This file is indexed.

/usr/share/pyshared/sqlalchemy/ext/hybrid.py is in python-sqlalchemy 0.7.8-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
# ext/hybrid.py
# Copyright (C) 2005-2012 the SQLAlchemy authors and contributors <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php

"""Define attributes on ORM-mapped classes that have "hybrid" behavior.

"hybrid" means the attribute has distinct behaviors defined at the
class level and at the instance level.

The :mod:`~sqlalchemy.ext.hybrid` extension provides a special form of method
decorator, is around 50 lines of code and has almost no dependencies on the rest 
of SQLAlchemy.  It can, in theory, work with any descriptor-based expression 
system.

Consider a mapping ``Interval``, representing integer ``start`` and ``end``
values. We can define higher level functions on mapped classes that produce
SQL expressions at the class level, and Python expression evaluation at the
instance level.  Below, each function decorated with :class:`.hybrid_method` or
:class:`.hybrid_property` may receive ``self`` as an instance of the class, or
as the class itself::

    from sqlalchemy import Column, Integer
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy.orm import Session, aliased
    from sqlalchemy.ext.hybrid import hybrid_property, hybrid_method
    
    Base = declarative_base()
    
    class Interval(Base):
        __tablename__ = 'interval'

        id = Column(Integer, primary_key=True)
        start = Column(Integer, nullable=False)
        end = Column(Integer, nullable=False)

        def __init__(self, start, end):
            self.start = start
            self.end = end

        @hybrid_property
        def length(self):
            return self.end - self.start

        @hybrid_method
        def contains(self,point):
            return (self.start <= point) & (point < self.end)

        @hybrid_method
        def intersects(self, other):
            return self.contains(other.start) | self.contains(other.end)
    
Above, the ``length`` property returns the difference between the ``end`` and
``start`` attributes.  With an instance of ``Interval``, this subtraction occurs
in Python, using normal Python descriptor mechanics::

    >>> i1 = Interval(5, 10)
    >>> i1.length
    5

When dealing with the ``Interval`` class itself, the :class:`.hybrid_property`
descriptor evaluates the function body given the ``Interval`` class as 
the argument, which when evaluated with SQLAlchemy expression mechanics
returns a new SQL expression::
    
    >>> print Interval.length
    interval."end" - interval.start
    
    >>> print Session().query(Interval).filter(Interval.length > 10)
    SELECT interval.id AS interval_id, interval.start AS interval_start, 
    interval."end" AS interval_end 
    FROM interval 
    WHERE interval."end" - interval.start > :param_1
    
ORM methods such as :meth:`~.Query.filter_by` generally use ``getattr()`` to 
locate attributes, so can also be used with hybrid attributes::

    >>> print Session().query(Interval).filter_by(length=5)
    SELECT interval.id AS interval_id, interval.start AS interval_start, 
    interval."end" AS interval_end 
    FROM interval 
    WHERE interval."end" - interval.start = :param_1

The ``Interval`` class example also illustrates two methods, ``contains()`` and ``intersects()``,
decorated with :class:`.hybrid_method`.
This decorator applies the same idea to methods that :class:`.hybrid_property` applies
to attributes.   The methods return boolean values, and take advantage 
of the Python ``|`` and ``&`` bitwise operators to produce equivalent instance-level and 
SQL expression-level boolean behavior::

    >>> i1.contains(6)
    True
    >>> i1.contains(15)
    False
    >>> i1.intersects(Interval(7, 18))
    True
    >>> i1.intersects(Interval(25, 29))
    False
    
    >>> print Session().query(Interval).filter(Interval.contains(15))
    SELECT interval.id AS interval_id, interval.start AS interval_start, 
    interval."end" AS interval_end 
    FROM interval 
    WHERE interval.start <= :start_1 AND interval."end" > :end_1

    >>> ia = aliased(Interval)
    >>> print Session().query(Interval, ia).filter(Interval.intersects(ia))
    SELECT interval.id AS interval_id, interval.start AS interval_start, 
    interval."end" AS interval_end, interval_1.id AS interval_1_id, 
    interval_1.start AS interval_1_start, interval_1."end" AS interval_1_end 
    FROM interval, interval AS interval_1 
    WHERE interval.start <= interval_1.start 
        AND interval."end" > interval_1.start 
        OR interval.start <= interval_1."end" 
        AND interval."end" > interval_1."end"
    
Defining Expression Behavior Distinct from Attribute Behavior
--------------------------------------------------------------

Our usage of the ``&`` and ``|`` bitwise operators above was fortunate, considering
our functions operated on two boolean values to return a new one.   In many cases, the construction
of an in-Python function and a SQLAlchemy SQL expression have enough differences that two
separate Python expressions should be defined.  The :mod:`~sqlalchemy.ext.hybrid` decorators
define the :meth:`.hybrid_property.expression` modifier for this purpose.   As an example we'll 
define the radius of the interval, which requires the usage of the absolute value function::

    from sqlalchemy import func
    
    class Interval(object):
        # ...
        
        @hybrid_property
        def radius(self):
            return abs(self.length) / 2
            
        @radius.expression
        def radius(cls):
            return func.abs(cls.length) / 2

Above the Python function ``abs()`` is used for instance-level operations, the SQL function
``ABS()`` is used via the :attr:`.func` object for class-level expressions::

    >>> i1.radius
    2
    
    >>> print Session().query(Interval).filter(Interval.radius > 5)
    SELECT interval.id AS interval_id, interval.start AS interval_start, 
        interval."end" AS interval_end 
    FROM interval 
    WHERE abs(interval."end" - interval.start) / :abs_1 > :param_1

Defining Setters
----------------

Hybrid properties can also define setter methods.  If we wanted ``length`` above, when 
set, to modify the endpoint value::

    class Interval(object):
        # ...
        
        @hybrid_property
        def length(self):
            return self.end - self.start

        @length.setter
        def length(self, value):
            self.end = self.start + value

The ``length(self, value)`` method is now called upon set::

    >>> i1 = Interval(5, 10)
    >>> i1.length
    5
    >>> i1.length = 12
    >>> i1.end
    17

Working with Relationships
--------------------------

There's no essential difference when creating hybrids that work with related objects as 
opposed to column-based data. The need for distinct expressions tends to be greater.
Consider the following declarative mapping which relates a ``User`` to a ``SavingsAccount``::

    from sqlalchemy import Column, Integer, ForeignKey, Numeric, String
    from sqlalchemy.orm import relationship
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy.ext.hybrid import hybrid_property
    
    Base = declarative_base()
    
    class SavingsAccount(Base):
        __tablename__ = 'account'
        id = Column(Integer, primary_key=True)
        user_id = Column(Integer, ForeignKey('user.id'), nullable=False)
        balance = Column(Numeric(15, 5))

    class User(Base):
        __tablename__ = 'user'
        id = Column(Integer, primary_key=True)
        name = Column(String(100), nullable=False)
        
        accounts = relationship("SavingsAccount", backref="owner")
        
        @hybrid_property
        def balance(self):
            if self.accounts:
                return self.accounts[0].balance
            else:
                return None

        @balance.setter
        def balance(self, value):
            if not self.accounts:
                account = Account(owner=self)
            else:
                account = self.accounts[0]
            account.balance = balance

        @balance.expression
        def balance(cls):
            return SavingsAccount.balance

The above hybrid property ``balance`` works with the first ``SavingsAccount`` entry in the list of 
accounts for this user.   The in-Python getter/setter methods can treat ``accounts`` as a Python
list available on ``self``.  

However, at the expression level, we can't travel along relationships to column attributes 
directly since SQLAlchemy is explicit about joins.   So here, it's expected that the ``User`` class will be 
used in an appropriate context such that an appropriate join to ``SavingsAccount`` will be present::

    >>> print Session().query(User, User.balance).join(User.accounts).filter(User.balance > 5000)
    SELECT "user".id AS user_id, "user".name AS user_name, account.balance AS account_balance
    FROM "user" JOIN account ON "user".id = account.user_id 
    WHERE account.balance > :balance_1

Note however, that while the instance level accessors need to worry about whether ``self.accounts``
is even present, this issue expresses itself differently at the SQL expression level, where we basically
would use an outer join::

    >>> from sqlalchemy import or_
    >>> print (Session().query(User, User.balance).outerjoin(User.accounts).
    ...         filter(or_(User.balance < 5000, User.balance == None)))
    SELECT "user".id AS user_id, "user".name AS user_name, account.balance AS account_balance 
    FROM "user" LEFT OUTER JOIN account ON "user".id = account.user_id 
    WHERE account.balance <  :balance_1 OR account.balance IS NULL

.. _hybrid_custom_comparators:

Building Custom Comparators
---------------------------

The hybrid property also includes a helper that allows construction of custom comparators.
A comparator object allows one to customize the behavior of each SQLAlchemy expression
operator individually.  They are useful when creating custom types that have 
some highly idiosyncratic behavior on the SQL side.

The example class below allows case-insensitive comparisons on the attribute
named ``word_insensitive``::

    from sqlalchemy.ext.hybrid import Comparator, hybrid_property
    from sqlalchemy import func, Column, Integer, String
    from sqlalchemy.orm import Session
    from sqlalchemy.ext.declarative import declarative_base
    
    Base = declarative_base()
    
    class CaseInsensitiveComparator(Comparator):
        def __eq__(self, other):
            return func.lower(self.__clause_element__()) == func.lower(other)

    class SearchWord(Base):
        __tablename__ = 'searchword'
        id = Column(Integer, primary_key=True)
        word = Column(String(255), nullable=False)
        
        @hybrid_property
        def word_insensitive(self):
            return self.word.lower()
        
        @word_insensitive.comparator
        def word_insensitive(cls):
            return CaseInsensitiveComparator(cls.word)

Above, SQL expressions against ``word_insensitive`` will apply the ``LOWER()`` 
SQL function to both sides::

    >>> print Session().query(SearchWord).filter_by(word_insensitive="Trucks")
    SELECT searchword.id AS searchword_id, searchword.word AS searchword_word 
    FROM searchword 
    WHERE lower(searchword.word) = lower(:lower_1)

The ``CaseInsensitiveComparator`` above implements part of the :class:`.ColumnOperators`
interface.   A "coercion" operation like lowercasing can be applied to all comparison operations
(i.e. ``eq``, ``lt``, ``gt``, etc.) using :meth:`.Operators.operate`::
    
    class CaseInsensitiveComparator(Comparator):
        def operate(self, op, other):
            return op(func.lower(self.__clause_element__()), func.lower(other))

Hybrid Value Objects
--------------------

Note in our previous example, if we were to compare the ``word_insensitive`` attribute of
a ``SearchWord`` instance to a plain Python string, the plain Python string would not
be coerced to lower case - the ``CaseInsensitiveComparator`` we built, being returned
by ``@word_insensitive.comparator``, only applies to the SQL side.

A more comprehensive form of the custom comparator is to construct a *Hybrid Value Object*.
This technique applies the target value or expression to a value object which is then
returned by the accessor in all cases.   The value object allows control
of all operations upon the value as well as how compared values are treated, both 
on the SQL expression side as well as the Python value side.   Replacing the
previous ``CaseInsensitiveComparator`` class with a new ``CaseInsensitiveWord`` class::

    class CaseInsensitiveWord(Comparator):
        "Hybrid value representing a lower case representation of a word."

        def __init__(self, word):
            if isinstance(word, basestring):
                self.word = word.lower()
            elif isinstance(word, CaseInsensitiveWord):
                self.word = word.word
            else:
                self.word = func.lower(word)

        def operate(self, op, other):
            if not isinstance(other, CaseInsensitiveWord):
                other = CaseInsensitiveWord(other)
            return op(self.word, other.word)

        def __clause_element__(self):
            return self.word

        def __str__(self):
            return self.word

        key = 'word'
        "Label to apply to Query tuple results"

Above, the ``CaseInsensitiveWord`` object represents ``self.word``, which may be a SQL function,
or may be a Python native.   By overriding ``operate()`` and ``__clause_element__()``
to work in terms of ``self.word``, all comparison operations will work against the
"converted" form of ``word``, whether it be SQL side or Python side.   
Our ``SearchWord`` class can now deliver the ``CaseInsensitiveWord`` object unconditionally 
from a single hybrid call::

    class SearchWord(Base):
        __tablename__ = 'searchword'
        id = Column(Integer, primary_key=True)
        word = Column(String(255), nullable=False)

        @hybrid_property
        def word_insensitive(self):
            return CaseInsensitiveWord(self.word)

The ``word_insensitive`` attribute now has case-insensitive comparison behavior
universally, including SQL expression vs. Python expression (note the Python value is 
converted to lower case on the Python side here)::

    >>> print Session().query(SearchWord).filter_by(word_insensitive="Trucks")
    SELECT searchword.id AS searchword_id, searchword.word AS searchword_word 
    FROM searchword 
    WHERE lower(searchword.word) = :lower_1

SQL expression versus SQL expression::

    >>> sw1 = aliased(SearchWord)
    >>> sw2 = aliased(SearchWord)
    >>> print Session().query(
    ...                    sw1.word_insensitive, 
    ...                    sw2.word_insensitive).\\
    ...                        filter(
    ...                            sw1.word_insensitive > sw2.word_insensitive
    ...                        )
    SELECT lower(searchword_1.word) AS lower_1, lower(searchword_2.word) AS lower_2 
    FROM searchword AS searchword_1, searchword AS searchword_2 
    WHERE lower(searchword_1.word) > lower(searchword_2.word)

Python only expression::

    >>> ws1 = SearchWord(word="SomeWord")
    >>> ws1.word_insensitive == "sOmEwOrD"
    True
    >>> ws1.word_insensitive == "XOmEwOrX"
    False
    >>> print ws1.word_insensitive
    someword

The Hybrid Value pattern is very useful for any kind of value that may have multiple representations,
such as timestamps, time deltas, units of measurement, currencies and encrypted passwords.

See Also:

`Hybrids and Value Agnostic Types <http://techspot.zzzeek.org/2011/10/21/hybrids-and-value-agnostic-types/>`_ - on the techspot.zzzeek.org blog

`Value Agnostic Types, Part II <http://techspot.zzzeek.org/2011/10/29/value-agnostic-types-part-ii/>`_ - on the techspot.zzzeek.org blog

.. _hybrid_transformers:

Building Transformers
----------------------

A *transformer* is an object which can receive a :class:`.Query` object and return a
new one.   The :class:`.Query` object includes a method :meth:`.with_transformation` 
that simply returns a new :class:`.Query` transformed by the given function.

We can combine this with the :class:`.Comparator` class to produce one type
of recipe which can both set up the FROM clause of a query as well as assign
filtering criterion.

Consider a mapped class ``Node``, which assembles using adjacency list into a hierarchical
tree pattern::
    
    from sqlalchemy import Column, Integer, ForeignKey
    from sqlalchemy.orm import relationship
    from sqlalchemy.ext.declarative import declarative_base
    Base = declarative_base()
    
    class Node(Base):
        __tablename__ = 'node'
        id =Column(Integer, primary_key=True)
        parent_id = Column(Integer, ForeignKey('node.id'))
        parent = relationship("Node", remote_side=id)
    
Suppose we wanted to add an accessor ``grandparent``.  This would return the ``parent`` of
``Node.parent``.  When we have an instance of ``Node``, this is simple::

    from sqlalchemy.ext.hybrid import hybrid_property

    class Node(Base):
        # ...
        
        @hybrid_property
        def grandparent(self):
            return self.parent.parent

For the expression, things are not so clear.   We'd need to construct a :class:`.Query` where we
:meth:`~.Query.join` twice along ``Node.parent`` to get to the ``grandparent``.   We can instead
return a transforming callable that we'll combine with the :class:`.Comparator` class
to receive any :class:`.Query` object, and return a new one that's joined to the ``Node.parent``
attribute and filtered based on the given criterion::

    from sqlalchemy.ext.hybrid import Comparator

    class GrandparentTransformer(Comparator):
        def operate(self, op, other):
            def transform(q):
                cls = self.__clause_element__()
                parent_alias = aliased(cls)
                return q.join(parent_alias, cls.parent).\\
                            filter(op(parent_alias.parent, other))
            return transform

    Base = declarative_base()

    class Node(Base):
        __tablename__ = 'node'
        id =Column(Integer, primary_key=True)
        parent_id = Column(Integer, ForeignKey('node.id'))
        parent = relationship("Node", remote_side=id)
        
        @hybrid_property
        def grandparent(self):
            return self.parent.parent

        @grandparent.comparator
        def grandparent(cls):
            return GrandparentTransformer(cls)

The ``GrandparentTransformer`` overrides the core :meth:`.Operators.operate` method
at the base of the :class:`.Comparator` hierarchy to return a query-transforming
callable, which then runs the given comparison operation in a particular context.
Such as, in the example above, the ``operate`` method is called, given the
:attr:`.Operators.eq` callable as well as the right side of the comparison
``Node(id=5)``.  A function ``transform`` is then returned which will transform
a :class:`.Query` first to join to ``Node.parent``, then to compare ``parent_alias``
using :attr:`.Operators.eq` against the left and right sides, passing into
:class:`.Query.filter`:

.. sourcecode:: pycon+sql

    >>> from sqlalchemy.orm import Session
    >>> session = Session()
    {sql}>>> session.query(Node).\\
    ...        with_transformation(Node.grandparent==Node(id=5)).\\
    ...        all()
    SELECT node.id AS node_id, node.parent_id AS node_parent_id 
    FROM node JOIN node AS node_1 ON node_1.id = node.parent_id 
    WHERE :param_1 = node_1.parent_id
    {stop}

We can modify the pattern to be more verbose but flexible by separating
the "join" step from the "filter" step.  The tricky part here is ensuring
that successive instances of ``GrandparentTransformer`` use the same
:class:`.AliasedClass` object against ``Node``.  Below we use a simple
memoizing approach that associates a ``GrandparentTransformer``
with each class::

    class Node(Base):

        # ...

        @grandparent.comparator
        def grandparent(cls):
            # memoize a GrandparentTransformer
            # per class
            if '_gp' not in cls.__dict__:
                cls._gp = GrandparentTransformer(cls)
            return cls._gp

    class GrandparentTransformer(Comparator):

        def __init__(self, cls):
            self.parent_alias = aliased(cls)

        @property
        def join(self):
            def go(q):
                return q.join(self.parent_alias, Node.parent)
            return go

        def operate(self, op, other):
            return op(self.parent_alias.parent, other)

.. sourcecode:: pycon+sql

    {sql}>>> session.query(Node).\\
    ...            with_transformation(Node.grandparent.join).\\
    ...            filter(Node.grandparent==Node(id=5))
    SELECT node.id AS node_id, node.parent_id AS node_parent_id 
    FROM node JOIN node AS node_1 ON node_1.id = node.parent_id 
    WHERE :param_1 = node_1.parent_id
    {stop}

The "transformer" pattern is an experimental pattern that starts
to make usage of some functional programming paradigms.
While it's only recommended for advanced and/or patient developers, 
there's probably a whole lot of amazing things it can be used for.

"""
from sqlalchemy import util
from sqlalchemy.orm import attributes, interfaces

class hybrid_method(object):
    """A decorator which allows definition of a Python object method with both
    instance-level and class-level behavior.
    
    """


    def __init__(self, func, expr=None):
        """Create a new :class:`.hybrid_method`.
        
        Usage is typically via decorator::
        
            from sqlalchemy.ext.hybrid import hybrid_method
        
            class SomeClass(object):
                @hybrid_method
                def value(self, x, y):
                    return self._value + x + y
            
                @value.expression
                def value(self, x, y):
                    return func.some_function(self._value, x, y)
            
        """
        self.func = func
        self.expr = expr or func

    def __get__(self, instance, owner):
        if instance is None:
            return self.expr.__get__(owner, owner.__class__)
        else:
            return self.func.__get__(instance, owner)

    def expression(self, expr):
        """Provide a modifying decorator that defines a SQL-expression producing method."""

        self.expr = expr
        return self

class hybrid_property(object):
    """A decorator which allows definition of a Python descriptor with both
    instance-level and class-level behavior.
    
    """

    def __init__(self, fget, fset=None, fdel=None, expr=None):
        """Create a new :class:`.hybrid_property`.
        
        Usage is typically via decorator::
        
            from sqlalchemy.ext.hybrid import hybrid_property
        
            class SomeClass(object):
                @hybrid_property
                def value(self):
                    return self._value
            
                @value.setter
                def value(self, value):
                    self._value = value
            
        """
        self.fget = fget
        self.fset = fset
        self.fdel = fdel
        self.expr = expr or fget
        util.update_wrapper(self, fget)

    def __get__(self, instance, owner):
        if instance is None:
            return self.expr(owner)
        else:
            return self.fget(instance)

    def __set__(self, instance, value):
        if self.fset is None:
            raise AttributeError("can't set attribute")
        self.fset(instance, value)

    def __delete__(self, instance):
        if self.fdel is None:
            raise AttributeError("can't delete attribute")
        self.fdel(instance)

    def setter(self, fset):
        """Provide a modifying decorator that defines a value-setter method."""

        self.fset = fset
        return self

    def deleter(self, fdel):
        """Provide a modifying decorator that defines a value-deletion method."""

        self.fdel = fdel
        return self

    def expression(self, expr):
        """Provide a modifying decorator that defines a SQL-expression producing method."""

        self.expr = expr
        return self

    def comparator(self, comparator):
        """Provide a modifying decorator that defines a custom comparator producing method.
        
        The return value of the decorated method should be an instance of
        :class:`~.hybrid.Comparator`.
        
        """

        proxy_attr = attributes.\
                        create_proxied_attribute(self)
        def expr(owner):
            return proxy_attr(owner, self.__name__, self, comparator(owner))
        self.expr = expr
        return self


class Comparator(interfaces.PropComparator):
    """A helper class that allows easy construction of custom :class:`~.orm.interfaces.PropComparator`
    classes for usage with hybrids."""


    def __init__(self, expression):
        self.expression = expression

    def __clause_element__(self):
        expr = self.expression
        while hasattr(expr, '__clause_element__'):
            expr = expr.__clause_element__()
        return expr

    def adapted(self, adapter):
        # interesting....
        return self