/usr/share/pyshared/sqlalchemy/ext/hybrid.py is in python-sqlalchemy 0.7.8-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 | # ext/hybrid.py
# Copyright (C) 2005-2012 the SQLAlchemy authors and contributors <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php
"""Define attributes on ORM-mapped classes that have "hybrid" behavior.
"hybrid" means the attribute has distinct behaviors defined at the
class level and at the instance level.
The :mod:`~sqlalchemy.ext.hybrid` extension provides a special form of method
decorator, is around 50 lines of code and has almost no dependencies on the rest
of SQLAlchemy. It can, in theory, work with any descriptor-based expression
system.
Consider a mapping ``Interval``, representing integer ``start`` and ``end``
values. We can define higher level functions on mapped classes that produce
SQL expressions at the class level, and Python expression evaluation at the
instance level. Below, each function decorated with :class:`.hybrid_method` or
:class:`.hybrid_property` may receive ``self`` as an instance of the class, or
as the class itself::
from sqlalchemy import Column, Integer
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import Session, aliased
from sqlalchemy.ext.hybrid import hybrid_property, hybrid_method
Base = declarative_base()
class Interval(Base):
__tablename__ = 'interval'
id = Column(Integer, primary_key=True)
start = Column(Integer, nullable=False)
end = Column(Integer, nullable=False)
def __init__(self, start, end):
self.start = start
self.end = end
@hybrid_property
def length(self):
return self.end - self.start
@hybrid_method
def contains(self,point):
return (self.start <= point) & (point < self.end)
@hybrid_method
def intersects(self, other):
return self.contains(other.start) | self.contains(other.end)
Above, the ``length`` property returns the difference between the ``end`` and
``start`` attributes. With an instance of ``Interval``, this subtraction occurs
in Python, using normal Python descriptor mechanics::
>>> i1 = Interval(5, 10)
>>> i1.length
5
When dealing with the ``Interval`` class itself, the :class:`.hybrid_property`
descriptor evaluates the function body given the ``Interval`` class as
the argument, which when evaluated with SQLAlchemy expression mechanics
returns a new SQL expression::
>>> print Interval.length
interval."end" - interval.start
>>> print Session().query(Interval).filter(Interval.length > 10)
SELECT interval.id AS interval_id, interval.start AS interval_start,
interval."end" AS interval_end
FROM interval
WHERE interval."end" - interval.start > :param_1
ORM methods such as :meth:`~.Query.filter_by` generally use ``getattr()`` to
locate attributes, so can also be used with hybrid attributes::
>>> print Session().query(Interval).filter_by(length=5)
SELECT interval.id AS interval_id, interval.start AS interval_start,
interval."end" AS interval_end
FROM interval
WHERE interval."end" - interval.start = :param_1
The ``Interval`` class example also illustrates two methods, ``contains()`` and ``intersects()``,
decorated with :class:`.hybrid_method`.
This decorator applies the same idea to methods that :class:`.hybrid_property` applies
to attributes. The methods return boolean values, and take advantage
of the Python ``|`` and ``&`` bitwise operators to produce equivalent instance-level and
SQL expression-level boolean behavior::
>>> i1.contains(6)
True
>>> i1.contains(15)
False
>>> i1.intersects(Interval(7, 18))
True
>>> i1.intersects(Interval(25, 29))
False
>>> print Session().query(Interval).filter(Interval.contains(15))
SELECT interval.id AS interval_id, interval.start AS interval_start,
interval."end" AS interval_end
FROM interval
WHERE interval.start <= :start_1 AND interval."end" > :end_1
>>> ia = aliased(Interval)
>>> print Session().query(Interval, ia).filter(Interval.intersects(ia))
SELECT interval.id AS interval_id, interval.start AS interval_start,
interval."end" AS interval_end, interval_1.id AS interval_1_id,
interval_1.start AS interval_1_start, interval_1."end" AS interval_1_end
FROM interval, interval AS interval_1
WHERE interval.start <= interval_1.start
AND interval."end" > interval_1.start
OR interval.start <= interval_1."end"
AND interval."end" > interval_1."end"
Defining Expression Behavior Distinct from Attribute Behavior
--------------------------------------------------------------
Our usage of the ``&`` and ``|`` bitwise operators above was fortunate, considering
our functions operated on two boolean values to return a new one. In many cases, the construction
of an in-Python function and a SQLAlchemy SQL expression have enough differences that two
separate Python expressions should be defined. The :mod:`~sqlalchemy.ext.hybrid` decorators
define the :meth:`.hybrid_property.expression` modifier for this purpose. As an example we'll
define the radius of the interval, which requires the usage of the absolute value function::
from sqlalchemy import func
class Interval(object):
# ...
@hybrid_property
def radius(self):
return abs(self.length) / 2
@radius.expression
def radius(cls):
return func.abs(cls.length) / 2
Above the Python function ``abs()`` is used for instance-level operations, the SQL function
``ABS()`` is used via the :attr:`.func` object for class-level expressions::
>>> i1.radius
2
>>> print Session().query(Interval).filter(Interval.radius > 5)
SELECT interval.id AS interval_id, interval.start AS interval_start,
interval."end" AS interval_end
FROM interval
WHERE abs(interval."end" - interval.start) / :abs_1 > :param_1
Defining Setters
----------------
Hybrid properties can also define setter methods. If we wanted ``length`` above, when
set, to modify the endpoint value::
class Interval(object):
# ...
@hybrid_property
def length(self):
return self.end - self.start
@length.setter
def length(self, value):
self.end = self.start + value
The ``length(self, value)`` method is now called upon set::
>>> i1 = Interval(5, 10)
>>> i1.length
5
>>> i1.length = 12
>>> i1.end
17
Working with Relationships
--------------------------
There's no essential difference when creating hybrids that work with related objects as
opposed to column-based data. The need for distinct expressions tends to be greater.
Consider the following declarative mapping which relates a ``User`` to a ``SavingsAccount``::
from sqlalchemy import Column, Integer, ForeignKey, Numeric, String
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.hybrid import hybrid_property
Base = declarative_base()
class SavingsAccount(Base):
__tablename__ = 'account'
id = Column(Integer, primary_key=True)
user_id = Column(Integer, ForeignKey('user.id'), nullable=False)
balance = Column(Numeric(15, 5))
class User(Base):
__tablename__ = 'user'
id = Column(Integer, primary_key=True)
name = Column(String(100), nullable=False)
accounts = relationship("SavingsAccount", backref="owner")
@hybrid_property
def balance(self):
if self.accounts:
return self.accounts[0].balance
else:
return None
@balance.setter
def balance(self, value):
if not self.accounts:
account = Account(owner=self)
else:
account = self.accounts[0]
account.balance = balance
@balance.expression
def balance(cls):
return SavingsAccount.balance
The above hybrid property ``balance`` works with the first ``SavingsAccount`` entry in the list of
accounts for this user. The in-Python getter/setter methods can treat ``accounts`` as a Python
list available on ``self``.
However, at the expression level, we can't travel along relationships to column attributes
directly since SQLAlchemy is explicit about joins. So here, it's expected that the ``User`` class will be
used in an appropriate context such that an appropriate join to ``SavingsAccount`` will be present::
>>> print Session().query(User, User.balance).join(User.accounts).filter(User.balance > 5000)
SELECT "user".id AS user_id, "user".name AS user_name, account.balance AS account_balance
FROM "user" JOIN account ON "user".id = account.user_id
WHERE account.balance > :balance_1
Note however, that while the instance level accessors need to worry about whether ``self.accounts``
is even present, this issue expresses itself differently at the SQL expression level, where we basically
would use an outer join::
>>> from sqlalchemy import or_
>>> print (Session().query(User, User.balance).outerjoin(User.accounts).
... filter(or_(User.balance < 5000, User.balance == None)))
SELECT "user".id AS user_id, "user".name AS user_name, account.balance AS account_balance
FROM "user" LEFT OUTER JOIN account ON "user".id = account.user_id
WHERE account.balance < :balance_1 OR account.balance IS NULL
.. _hybrid_custom_comparators:
Building Custom Comparators
---------------------------
The hybrid property also includes a helper that allows construction of custom comparators.
A comparator object allows one to customize the behavior of each SQLAlchemy expression
operator individually. They are useful when creating custom types that have
some highly idiosyncratic behavior on the SQL side.
The example class below allows case-insensitive comparisons on the attribute
named ``word_insensitive``::
from sqlalchemy.ext.hybrid import Comparator, hybrid_property
from sqlalchemy import func, Column, Integer, String
from sqlalchemy.orm import Session
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class CaseInsensitiveComparator(Comparator):
def __eq__(self, other):
return func.lower(self.__clause_element__()) == func.lower(other)
class SearchWord(Base):
__tablename__ = 'searchword'
id = Column(Integer, primary_key=True)
word = Column(String(255), nullable=False)
@hybrid_property
def word_insensitive(self):
return self.word.lower()
@word_insensitive.comparator
def word_insensitive(cls):
return CaseInsensitiveComparator(cls.word)
Above, SQL expressions against ``word_insensitive`` will apply the ``LOWER()``
SQL function to both sides::
>>> print Session().query(SearchWord).filter_by(word_insensitive="Trucks")
SELECT searchword.id AS searchword_id, searchword.word AS searchword_word
FROM searchword
WHERE lower(searchword.word) = lower(:lower_1)
The ``CaseInsensitiveComparator`` above implements part of the :class:`.ColumnOperators`
interface. A "coercion" operation like lowercasing can be applied to all comparison operations
(i.e. ``eq``, ``lt``, ``gt``, etc.) using :meth:`.Operators.operate`::
class CaseInsensitiveComparator(Comparator):
def operate(self, op, other):
return op(func.lower(self.__clause_element__()), func.lower(other))
Hybrid Value Objects
--------------------
Note in our previous example, if we were to compare the ``word_insensitive`` attribute of
a ``SearchWord`` instance to a plain Python string, the plain Python string would not
be coerced to lower case - the ``CaseInsensitiveComparator`` we built, being returned
by ``@word_insensitive.comparator``, only applies to the SQL side.
A more comprehensive form of the custom comparator is to construct a *Hybrid Value Object*.
This technique applies the target value or expression to a value object which is then
returned by the accessor in all cases. The value object allows control
of all operations upon the value as well as how compared values are treated, both
on the SQL expression side as well as the Python value side. Replacing the
previous ``CaseInsensitiveComparator`` class with a new ``CaseInsensitiveWord`` class::
class CaseInsensitiveWord(Comparator):
"Hybrid value representing a lower case representation of a word."
def __init__(self, word):
if isinstance(word, basestring):
self.word = word.lower()
elif isinstance(word, CaseInsensitiveWord):
self.word = word.word
else:
self.word = func.lower(word)
def operate(self, op, other):
if not isinstance(other, CaseInsensitiveWord):
other = CaseInsensitiveWord(other)
return op(self.word, other.word)
def __clause_element__(self):
return self.word
def __str__(self):
return self.word
key = 'word'
"Label to apply to Query tuple results"
Above, the ``CaseInsensitiveWord`` object represents ``self.word``, which may be a SQL function,
or may be a Python native. By overriding ``operate()`` and ``__clause_element__()``
to work in terms of ``self.word``, all comparison operations will work against the
"converted" form of ``word``, whether it be SQL side or Python side.
Our ``SearchWord`` class can now deliver the ``CaseInsensitiveWord`` object unconditionally
from a single hybrid call::
class SearchWord(Base):
__tablename__ = 'searchword'
id = Column(Integer, primary_key=True)
word = Column(String(255), nullable=False)
@hybrid_property
def word_insensitive(self):
return CaseInsensitiveWord(self.word)
The ``word_insensitive`` attribute now has case-insensitive comparison behavior
universally, including SQL expression vs. Python expression (note the Python value is
converted to lower case on the Python side here)::
>>> print Session().query(SearchWord).filter_by(word_insensitive="Trucks")
SELECT searchword.id AS searchword_id, searchword.word AS searchword_word
FROM searchword
WHERE lower(searchword.word) = :lower_1
SQL expression versus SQL expression::
>>> sw1 = aliased(SearchWord)
>>> sw2 = aliased(SearchWord)
>>> print Session().query(
... sw1.word_insensitive,
... sw2.word_insensitive).\\
... filter(
... sw1.word_insensitive > sw2.word_insensitive
... )
SELECT lower(searchword_1.word) AS lower_1, lower(searchword_2.word) AS lower_2
FROM searchword AS searchword_1, searchword AS searchword_2
WHERE lower(searchword_1.word) > lower(searchword_2.word)
Python only expression::
>>> ws1 = SearchWord(word="SomeWord")
>>> ws1.word_insensitive == "sOmEwOrD"
True
>>> ws1.word_insensitive == "XOmEwOrX"
False
>>> print ws1.word_insensitive
someword
The Hybrid Value pattern is very useful for any kind of value that may have multiple representations,
such as timestamps, time deltas, units of measurement, currencies and encrypted passwords.
See Also:
`Hybrids and Value Agnostic Types <http://techspot.zzzeek.org/2011/10/21/hybrids-and-value-agnostic-types/>`_ - on the techspot.zzzeek.org blog
`Value Agnostic Types, Part II <http://techspot.zzzeek.org/2011/10/29/value-agnostic-types-part-ii/>`_ - on the techspot.zzzeek.org blog
.. _hybrid_transformers:
Building Transformers
----------------------
A *transformer* is an object which can receive a :class:`.Query` object and return a
new one. The :class:`.Query` object includes a method :meth:`.with_transformation`
that simply returns a new :class:`.Query` transformed by the given function.
We can combine this with the :class:`.Comparator` class to produce one type
of recipe which can both set up the FROM clause of a query as well as assign
filtering criterion.
Consider a mapped class ``Node``, which assembles using adjacency list into a hierarchical
tree pattern::
from sqlalchemy import Column, Integer, ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class Node(Base):
__tablename__ = 'node'
id =Column(Integer, primary_key=True)
parent_id = Column(Integer, ForeignKey('node.id'))
parent = relationship("Node", remote_side=id)
Suppose we wanted to add an accessor ``grandparent``. This would return the ``parent`` of
``Node.parent``. When we have an instance of ``Node``, this is simple::
from sqlalchemy.ext.hybrid import hybrid_property
class Node(Base):
# ...
@hybrid_property
def grandparent(self):
return self.parent.parent
For the expression, things are not so clear. We'd need to construct a :class:`.Query` where we
:meth:`~.Query.join` twice along ``Node.parent`` to get to the ``grandparent``. We can instead
return a transforming callable that we'll combine with the :class:`.Comparator` class
to receive any :class:`.Query` object, and return a new one that's joined to the ``Node.parent``
attribute and filtered based on the given criterion::
from sqlalchemy.ext.hybrid import Comparator
class GrandparentTransformer(Comparator):
def operate(self, op, other):
def transform(q):
cls = self.__clause_element__()
parent_alias = aliased(cls)
return q.join(parent_alias, cls.parent).\\
filter(op(parent_alias.parent, other))
return transform
Base = declarative_base()
class Node(Base):
__tablename__ = 'node'
id =Column(Integer, primary_key=True)
parent_id = Column(Integer, ForeignKey('node.id'))
parent = relationship("Node", remote_side=id)
@hybrid_property
def grandparent(self):
return self.parent.parent
@grandparent.comparator
def grandparent(cls):
return GrandparentTransformer(cls)
The ``GrandparentTransformer`` overrides the core :meth:`.Operators.operate` method
at the base of the :class:`.Comparator` hierarchy to return a query-transforming
callable, which then runs the given comparison operation in a particular context.
Such as, in the example above, the ``operate`` method is called, given the
:attr:`.Operators.eq` callable as well as the right side of the comparison
``Node(id=5)``. A function ``transform`` is then returned which will transform
a :class:`.Query` first to join to ``Node.parent``, then to compare ``parent_alias``
using :attr:`.Operators.eq` against the left and right sides, passing into
:class:`.Query.filter`:
.. sourcecode:: pycon+sql
>>> from sqlalchemy.orm import Session
>>> session = Session()
{sql}>>> session.query(Node).\\
... with_transformation(Node.grandparent==Node(id=5)).\\
... all()
SELECT node.id AS node_id, node.parent_id AS node_parent_id
FROM node JOIN node AS node_1 ON node_1.id = node.parent_id
WHERE :param_1 = node_1.parent_id
{stop}
We can modify the pattern to be more verbose but flexible by separating
the "join" step from the "filter" step. The tricky part here is ensuring
that successive instances of ``GrandparentTransformer`` use the same
:class:`.AliasedClass` object against ``Node``. Below we use a simple
memoizing approach that associates a ``GrandparentTransformer``
with each class::
class Node(Base):
# ...
@grandparent.comparator
def grandparent(cls):
# memoize a GrandparentTransformer
# per class
if '_gp' not in cls.__dict__:
cls._gp = GrandparentTransformer(cls)
return cls._gp
class GrandparentTransformer(Comparator):
def __init__(self, cls):
self.parent_alias = aliased(cls)
@property
def join(self):
def go(q):
return q.join(self.parent_alias, Node.parent)
return go
def operate(self, op, other):
return op(self.parent_alias.parent, other)
.. sourcecode:: pycon+sql
{sql}>>> session.query(Node).\\
... with_transformation(Node.grandparent.join).\\
... filter(Node.grandparent==Node(id=5))
SELECT node.id AS node_id, node.parent_id AS node_parent_id
FROM node JOIN node AS node_1 ON node_1.id = node.parent_id
WHERE :param_1 = node_1.parent_id
{stop}
The "transformer" pattern is an experimental pattern that starts
to make usage of some functional programming paradigms.
While it's only recommended for advanced and/or patient developers,
there's probably a whole lot of amazing things it can be used for.
"""
from sqlalchemy import util
from sqlalchemy.orm import attributes, interfaces
class hybrid_method(object):
"""A decorator which allows definition of a Python object method with both
instance-level and class-level behavior.
"""
def __init__(self, func, expr=None):
"""Create a new :class:`.hybrid_method`.
Usage is typically via decorator::
from sqlalchemy.ext.hybrid import hybrid_method
class SomeClass(object):
@hybrid_method
def value(self, x, y):
return self._value + x + y
@value.expression
def value(self, x, y):
return func.some_function(self._value, x, y)
"""
self.func = func
self.expr = expr or func
def __get__(self, instance, owner):
if instance is None:
return self.expr.__get__(owner, owner.__class__)
else:
return self.func.__get__(instance, owner)
def expression(self, expr):
"""Provide a modifying decorator that defines a SQL-expression producing method."""
self.expr = expr
return self
class hybrid_property(object):
"""A decorator which allows definition of a Python descriptor with both
instance-level and class-level behavior.
"""
def __init__(self, fget, fset=None, fdel=None, expr=None):
"""Create a new :class:`.hybrid_property`.
Usage is typically via decorator::
from sqlalchemy.ext.hybrid import hybrid_property
class SomeClass(object):
@hybrid_property
def value(self):
return self._value
@value.setter
def value(self, value):
self._value = value
"""
self.fget = fget
self.fset = fset
self.fdel = fdel
self.expr = expr or fget
util.update_wrapper(self, fget)
def __get__(self, instance, owner):
if instance is None:
return self.expr(owner)
else:
return self.fget(instance)
def __set__(self, instance, value):
if self.fset is None:
raise AttributeError("can't set attribute")
self.fset(instance, value)
def __delete__(self, instance):
if self.fdel is None:
raise AttributeError("can't delete attribute")
self.fdel(instance)
def setter(self, fset):
"""Provide a modifying decorator that defines a value-setter method."""
self.fset = fset
return self
def deleter(self, fdel):
"""Provide a modifying decorator that defines a value-deletion method."""
self.fdel = fdel
return self
def expression(self, expr):
"""Provide a modifying decorator that defines a SQL-expression producing method."""
self.expr = expr
return self
def comparator(self, comparator):
"""Provide a modifying decorator that defines a custom comparator producing method.
The return value of the decorated method should be an instance of
:class:`~.hybrid.Comparator`.
"""
proxy_attr = attributes.\
create_proxied_attribute(self)
def expr(owner):
return proxy_attr(owner, self.__name__, self, comparator(owner))
self.expr = expr
return self
class Comparator(interfaces.PropComparator):
"""A helper class that allows easy construction of custom :class:`~.orm.interfaces.PropComparator`
classes for usage with hybrids."""
def __init__(self, expression):
self.expression = expression
def __clause_element__(self):
expr = self.expression
while hasattr(expr, '__clause_element__'):
expr = expr.__clause_element__()
return expr
def adapted(self, adapter):
# interesting....
return self
|