_arg(v))
if prop.backref and isinstance(prop.backref, tuple):
key, kwargs = prop.backref
for attr in ('primaryjoin', 'secondaryjoin', 'secondary',
'foreign_keys', 'remote_side', 'order_by'):
if attr in kwargs and isinstance(kwargs[attr], basestring):
kwargs[attr] = resolve_arg(kwargs[attr])
return prop
def synonym_for(name, map_column=False):
"""Decorator, make a Python @property a query synonym for a column.
A decorator version of :func:`~sqlalchemy.orm.synonym`. The function being
decorated is the 'descriptor', otherwise passes its arguments through to
synonym()::
@synonym_for('col')
@property
def prop(self):
return 'special sauce'
The regular ``synonym()`` is also usable directly in a declarative setting
and may be convenient for read/write properties::
prop = synonym('col', descriptor=property(_read_prop, _write_prop))
"""
def decorate(fn):
return _orm_synonym(name, map_column=map_column, descriptor=fn)
return decorate
def comparable_using(comparator_factory):
"""Decorator, allow a Python @property to be used in query criteria.
This is a decorator front end to
:func:`~sqlalchemy.orm.comparable_property` that passes
through the comparator_factory and the function being decorated::
@comparable_using(MyComparatorType)
@property
def prop(self):
return 'special sauce'
The regular ``comparable_property()`` is also usable directly in a
declarative setting and may be convenient for read/write properties::
prop = comparable_property(MyComparatorType)
"""
def decorate(fn):
return comparable_property(comparator_factory, fn)
return decorate
class declared_attr(property):
"""Mark a class-level method as representing the definition of
a mapped property or special declarative member name.
.. versionchanged:: 0.6.{2,3,4}
``@declared_attr`` is available as
``sqlalchemy.util.classproperty`` for SQLAlchemy versions
0.6.2, 0.6.3, 0.6.4.
@declared_attr turns the attribute into a scalar-like
property that can be invoked from the uninstantiated class.
Declarative treats attributes specifically marked with
@declared_attr as returning a construct that is specific
to mapping or declarative table configuration. The name
of the attribute is that of what the non-dynamic version
of the attribute would be.
@declared_attr is more often than not applicable to mixins,
to define relationships that are to be applied to different
implementors of the class::
class ProvidesUser(object):
"A mixin that adds a 'user' relationship to classes."
@declared_attr
def user(self):
return relationship("User")
It also can be applied to mapped classes, such as to provide
a "polymorphic" scheme for inheritance::
class Employee(Base):
id = Column(Integer, primary_key=True)
type = Column(String(50), nullable=False)
@declared_attr
def __tablename__(cls):
return cls.__name__.lower()
@declared_attr
def __mapper_args__(cls):
if cls.__name__ == 'Employee':
return {
"polymorphic_on":cls.type,
"polymorphic_identity":"Employee"
}
else:
return {"polymorphic_identity":cls.__name__}
"""
def __init__(self, fget, *arg, **kw):
super(declared_attr, self).__init__(fget, *arg, **kw)
self.__doc__ = fget.__doc__
def __get__(desc, self, cls):
return desc.fget(cls)
def _declarative_constructor(self, **kwargs):
"""A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and
values in ``kwargs``.
Only keys that are present as
attributes of the instance's class are allowed. These could be,
for example, any mapped columns or relationships.
"""
cls_ = type(self)
for k in kwargs:
if not hasattr(cls_, k):
raise TypeError(
"%r is an invalid keyword argument for %s" %
(k, cls_.__name__))
setattr(self, k, kwargs[k])
_declarative_constructor.__name__ = '__init__'
def declarative_base(bind=None, metadata=None, mapper=None, cls=object,
name='Base', constructor=_declarative_constructor,
class_registry=None,
metaclass=DeclarativeMeta):
"""Construct a base class for declarative class definitions.
The new base class will be given a metaclass that produces
appropriate :class:`~sqlalchemy.schema.Table` objects and makes
the appropriate :func:`~sqlalchemy.orm.mapper` calls based on the
information provided declaratively in the class and any subclasses
of the class.
:param bind: An optional
:class:`~sqlalchemy.engine.base.Connectable`, will be assigned
the ``bind`` attribute on the :class:`~sqlalchemy.MetaData`
instance.
:param metadata:
An optional :class:`~sqlalchemy.MetaData` instance. All
:class:`~sqlalchemy.schema.Table` objects implicitly declared by
subclasses of the base will share this MetaData. A MetaData instance
will be created if none is provided. The
:class:`~sqlalchemy.MetaData` instance will be available via the
`metadata` attribute of the generated declarative base class.
:param mapper:
An optional callable, defaults to :func:`~sqlalchemy.orm.mapper`. Will
be used to map subclasses to their Tables.
:param cls:
Defaults to :class:`object`. A type to use as the base for the generated
declarative base class. May be a class or tuple of classes.
:param name:
Defaults to ``Base``. The display name for the generated
class. Customizing this is not required, but can improve clarity in
tracebacks and debugging.
:param constructor:
Defaults to
:func:`~sqlalchemy.ext.declarative._declarative_constructor`, an
__init__ implementation that assigns \**kwargs for declared
fields and relationships to an instance. If ``None`` is supplied,
no __init__ will be provided and construction will fall back to
cls.__init__ by way of the normal Python semantics.
:param class_registry: optional dictionary that will serve as the
registry of class names-> mapped classes when string names
are used to identify classes inside of :func:`.relationship`
and others. Allows two or more declarative base classes
to share the same registry of class names for simplified
inter-base relationships.
:param metaclass:
Defaults to :class:`.DeclarativeMeta`. A metaclass or __metaclass__
compatible callable to use as the meta type of the generated
declarative base class.
"""
lcl_metadata = metadata or MetaData()
if bind:
lcl_metadata.bind = bind
if class_registry is None:
class_registry = {}
bases = not isinstance(cls, tuple) and (cls,) or cls
class_dict = dict(_decl_class_registry=class_registry,
metadata=lcl_metadata)
if constructor:
class_dict['__init__'] = constructor
if mapper:
class_dict['__mapper_cls__'] = mapper
return metaclass(name, bases, class_dict)
def _undefer_column_name(key, column):
if column.key is None:
column.key = key
if column.name is None:
column.name = key
class ConcreteBase(object):
"""A helper class for 'concrete' declarative mappings.
:class:`.ConcreteBase` will use the :func:`.polymorphic_union`
function automatically, against all tables mapped as a subclass
to this class. The function is called via the
``__declare_last__()`` function, which is essentially
a hook for the :func:`.MapperEvents.after_configured` event.
:class:`.ConcreteBase` produces a mapped
table for the class itself. Compare to :class:`.AbstractConcreteBase`,
which does not.
Example::
from sqlalchemy.ext.declarative import ConcreteBase
class Employee(ConcreteBase, Base):
__tablename__ = 'employee'
employee_id = Column(Integer, primary_key=True)
name = Column(String(50))
__mapper_args__ = {
'polymorphic_identity':'employee',
'concrete':True}
class Manager(Employee):
__tablename__ = 'manager'
employee_id = Column(Integer, primary_key=True)
name = Column(String(50))
manager_data = Column(String(40))
__mapper_args__ = {
'polymorphic_identity':'manager',
'concrete':True}
"""
@classmethod
def _create_polymorphic_union(cls, mappers):
return polymorphic_union(dict(
(mapper.polymorphic_identity, mapper.local_table)
for mapper in mappers
), 'type', 'pjoin')
@classmethod
def __declare_last__(cls):
m = cls.__mapper__
if m.with_polymorphic:
return
mappers = list(m.self_and_descendants)
pjoin = cls._create_polymorphic_union(mappers)
m._set_with_polymorphic(("*",pjoin))
m._set_polymorphic_on(pjoin.c.type)
class AbstractConcreteBase(ConcreteBase):
"""A helper class for 'concrete' declarative mappings.
:class:`.AbstractConcreteBase` will use the :func:`.polymorphic_union`
function automatically, against all tables mapped as a subclass
to this class. The function is called via the
``__declare_last__()`` function, which is essentially
a hook for the :func:`.MapperEvents.after_configured` event.
:class:`.AbstractConcreteBase` does not produce a mapped
table for the class itself. Compare to :class:`.ConcreteBase`,
which does.
Example::
from sqlalchemy.ext.declarative import ConcreteBase
class Employee(AbstractConcreteBase, Base):
pass
class Manager(Employee):
__tablename__ = 'manager'
employee_id = Column(Integer, primary_key=True)
name = Column(String(50))
manager_data = Column(String(40))
__mapper_args__ = {
'polymorphic_identity':'manager',
'concrete':True}
"""
__abstract__ = True
@classmethod
def __declare_last__(cls):
if hasattr(cls, '__mapper__'):
return
# can't rely on 'self_and_descendants' here
# since technically an immediate subclass
# might not be mapped, but a subclass
# may be.
mappers = []
stack = list(cls.__subclasses__())
while stack:
klass = stack.pop()
stack.extend(klass.__subclasses__())
mn = _mapper_or_none(klass)
if mn is not None:
mappers.append(mn)
pjoin = cls._create_polymorphic_union(mappers)
cls.__mapper__ = m = mapper(cls, pjoin, polymorphic_on=pjoin.c.type)
for scls in cls.__subclasses__():
sm = _mapper_or_none(scls)
if sm.concrete and cls in scls.__bases__:
sm._set_concrete_base(m)
|